Ryan Levering, Michal Cutler

Cost-Sensitive Feature Extraction and Selection in Genre Classifica-
tion

Automatic genre classification of Web pages is currently young compared
to other Web classification tasks. Corpora are just starting to be collected
and organized in a systematic way, feature extraction techniques are incon-
sistent and not well detailed, genres are constantly in dispute, and novel
applications have not been implemented. This paper attempts to review
and make progress in the area of feature extraction, an area that we believe
can benefit all Web page classification, and genre classification in particular.
We first present a framework for the extraction of various Web-specific
feature groups from distinct data models based on a tree of potentials
models and the transformations that create them. Then we introduce the
concept of cost-sensitivity to this tree and provide an algorithm for per-
forming wrapper-based feature selection on this tree. Finally, we apply the
cost-sensitive feature selection algorithm on two genre corpora and analyze
the performance of the classification results.

1 Introduction

A classification task cannot achieve high performance without being provided a good
set of features, regardless of the algorithm that is being used to train the computer.
For instance, if you were attempting to train a computer to recognize dogs from other
animals and the only measurement you took was the number of legs the animal had,
it would be an impossible task. This paper is primarily concerned with the goal of
obtaining thorough measurements, known as features, from a particular automatic
classification domain: Web pages.

The features that we are discussing would most likely be useful for any number of
classification tasks within the domain of Web pages. Ideally, there would be a general
way, independent of classification task, to measure the effectiveness of a feature in
representing the information on a Web page. For instance, when we are dealing with
text documents, a bag-of-words model is a fairly good representation of the kind of
content on the page. If word order was also included in the model, it would come much
closer to representing all the information that is encoded in the document. However,
Web pages are very high-dimensional concepts that layer semantic and visual annotation
on top of the already rich semantics of text. This makes it much harder to theoretically
verify the merit of a feature set. Therefore, the merit is more easily measured with
practical experiments in which the features are used.

JLCL 2009 — Volume 24 (1) - 57-72

Levering, Cutler

While we want to achieve a high accuracy with Web page classification, we recognize
that practical Web-scale classification implementations cannot afford to compute every
possible feature to achieve the maximal accuracy. Even if they could, they should prefer
to minimize the time to achieve that accuracy. Therefore, the work presented in this
paper focuses on finding a balance between accuracy and efficiency in feature extraction.
As an example, if a particular genre class of Web pages is easily recognizable from the
URL, it should not be necessary to actually perform a network fetch. While this can
be decided manually, we believe that this sort of analysis can be incorporated into the
machine learning process to better effect.

We have chosen to evaluate our feature extraction and selection methodology in
the context of automatic genre classification tasks. The meaning of genre is quite
complex and there are many different definitions in the information science literature.
For the reader unfamiliar with genre in the context of Web page classification, we advise
reading sections of more comprehensive works such as Santini (2007) or Boese (2005).
Empirically, common examples of Web page genres include such labels as “FAQ”, “News
Article”, “Company Home Page” that encompass a common perception of a document
type.

Genre classification is a good choice to evaluate Web page features because genres of
Web pages often need a larger amount of contextual information on the page to make a
classification decision and therefore actually require more interesting features. Genre
classification, on the machine learning side has always found merit in and been defined
by features that traditional topical classification ignored. Stamatatos et al. (2000) found
that stop words, which are typically thrown out in topical classification, were good
indicators of genre. Toms and Campbell (1999) found that users could identify genre
based on visual layout and spacing information. Later in our own research Levering
et al. (2008), we corroborated that measuring this visual information could help with
certain automatic genre classification tasks. As an example, HTML tag counts are
almost always included in feature sets for Web genre classification tasks, when they are
frequently stripped out in topical classification.

The general difference in the two types of automatic classification is that the feature
spaces of the two types of classification are often orthogonal. From a human perspective,
a particular topic will span multiple genres of representation and the genre of a document
often does not imply a particular textual content. At the same time, certain genres
are in practice correlated with particular topics. Additionally, there are features that
are useful in both types of classification. The larger size and diversity of the feature
space means that more care and sensitivity needs to be given to feature extraction and
selection in genre classification.

