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Abstract

In this paper, we address the task of automatically determining which discourse relation holds
between two text spans. We focus on relations that are not explicitly signalled by a discourse
marker like but. While lexical models have been found useful for the task, they are also prone to
data sparseness problems, which is a big drawback given the scarcity of discourse annotated data.
We therefore investigate whether the use of lexical-semantic resources, such as WordNet, can be
exploited to back-off to a more general representation of lexical information in cases were data are
sparse. We compare such a semantic back-off strategy to morphological generalisations over word
forms, such as stemming and lemmatising.

1 Introduction

To be able to interpret a text it is important to know how its sentences and clauses relate
to each other. For example, whether the events referred to stand in a causal relation or
whether one text segment provides an elaboration or a summary of another. This type of
information is also crucial for many natural language processing (NLP) tasks. Question
answering, for instance, frequently involves recognising cause and effect, e.g., to answer
questions like “Why did Romano Prodi resign?” or “What is the effect of Benzodiazepines in
elderly people?”. Likewise, text summarisation systems need to know which pieces of
information in a text are essential and which ones merely elaborate.

While there has been a considerable research effort dedicated to the automatic identifi-
cation of discourse relations between text segments, the problem is still far from being
solved, with state-of-the-art systems typically obtaining F-Scores between 40% and 70%,
depending on the exact task and the number of discourse relations considered (see,
e.g., Marcu (2000); Soricut and Marcu (2003); Le Thanh et al. (2004); Pardo et al. (2004);
Baldridge and Lascarides (2005); Baldridge et al. (2007)). Moreover, most approaches
heavily rely on surface cues, especially the presence of overt discourse markers such as
because or but. Few systems have been dedicated to determine relations in the absence
of such markers.1 However, it has been estimated that only around half of all relations
are explicitly signalled by a discourse connective (Redeker (1990); Eugenio et al. (1997);
Marcu (2000)). Connectives are also often ambiguous, either between discourse usage
and non-discourse usage (e.g., for as a synonym of because vs. for as a preposition) or be-

1A notable exception are Marcu and Echihabi (2002).

JLCL



Lexical Models to Identify Unmarked Discourse Relations

tween two or more discourse relations (e.g., since can signal a temporal or an explanation
relation). Effectively, one can distinguish three, progressively more difficult, cases:

1. a relation is signalled by an unambiguous marker

2. a relation is signalled by an ambiguous marker

3. a relation is not explicitly signalled by any marker

Relations falling in the first set can be trivially identified provided one has a list mapping
unambiguous markers to the relations they signal.2 For the second case, discourse
markers have to be disambiguated. For the third case, relations need to be identified
based on other cues, such as the lexical semantics of the words in the sentences. The
performance on the third task is likely to be much lower than the F-Scores of 40%-70%
reported above for systems that address all types of relations. Identifying discourse
relations which are not signalled by explicit discourse markers is thus one of the main
bottlenecks for the automatic determination of discourse structure.

In this paper, we focus specifically on distinguishing unmarked discourse relations,
which we define as covering both, relations which are signalled by ambiguous markers
(case two above) and relations which are not signalled by any discourse markers (case
three). The reason for not distinguishing between these two cases is that it is sometimes
difficult to tell whether a relation is ambiguously signalled or not at all; some discourse
connectives, such as and, are so ambiguous with respect to the relations they can signal
that they supply hardly any discourse information at all.

While we do not aim at solving the task of recognising unmarked relations in this
paper, we intend to shed some light on lexical cues that can or cannot help to identify
such relations. Intuitively, lexical information provides useful cues for this task, as the
correct discourse relation can often be guessed on the basis of the lexical semantics of
the words involved. For instance, the two spans (marked by square brackets) in example
(1) are related by EXPLANATION and a human may already be able to infer this from
the words late and missed the bus alone. Likewise, the CONTRAST relation in example (2)
(taken from Marcu and Echihabi (2002)) can be guessed from the presence of the two
words good and fail which indicate a contrast. Similarly, in example (3) the SUMMARY
relation might be inferable from the occurrence of expensive and $7,000 in the left and
right spans, respectively.