This paper will start off in Section 2 with an introduction to a more descriptive
methodology of feature extraction on Web pages. Once this method is presented, in
Section 3 we will identify several useful data models that we can analyze to obtain
Web page measurements. Then in Section 4 we will perform a review of current feature
groups used in Web page classification using this more formalized methodology and
the models from the previous section. In Section 5 we will introduce a way to use

58 JLCL

Feature Extraction in Genre Classification

this extraction methodology to perform a measurement cost-sensitive feature selection
across a large general set of feature extraction techniques. In the final section, we
will demonstrate both the feature selection algorithm and our set of features on two
previously used genre corpora.

2 Feature Framework

In order to compare different methods of classifying Web pages, the extracted features
should be comparable. In basic text classification, this is not as great of an issue.
Visually interpreted from a character level, text has two obvious forms of abstract
representation. First, the visual model that is the concrete level on which authors
generally write:

glyph € line € page € document

On top of this is the semantic model that actually conveys the meaning of the document.
Recognized visual cues (spacing/line breaks/punctuation) from the first textual level
are used to produce a more semantic model, for example:

character € word € sentence € paragraph € section € document

This model can produce most of the features that the field is familiar with: bag-of-words,
sentence counts, punctuation counts, pattern matches. These features have generally
established semantics and procedures for extraction that are agreed upon by a community
and thus are comparable across classification experiment.

However, even these accepted features are often used without explanation and can
often lead to obfuscated problems and results in classification. Boundary cases, noise, and
parameters have to be dealt with in any algorithm implementation. One implementation
might throw away any words with less than three letters plus stop words and not count
sentences that cannot be parsed (like fragments within ellipses). These details are
typically lost during most communication channels, such as papers and emails between
researchers. It is also rare to find agreement on a particular software package used
to perform feature extraction. While these details often will not make a difference,
sometimes they will make analyzing features for classification a frustrating issue.

Another supplementary problem is that this fairly small list of models explodes
when you attempt to analyze Web pages. HyperText Markup Language (HTML), the
language in which most Web pages are written, is a semantic as well as visual expression
language. It allows almost complete flexibility in the order and manner in which text
is displayed. There are at least two obvious models that are layered on top of the
already existing models for text representation: the HTML model itself, often called
the Document Object Model (DOM) in interpreted, hierarchical form and the rendered
model which is the way the document is drawn to the screen by the browser for the
viewer. We could even go further and say there is a semantic model on top of that
visual model that could represent how the author intends the page to be interpreted

Volume 24 (1) - 2009 59

Levering, Cutler

by the viewer. The point is that feature extraction in HTML becomes a much harder
problem. This is because:

1. There are more models to work with and extract potential information from

2. The transformations between these models are sometimes very complex (in the
rendering step for instance) and not agreed upon

3. The models themselves have more dimensions (for instance, graphically two
dimensions) in addition to nested textual semantics

For all of the reasons above, we propose that a better framework for comparing feature
extraction techniques needs to be established. This paper presents some established
and new features we have found useful in the context of this feature framework. We
envision feature extraction as a tree of model transformations that starts with a single
initial data model and ends with a set of feature groups. In the diagram below, each
of the circle nodes represent models that are used to potentially extract features from.
The squares represent transformations that convert one type of model to another. The
triangles are the actual feature groups that are extracted from each model to perform
classification.

Figure 1: Feature extraction as tree of transformations.

A model is an abstract representation of the original data or a transformation of
that data. Thus, the feature groups that result from the transformation steps are also
instances of this generic model. A transformation is a higher-level function that takes a
set of input models and produces a different set of output models.

These models and transformations are each identified by a unique URI (Uniform
Resource Identifier). In the case of a transformation, this URI globally defines the
algorithmic behavior and is ideally backed by a specification, or at least a detailed
description, identifying working behavior and configuration parameters. In the case
of a model, this URI identifies the structure and semantics of the model. This means
that each feature in the end feature group is no longer just an identifier, but actually a
transformation path that describes specifically how the feature was obtained. The worth
of these identifiers are obviously dependent on the level of detail of the specifications or
descriptions that define the transformations and models, but at the least they serve as
a constrained language for discussing feature extraction.

60 JLCL

Feature Extraction in Genre Classification

3 Web Models and Transformations

Presented in Figure 2 is a summarization of the feature extraction tree that we use in
our Web page analysis. Not included are all the leaf feature groups that are generated
through extraction transformations.

@ QEARD
@@L @O

([]
B EH®

-5 O
e D e D B o D B o O
O-{L -

Figure 2: Feature extraction tree to convert an initial URL into models to use in feature extraction.

In order to reuse techniques for feature extraction, we often will create transformations
to convert to existing model types. For instance, all the leaf models in Figure 2 are all
the same type (fragmented text) even though they represent different textual contents
(i.e. extracted URL tokens vs. content tokens).

Many of these transformations deal with two different implementations of the core text
extraction path. One of these paths uses a browser-driven rendered DOM version and
the other uses a more simplistic DOM version. The general idea is illustrated in Figure
3, which is a simplified view of Figure 2 that collapses similar transformations (listed
below the node title) into recognizable steps in a common Web page feature extraction
path. We relate some of the underlying details of these models and transformations.
Included in them are URI references relative to our own namespace.

Web Web Text Raw
Node %’T’ Content Barser - Stripper {—y(Text
M) = M., :) | \Mg,s)

Figure 3: Core transformation path.

\.
%

Frag.
Text
(

=
e

-
)

Web Node (<model/www-node>): The model all the way to the left is the Web node
model. This is a more realistic form of a URL expanded to include state that is needed
for the HTTP request. Any sophisticated general-purpose crawler can possibly track
cookie state or issue POST requests that will drastically influence the produced Web

Volume 24 (1) - 2009 61

Levering, Cutler

page. Therefore, our model of a Web page location needs to be expanded to deal with
this.

Fetcher: We use two different types of fetchers to fetch Web nodes. The first is
a modified version of Apache Nutch’s fetcher that does single-threaded pure HTML
fetching (<transformation/fetcher/nutch>). This is very fast and in addition to the
standard URL fetching it uses intelligent parsing to handle meta-redirects without
a full document parse. The second is a rendered document fetcher that downloads
the complete Web page (<transformation/fetcher/swt>). This fetcher loads the
document using Mozilla’s backend rendering engine and then saves the complete page
with image, style, and script resources very accurately. By interpreting the page scripts,
the HTML output by this fetcher is generally much more accurate than the output
produced by the Nutch fetcher.

Web Content (<model/www-content>): This is the raw content found at a webnode.
It is composed of the resulting URL (which may differ from that requested) and raw
bytes, possibly including resources from the fetched URL depending on the fetcher.

Parser: For our lightweight transformation path, we convert the results of a single
HTML page into an HTML DOM model using JTidy (<transformation/generator/
tidy>). This library makes similar heuristic decisions to those made by a browser about
how to deal with poorly formed HTML. To generate our rendered HTML model, we use
the same rendering fetcher library mentioned above and then build a DOM based on
Morzilla’s own internal DOM model (<transformer/generator/swt>). This includes
visual positions used to display the nodes in addition to useful style annotations that
we can use to pass on extra information like element visibility.

HTML (<model/html>): A parsed HTML document, represented as a hierarchical
in-memory Document Object Model.

Rendered HTML (<model/rendered-html>): A HTML DOM model annotated
with position (height, width, x, y) for each one of the DOM nodes.

Text Stripper: To generate the text, we traverse the DOM model and output text
nodes, generating line breaks when certain text-breaking HTML nodes are encoun-
tered. The only difference between the rendered HTML text stripper (<transformer/
renderedhtml-text>) and the basic HTML text stripper (<transformer/html-text>)
is the extra visibility information that is used so that non-visible text is not converted.

Text (<model/text>): Basic string text, decoded bytes interpreted as a character
array.

Text Fragmenter: This is a lookahead parser that fragments English text by using
punctuation heuristics along with abbreviation lookups (<transformer/text-ftext>).
It is most likely not as accurate as a heavy-weight statistical parser, but it is very fast
and provides much better results then simply splitting on punctuation/delimiters. Web
pages often do not have well-formatted sentence structure and it is not uncommon
to have Web pages without any complete sentences in the text. Being able to handle
fragments as well as common word punctuation (dates/urls/etc) keeps us from losing
this extra information when we extract features from the text.

62 JLCL

Feature Extraction in Genre Classification

Fragmented Text (<model/ftext>): Heuristically, fragmented text that is broken
down into a linear sequence of word and punctuation, grouped by sentence or fragment
if the parser did not think it was a valid sentence. This model is much more accurate
for token analysis than delimiter split text.

4 Web Feature Extraction Groups

Generally, many features and models have been extracted from Web pages at some
point in the literature, though most of them have been understated or implicit. In
this section, we hope to highlight explicitly some of the main categories of Web page
features in the context of the models they are derived from, along with some examples
of how they can be used. We use our formal notation to explain how we represent those
features in our system.