(1) [ Peter was late this morning, ] [ he had missed the bus. ]
(EXPLANATION)

(2) [ Paul is good in maths and sciences. ] [ Peter fails almost every class he takes. ]
(CONTRAST)

2The set of unambiguous markers depends to some extent on the discourse theory that is used. For example
in other words can signal either RESTATEMENT or SUMMARY in Rhetorical Structure Theory (RST, Mann and
Thompson (1987)), whereas it unambiguously signals SUMMARY in Segmented Discourse Representation Theory
(SDRT, Asher and Lascarides (2003)) because the latter theory does not distinguish these two relations.
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(3) [ “It may be very expensive,” the spokesman warned. ] [ “The price cannot be less
than $7,000.” ]
(SUMMARY)

Empirical evidence for the importance of lexical information for identifying discourse
relations has also been provided by a number of previous studies. Virtually all data-
driven approaches to discourse parsing employ some lexical information to determine
discourse relations. Polanyi et al. (2004), for example, make use of information about
lexeme repetition and synonym, antonym, and hypernym relationships between lexemes,
in addition to other cues (syntactic and structural information) to determine discourse
relations. Forbes et al. (2001) rely heavily on lexicalised tree fragments to derive discourse
structure. Likewise Soricut and Marcu (2003) propose a lexicalised discourse parser.
Le Thanh et al. (2004) exploit lexical and syntactic cues to build their discourse trees. The
system by Pardo et al. (2004) is completely based on surface cues and does not require
syntactic information, relying solely on discourse markers and cue words. Similarly,
Marcu and Echihabi (2002) determine the discourse relations holding between two spans
solely on the basis of the words occurring in the spans. Finally, Sporleder and Lascarides
(2005) found that lexical cues were among the best performing features in their multi-
feature system for determining discourse relations.

While lexical cues can contribute in identifying the correct discourse relation in some
examples, lexical cues also tend to be prone to data sparseness. The reliable learning of
a mapping from lexical properties to discourse relations typically requires a very large
amount of annotated data for training. Unfortunately, the training sets available are
normally fairly small as annotated data is expensive to create. Marcu and Echihabi (2002)
proposed to address the lack of training data by automatically creating labelled data from
unannotated corpora. For this, they extracted unambiguously marked examples from a
corpus, labelled them with the relation signalled by the marker, then removed the marker
and trained a lexical model to recognise discourse relations in the absence of any marker.
However, their approach was found not to generalise very well to naturally unmarked
instances (Murray et al., 2006; Blair-Goldensohn et al., 2007; Sporleder and Lascarides,
2008).

An alternative to increasing the annotated data by automatic example labelling is to
look for a representation of lexical information that is less prone to sparse data problems.
For NLP tasks such as prepositional phrase attachment (Clark and Weir, 2000) or com-
pound noun analysis (Nastase et al., 2006), it has been suggested to replace individual
lexical items by more general classes, such as hypernyms taken from WordNet (Miller
et al., 1990), in order to overcome data sparseness. In this paper, we investigate whether
class-based information is also useful for identifying discourse relations and how this
strategy compares to other methods of generalising over the actual word forms, such as
lemmatising or stemming.
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2 Experimental Set-up

To determine which of the generalisation strategies performs best, we first created a data
set of pairs of text spans which are linked by unmarked discourse relations. We then
created a number of two-feature classifiers, in which one feature encoded information
about the left span at a given level of generalisation and the second feature encoded
the same type of information for the right span. For example, the first feature might
encode the stems in the left span and the second the stems in the right span. To determine
the utility of each feature type, we ran a 10-fold cross-validation experiment for each
of the classifiers in isolation. We also assessed the data sparseness that resulted from a
particular encoding of the spans.

The next section describes the data creation in more detail. Section 2.2 outlines the
machine learning framework we employed and 2.3 lists the individual features we tested.

2.1 Data

For our experiments, we looked at five relations from Segmented Discourse Representa-
tion Theory (SDRT, Asher and Lascarides (2003)): CONTRAST, EXPLANATION, RESULT,
SUMMARY, and CONTINUATION. SDRT relations tend to be more coarsely-grained than
those used by Rhetorical Structure Theory (RST, (Mann and Thompson, 1987)) and are
therefore more amenable to automatic analysis. Examples of the five relations are given
below (examples 4 to 8). For a detailed definition of each of the relations see Asher and
Lascarides (2003).

(4) [ The executive said any buy-out would be led by the current board, whose
chairman is Maurice Saatchi and whose strategic guiding force is believed to be
Charles Saatchi. ]
[ Mr. Spielvogel isn’t part of the board, nor are any of the other heads of Saatchi’s
big U.S.-based ad agencies. ]
(CONTRAST)

(5) [ The five astronauts returned to Earth about three hours early because high winds
had been predicted at the landing site. ]
[ Fog shrouded the base before touchdown. ]
(CONTINUATION)

(6) [ The venture’s importance for Thomson is great. ]
[ Thomson feels the future of its defense business depends on building cooperation
with other Europeans. ]
(EXPLANATION)

(7) [ A broker may have to approach as many as 20 underwriters who insure the
endeavors on behalf of the syndicates. ]
[ It could take six months for a claim to be paid. ]
(RESULT)
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(8) [ “It will be very expensive,” the spokesman warned. ]
[ “The price cannot be less than $7,000.” ]
(SUMMARY)

To create the data set, we collected examples from the RST Discourse Treebank (RST-DT,
Carlson et al. (2002)) and manually mapped them to SDRT relations (see Sporleder and
Lascarides (2008) for details). We only extracted examples in which the relation is not
signalled by an unambiguous discourse marker and in which the relation holds between
the clauses of a sentence or between adjacent sentences; we did not collect relations
holding between multi-sentence text spans.3 Overall, our final data set contained 1,051
examples, with roughly equal proportions of all relations with the exception of SUMMARY
for which we found only 44 examples in the RST-DT (see Table 1). The inter-annotator
agreement for identifying the relations was 72% (kappa .592, Carletta (1996)). This is
effectively an upper bound on the performance we can expect from automatic relation
classifiers. The fact that the agreement is noticeably below 100% also shows that the task
of classifying discourse relations in the absence of unambiguous markers is difficult even
for humans.

Relation number of examples
CONTRAST 213
EXPLANATION 268
CONTINUATION 260
RESULT 266
SUMMARY 44

Table 1: Examples per relation in the data set

2.2 Machine Learning Framework

We chose BoosTexter (Schapire and Singer, 2000) as our machine learner. BoosTexter
was originally developed for text categorisation. It combines a boosting algorithm with
simple decision rules and allows a variety of feature types, such as nominal, numerical
or text-valued features. Text-valued features can, for instance, encode sequences of
words or parts-of-speech. BoosTexter applies statistical models to automatically identify
informative n-grams when forming classification hypotheses for these features (i.e., it
tries to detect n-grams in the sequence which are good predictors for a given class label).
BoosTexter’s effective modelling of n-gram features makes it particularly suitable for our

3One reason for excluding the latter is that relations between larger text spans are distributed differently than
relations between sentences or clauses, e.g., RST relations like ELABORATION, JOINT, and BACKGROUND are
more frequent between larger units than between sentences and clauses whereas relations like CONTRAST,
RESULT, and EXPLANATION are more frequent between smaller units. Consequently relations between larger
units are often treated by different means than inter- or intra-sentential relations (see e.g. Marcu (2000)).
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task as we can directly encode the words, stems, hypernyms etc. of the two text spans
involved in a relation as text-valued features. In addition to supporting n-gram features,
BoosTexter also allows the use of sparse n-grams, i.e. n-grams with variable slots. For
instance, the sparse n-gram Dow Jones * sank would match among others the 4-grams Dow
Jones Industrials sank and Dow Jones index sank. We experimented with both, normal and
sparse n-grams up to n = 3 and n = 4. The next section lists the features in detail.

2.3 Lexical Features

We implemented 10 lexical feature pairs (with one feature for the left and the other for
the right span), encoding tokens (with and without punctuation and stop words), stems,
lemmas, content word lemmas, word sense disambiguated lemmas, and hypernyms. To
extract this information, we employed a number of pre-processing tools: Tokenisation,
lemmatisation, and part-of-speech tagging were done by the tools supplied with the RASP
parser (Briscoe et al., 2006).4 Stemming was performed by applying the Porter stemmer
(Porter, 1980). For the hypernym back-off we needed to word sense disambiguate the
data. This was done by employing the SenseRelate disambiguation package (Pedersen
et al., 2005). In this approach a target word is disambiguated by computing the semantic
relatedness between each of its possible senses and all possible senses of the neighbouring
words, and then choosing the sense that gives rise to the highest relatedness score.
Semantic relatedness between two senses is computed by looking at their gloss overlap
in WordNet 2.0 (Fellbaum, 1998). Below, we discuss the features in more detail, using the
span pair in example (9) for illustration, where (LS) and (RS) indicated the left and right
span, respectively.