4.1 Web Node Feature Groups

Genre classification can often be surprisingly effective with URL driven features. As
several very rough examples, a tilde could imply a personal home page, short URL
length could imply corporate home page, digit count could imply time-sensitive or
version sensitive genres. This is likely more true in genre classification than in topical
text classification which is more dependent on a richer topical vocabulary.

We generate simple character statistics on the URL (<extractor/www-content/url>)
and then tokenize the URL intelligently (<transformer/www-ftext>) and apply all of
our fragmented text feature extraction techniques (see Section 4.3).

4.2 Text Feature Groups

Because most of the features we use are based on our fragmented text model, we do
not do much analysis on the raw text. We count characters of different types such
as digits, alphanumeric, and punctuation (<extractor/text/simple>) and create a
dynamic punctuation vocabulary (<extractor/text/punctuation>).

4.3 Fragmented Text Feature Groups

The core of fragmented text features is the dynamic vocabulary extraction (<extractor/
ftext/dynamic-vocab>), which gives us the very common bag-of-words text word
counts. Because of the fragmentation, these have already had punctuation dealt
with. We do not eliminate stop words because they are often good genre indicators
(Stamatatos et al., 2000), but we do perform stemming. Stemming has long been used
in text classification as a simple way to combine frequencies of words with similar roots
and thus similar semantic concepts. These features are very important to classifier
performance as they pick up on genre-sensitive vocabulary.

To add some extra abstraction ability to the classifier, we also include a number
of common token patterns such as several different date formats, integer and decimal

Volume 24 (1) - 2009 63

Levering, Cutler

numbers, several common time formats, words in upper case, and words in title case
(<extractor/ftext/pattern>). Finally we also have some basic fragmentation statistics
like sentence counts, word counts, etc. (<extractor/ftext/simple>).

4.4 HTML Feature Groups

The primary HTML features frequently used in Web page have been tag counts
(<extractor/html/tag>). These have been mentioned in many classification papers
such as Karlgren et al. (1998), Joachims et al. (2001) and Boese’s 2005 feature review.
Generally, most people at least intuitively agree that high tag counts can be indicative
of the type of a Web page. For instance, heavy TABLE (a layout annotation) tag
usage may indicate complex layout or many IMGs (representing page images) may
indicate a visually complex page and hubpages are essentially defined by having many
A (hypertext link) tags. They can also be useful for discovering special cases of Web
pages that rely on the presence of a more specific tag (like a file upload tag).

To these basic features we add several sets of slightly more interesting abstractions.
Form elements get their own treatment, so we count the number of checkboxes, radio
buttons, etc (<extractor/html/form>). These features can point to interactive genres
(contact, feedback). We also count table and HTML depth that can be used to detect
complex page layouts (<extractor/html/depth>). Counts of event handlers on tags
(<extractor/html/events>) can point to more interactive, JavaScript-laden genres.
Finally, we analyze the link tags to see what type of file and what domain they are
pointing to (<extractor/html/link>). This is especially useful for a download or link
type genre.

4.5 Rendered HTML Feature Groups

One advantage of a rendered DOM comes when you use it to "clean" standard DOM
features. The DOM produced is structurally the same as a non-annotated DOM so it
can be used in the same way. For instance, often there are parts of a Web page that are
dynamically generated or that are listed in the HTML source but are not actually visible
on the page. With rendering information, you can very easily tell that these elements
are not included and thus have a potentially cleaner version of the page contents. This
especially applies to site home pages, where dynamic visual updating often plays a large
part of the user experience. Most features generated without rendering are essentially
guesses or approximations of what is actually going on when the page is rendered.
Other features can be generated by examining overall statistics of the extra visual
positions. These were discussed in Levering et al. (2008) in the context of genre
classification as being useful for identifying certain genre that were dependent on
content-type statistics (like containing an image heavy header followed by a lot of text).
Finally, we use the rendered HTML to generate subtree models of the HTML that
occur in important parts of the visual document (<transformer/html-section>). This
allows us to apply all of the same feature extraction techniques to generate location-aware
feature counts. For instance, it allows the classifier to have such information as “a date

64 JLCL

Feature Extraction in Genre Classification

appears near the top of the document”. In this paper, we use this to analyze the center
of the page as in Kovacevic et al. (2002). Because these are fairly specific features, they
lend themselves to finer grained genre classification tasks and tend not to show up in
feature extraction on broad genres.