(9) (LS) A broker may have to approach as many as 20 underwriters who insure the
endeavors on behalf of the syndicates.
(RS) It could take six months for a claim to be paid.
(RESULT)

Words: encodes the spans as they occur in the text after tokenisation and normalising
capitalisation:

(10) (LS) a broker may have to approach as many as 20 underwriters who insure the
endeavors on behalf of the syndicates .
(RS) it could take six months for a claim to be paid .

We also encoded variants of this feature pair in which punctuation characters and/or
stop words were removed.

Lemmas: encodes the original strings with all words lemmatised:

4Note that we did not employ full parsing or indeed any syntactic information, such as chunking.
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(11) (LS) a broker may have to approach as many as 20 underwriter who insure the
endeavor on behalf of the syndicate .
(RS) it can take six month for a claim to be pay .

Stems: encodes the original strings with all words stemmed:

(12) (LS) a broker mai have to approach as mani as 20 underwrit who insur the
endeavor on behalf of the syndic .
(RS) it could take six month for a claim to be paid .

Content word lemmas: encodes only content word lemmas in the two spans. Named
entities and numbers are replaced by placeholders (NE and NUM, respectively). We
identified named entities and numbers from the part-of-speech tagged spans.

(13) (LS) broker approach NUM underwriter insure endeavor syndicate
(RS) take NUM month claim pay

Word sense disambiguated lemmas: encodes all lemmas in the original spans but lem-
mas are disambiguated where possible (i.e., if the lemma can be found in WordNet):

(14) (LS) a broker#n#1 may#v have#v#13 to approach#v#5 as many as 20
underwriter#n#1 who insure#v#1 the endeavor#n#1 on behalf#n#1 of the
syndicate#n#2
(RS) it could#v take#v#10 six month#n#2 for a claim#n#1 to be#v#1 pay#v#8

Hypernym back-off for all word sense disambiguated lemmas: all word sense disam-
biguated lemmas are replaced by their direct hypernyms in WordNet (example (15)).5

We also implemented two variants in which we back-off to hypernyms that are two and
three levels higher up the hierarchy (see example (16) for a three level back-off).

(15) (LS) a businessperson#n#1 may#v have#v#13 to address#v#9 as many as 20
agent#n#4 who verify#v#1 the undertaking#n#1 on stead#n#1 of the
association#n#1
(RS) it could#v decide#v#1 six time_unit#n#1 for a assertion#n#1 to be#v#1 be#v#1

(16) (LS) a person#n#1 may#v have#v#13 to travel#v#1 as many as 20 capitalist#n#2
who confirm#v#1 the activity#n#1 on duty#n#1 of the social_group#n#1
(RS) it could#v decide#v#1 six abstraction#n#6 for a statement#n#1 to be#v#1
be#v#1

5The repeated occurrence be#v#1 at the end of the second span in example (15) can be explained as follows. The
first occurrence comes from be in to be paid for which there are no hypernyms for the assigned sense be#v#1. The
second occurrence of be#v#1 comes from the word pay which is wrongly disambiguated and assigned the sense
used in it pays to go through trouble. The direct hypernym of this sense in WordNet 2.0 is also be#v#1. Hence the
repeated occurrence of this sense at the end of the second span.
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Hypernym back-off for infrequent lemmas: for this feature, lemmas are backed-off to
their hypernyms if they occur only once in the data set (hapax legomena).6 For example,
the lemmas endeavour and syndicate are replaced by their hypernyms undertaking and
association, respectively.

(17) (LS) a broker#n#1 may#v have#v#13 to approach#v#5 as many as 20
underwriter#n#1 who insure#v#1 the undertaking#n#1 on behalf#n#1 of the
association#n#1
(RS) it could#v take#v#10 six month#n#2 for a claim#n#1 to be#v#1 pay#v#8

Placeholder back-off for infrequent lemmas: this feature is a variant of the previous one,
hapaxes are replaced by a placeholder (INFR) rather than backed-off to the next hypernym
level.

(18) (LS) a broker#n#1 may#v have#v#13 to approach#v#5 as many as 20
underwriter#n#1 who insure#v#1 the INFR on behalf#n#1 of the INFR
(RS) it could#v take#v#10 six month#n#2 for a claim#n#1 to be#v#1 pay#v#8

3 Data sparseness and classification accuracy for different lexical representations

Each of the features described in the previous section is effectively a different represen-
tation of the lexical items in the two text strings involved in a discourse relation. To
determine the utility of the different representations, we determined their effect on (i)
data sparseness and (ii) the accuracy of the relation classifier.

3.1 Data Sparseness

We estimated the data sparseness by computing the type-to-token ratio for different
representations of lexical items (words, lemmas, stems, hypernyms, etc.) and the number
of hapax legomena, both in absolute terms and in relation to the number of tokens. Table 2
shows the results.

It can be seen that the highest type-to-token ratio is achieved for word strings without
punctuation and stop words. The lowest number of hapaxes is predictably achieved
for hapax back-off to placeholder which eliminates all hapaxes. Note that hapax back-off to
hypernyms does not eliminate all hapaxes, as we only back-off one level and the hypernym
may itself only occur once in the data. Encoding only content lemmas leads to the second
lowest number of singular items. Word-sense disambiguation, predictably, leads to an
increase in hapaxes, which is then reduced by general hypernym back-off.

3.2 Classification Accuracy

For each lexical representation we trained a two-feature classifier, where the two features
corresponded to the right and left spans of the instances in the data set. We then ran four

6We also experimented with other frequency thresholds, without much effect on the results.

Volume 23 (2) – 2008 27



Sporleder

type-token num. of hapax-token
ratio hapaxes ratio

words 15.90% (6241/39240) 3185 8.12%
words no punct. 19.34% (6304/32591) 3185 10.06%
words no punct. no stop 33.33% (6046/18139) 3185 17.92%
stems 13.18% (4994/37888) 2453 6.47%
lemmas 14.68% (5562/37888) 2883 7.61%
content lemmas 18.19% (3001/16500) 1447 8.77%
wsd lemmas 21.80% (7122/32672) 4039 12.36%
hypernyms all, level 1 16.85% (5506/32672) 2967 9.08%
hypernyms all, level 2 14.55% (4755/32672) 2608 7.98%
hypernyms all, level 3 13.23% (4321/32672) 2423 7.42%
hapax back-off hypernyms 19.35% (6323/32672) 3044 9.32%
hapax back-off placeholder 9.44% (3084/32672) 0 0.00%

Table 2: Data sparseness for different lexical features

10-fold cross-validation experiments for each of the 12 two-feature classifiers, using four
parameter settings, i.e., n-grams and sparse n-grams up to n=3 and n=4. The average
classification accuracies for each run are shown in Table 3.

While the results are all relatively close together and many of the differences are
not statistically significant, some trends can be observed. With respect to the different
feature types it can be seen that representing only content word lemmas generally leads
to the worst results with classification accuracies between 29.29% and 30.68%. Since
the classifiers that are based on an encoding that represents all lemmas in the spans
seem to perform best (with classification accuracies between 43.38% and 45.71%), it can
be concluded that non-content word lemmas (e.g. function words) are quite important
for the classification task. This conclusion is further corroborated by the fact that the
word-based classifier which excludes stop words performs around 10% lower than the
one that includes this information. Lemmatising and stemming tend to lead to a higher
performance than encoding the words in the spans directly. Word-sense disambiguation
leads to a drop in accuracy compared to using the non-disambiguated lemmas but this
decrease is quite small for n-grams. The lower accuracies can probably be attributed
to the increased data sparseness and also the introduction of noise due to wrongly
disambiguated lemmas. Indiscriminant back-off to the next hypernym level leads to a
further drop in performance. Only backing-off hapaxes to their hypernyms seems to be a
better strategy, though the classifiers that use these features still performed worse than
those that employ the disambiguated lemmas without any back-off. Hypernym back-off
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avg. accuracy (%)
n-grams sparse n-grams