5 Cost-Sensitive Feature Analysis

It is impossible to talk about many of these more complex features without also talking
about their measurement cost. Any implementation of a genre classification system
applied to the Web has to be efficient and most likely scalable to a large number of
documents. Luckily, viewing feature extraction as a transformation tree lends itself very
well to parallel processing. Each transformation is a discrete functional process and can
be batched for large-scale runs in a distributed architectural paradigm like MapReduce
(Dean and Ghemawat, 2008).

There is often a diminishing return on the calculation of more complex features,
particularly for certain fine grained genres with dominant features. For instance, if a
genre or set of genres in a multiclass problem were detectable to some level of accuracy
from the URLs and it cost ten times as much computational power to calculate rendered
HTML features that would improve accuracy a small percentage, it may not be worth it
to calculate those features for a one million document universe let alone the entire Web.

This measurement cost can be factored into the classification process itself using
techniques from other classification areas where measurement cost is even more crucial.
In Paclik et al. (2002), they use a greedy wrapper-based algorithm to do feature selection
based on classifier performance with different groups of features that share computation
cost. This was designed for independent feature group measurement costs in the image
classification domain, but can be adapted to our Web feature extraction tree paradigm
fairly well.

In the following paragraphs, we present an algorithm that performs cost-sensitive
feature selection on a feature extraction tree. We chose to simplify the analysis by
assuming that once a model is selected all its features can be added at zero cost. We
also assume that all these features are presented to the classification algorithms (which
may or may not perform additional feature selection). We plan to expand the algorithm
shown here to work with more general transformation graphs and to include also the
cost of feature extraction for some more costly features.

We assume also that each transformation t of the feature extraction tree has a cost c;.
This is the average computation time required by the transformation t of a model to a
child model in the tree. The algorithm depends on a performance evaluation function,
Fwval, that evaluates the performance of a classification task when all features of a
set of models S, features(S), are presented to it. The first model included in S is
the WebNode model My. The goal of the algorithm is to return a set of models S,
with a low cumulative computation cost, whose features will produce a performance
P = Eval(features(S)) > Pyoar-

Volume 24 (1) - 2009 65

Levering, Cutler

Let adjacent(S) be the set of models that are not yet in S and are adjacent to at least
one model in S. For each model M € adjacent(S) we can compute the performance
improvement per unit of cost achieved by adding M to S. Let S = SU M, and let P’
be the performance measure of S’, the performance improvement Rg: = (P’ — P)/c;.
The next model added to S by the algorithm is the model My,q» = argmaz{Rs/|M €
adjacent(S) and S’ = SU M}. Using a more complex ratio function or a more complex
evaluation of the cost would allow for a more customized feature selection.

Algorithm 1 Greedy feature extraction tree search
: P = Eval(features(S))

[

2

3: while P < Py, do

4 Rmaz = =00, Praz =0, Simas = {}
5: // Select best model in adjacent(S)
6: for all M in adjacent(S) do

7 S'=SUM

8: P’ = Eval(features(S’))

9: if Rg: > Riax then

10: Roae = RS/z Pros = Pl, Sma:c = S/
11 end if

12: S = Smagc, P = Pmaac

13: end for

14: end while

Another possibility with a higher analysis cost is to flatten the feature extraction
tree by consolidating all ancestor models into a single model set that contains the
cumulative models up to a certain point in a tree. Then we could evaluate every node
path at the same time and iteratively choose the one with the best performance gain to
measurement cost ratio. This approach would translate to the more greedy previous
algorithm if you evaluated any descendant path as opposed to just an adjacent edge.
This would also translate the problem more closely into the type of problem in Paclik
et al. (2002).

Finally, at the far end of the complexity of analysis scale, an exhaustive search of
every combination of feature paths could be done to guarantee the best choice of models
for the highest classification performance to cost ratio. If the classification task was
fully offline (not recalculated frequently) or the tree was very simple, this would be the
best option. For our purposes, this search was not practical due to training cost.

The first two techniques do have the caveat that they depend on classifiers that
are resistant to noisy, useless features. Otherwise, greedy choices may not find an
optimal solution when an intermediate transformation produces poor features. Paclik
et al. (2002) approached this by proposing a nested feature subset selection step while

66 JLCL

Feature Extraction in Genre Classification

evaluating a feature group. We use SVMs for evaluation, which we find in practice are
very good at ignoring useless features.