n ≤ 3 n ≤ 4 n ≤ 3 n ≤ 4
words 41.87 41.47 43.06 44.07
words, no punct. 43.63 43.63 42.42 42.69
words, no punct. no stop 31.64 31.64 32.18 31.84
stems 43.16 43.75 43.40 43.84
lemmas 43.38 43.77 45.71 45.00
content lemmas 29.29 29.29 30.68 29.51
wsd lemmas 43.15 43.15 41.85 41.32
hypernyms all, level 1 40.35 40.29 40.59 40.01
hypernyms all, level 2 41.39 39.77 39.48 41.39
hypernyms all, level 3 38.33 39.48 38.38 39.40
hapax back-off hypernyms 42.83 41.52 39.99 42.57
hapax back-off placeholder 40.39 40.31 40.49 40.92

Table 3: Classification Accuracies, averaged over ten 10-fold cross-validation runs

tends to perform better than back-off to a simple placeholder. With respect to n-grams
versus sparse n-grams, it seems that the latter generally lead to a higher accuracy but this
is not true for all features.

On the whole, our results suggest that alleviating data-sparseness by morphological
processing, such as stemming or lemmatising, is a more successful strategy than using
semantic generalisation strategies, e.g., backing-off to hypernyms. One reason for this
is probably that word sense disambiguation is by no means a solved NLP task and
state-of-the art disambiguation systems still have a relatively high error rate.7 Word
sense disambiguation thus inevitably introduces noise, and this may outweigh any gains
that could potentially be made by semantic back-off strategies. A second reason for
the relatively low performance of the WordNet-based features may be that we used a
relatively crude back-off strategy. Ideally one would want to automatically determine
the right back-off level, i.e., backing-off to a concept that is general enough to reduce
sparseness but specific enough to allow the classifier to discriminate between different
discourse relations. Sophisticated semantic back-off strategies exist for a number of

7The exact proportion of errors depends on several factors, for example on how finely-grained the sense inventory
is. One way to verify whether the relatively bad performance of hypernym back-off is indeed due to word
sense disambiguation errors would be to re-run the experiments on data with manually disambiguated senses.
Unfortunately, manual word sense disambiguation is a very time-consuming task and disambiguating the
complete data set was beyond the scope of this paper. However, we manually checked a small sample of the
automatically disambiguated data and found a significant proportion of errors (30-40%).
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NLP tasks, such as parse disambiguation, (Clark and Weir, 2000, 2002; Li and Abe, 1998;
Resnik, 1998). However, these require labelled training data and are therefore difficult to
transfer to the task of determining discourse relations for which the amount of labelled
training data is very small.

4 Conclusion and Outlook

In this paper we have presented an initial study on the benefit of different lexical repre-
sentations for the task of classifying unmarked discourse relations. Since lexical models
suffer from sparse data we investigated different methods of generalising over the actual
word forms in the spans and backing-off to less sparse lexical items. We looked in partic-
ular at semantic back-off to hypernyms. Our results suggest that semantic generalisations
are considerably less effective than morphological ones, such as lemmatising or stem-
ming. Lemmatisation was found to be the best strategy. We also found that non-content
word lemmas play a fairly important role in the classification task and should not be
disregarded. The relatively low performance of semantic back-off models is probably
largely due to errors in the word-sense disambiguation and possibly also to the difficulty
of finding a suitable back-off level automatically.

While the current study focused only on lexical features, future work on the classifi-
cation of discourse relations in unmarked examples should also take other sources of
information into account. The main challenge for this task is to find a good representation
of the meaning (or the most important aspects thereof) of the two spans involved in a rela-
tion. This representation should be general enough so that it minimises data sparseness
and specific enough that a machine learning system can learn to discriminate between
different relations. The task thus bears similarities to other complex semantic task such as
recognising textual entailment (RTE) or finding paraphrases. Though, because the latter
tasks aim at estimating semantic similarity at some level, some mileage can be gained
by relatively simple methods such as word overlap. Most discourse relations, however,
cannot be modelled by such simple statistical methods. The most successful RTE systems
currently exploit a whole number of external resources, e.g., WordNet, logical inference,
anaphora resolution, and large corpora of entailment examples (Hickl and Bensley, 2007;
Giampiccolo et al., 2007). It is likely that such a multi-resource strategy is also necessary
to successfully distinguish unmarked discourse relations.
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