6 Experimental Results

We chose to evaluate our feature extraction tree on two datasets to emphasize several
different outcomes of feature selection. We used the same transformation costs on both
of the datasets. In reality, the transformation costs are dataset dependent, but the
magnitudes tend to be fairly consistent. In addition, our corpora are cached HTML
pages and so getting accurate fetch times was difficult. In addition, one of the datasets
does not include dependent resources (scripts, styles, and images) and therefore accurate
renderings were not possible.

We use the greedy tree search discussed above to determine the order of models to
generate for feature extraction. This produces a graph with an increasing performance
over cost. By setting the Py, to 1.0, we can see the maximum performance of the
search algorithm.

6.1 KI-04 Dataset

The Kl-0o4 dataset presented in Eissen and Stein (2004) is a universal set of Web
super-genres that can theoretically encompass any Web page. Though it does suffer
from some granularity issues (Santini, 2006), it is one of the most complete genre
corpora. The lack of a large negative class makes it a genre palette where a multi-class
classification makes sense.

It is composed of eight genres: download, article, help, FAQ, private portrayal,
non-private portrayal, shop, and linked list. It has over one hundred of each genre type,
a palette that was created via user survey.

To evaluate both the feature selection algorithm and the worth of various features
on the dataset, we use a ten-fold cross-validating multiclass linear SVM as our Eval
function. This is the Weka (Witten and Frank, 2005) implementation that uses a
pair-wise voting scheme to choose a single class after comparing the results of multiple
binary SVMs. At several points, we also ran a multiclass J4.8 classification to validate
our results manually by examining the generated decision tree.

Performance in this experiment was measured using accuracy, or number of correct
classifications divided by the number of total classifications. This was just to make
it consistent with the KI-o4 results. However, in a multiclass problem with no large
negative class, the accuracy results tend to be consistent with more balanced metrics
such as Fi, which we use in the next experiment.

The results are presented in Figure 4. The graph highlights the tradeoffs in classifi-
cation performance with increasing computation cost. Each data point in the graph
corresponds to the cost and performance (in Fi-measure) of a particular feature set
that the feature selection algorithm selected as it traversed the cost-weighted feature
transformation tree. A labeled version of that tree, showing the evaluated performance

Volume 24 (1) - 2009 67

Levering, Cutler

1.000

0.875 [
- /

0625 —

P (Accuracy)

0500
0 40 80 120 160

C(Timeinms)

Figure 4: KI-04 feature extraction performance vs. costs.

as we include additional models is shown in Figure 5. Those performance numbers are
obtained by measuring the classification performance of the union of the labeled model
with every model with a lesser performance value. Also note that having continuously
incrementing performance values by adding models is not common. Often there is
no gain by including additional models and sometimes they will actually lower the
performance, even with noise-resistant classifiers like SVMs.

‘ O[O
O-[@
@~ {EHO-D- @
O-[@
O-[-@

Figure 5: KI-04 feature extraction performance graph.

As an example of that, we did not include any rendered DOM-driven features including
visual distributions in this result as their cost-performance ratio was very poor on this
corpus and they were added at the very end for no gain. This is due to the previously
mentioned point that these features do not work well on very broad non-visual genres in
addition to the fact that the dataset was not collected with external resources (scripts,
styles, and images), so the renderings were not always very complete.

The long line that stretches most of the graph is the fetch time. One interesting
point is that we were able to achieve over sixty-percent accuracy with only the URL.
A combination of URL vocabulary like ‘FAQ’, ‘thread’ and ‘download’ combined with
URL path lengths did a moderately successful job of classification without any of the
overhead of actually fetching the page. If we had trained binary classifiers to just

68 JLCL

Feature Extraction in Genre Classification

distinguish FAQ or download genres in this corpus, these results would have been much
higher.

After the fetch time, which clearly dominates the computation time, the algorithm did
not have too many choices in our current graph without the useless visual features. It
added HTML features, then text statistics, then it chose between fragmenting different
extracted text types (headings, links, title, emphasized, and all). Interestingly, it found
the tradeoff worst on the all text category and had better luck with categories like link
and heading text. This suggests looking at particular sets of annotated text as opposed
to entire vocabulary lists in this type of genre classification.

The research in which this dataset was first presented achieved an overall 70% accuracy
on the entire dataset. Thus, our ideal feature set with a maximum F}-measure of close
to 0.9 shows a dramatic overall improvement on the corpus. We theorize that the
primary reason for this is the inclusion of URL-based features that appear to have not
been used in their analysis.

6.2 Retail Store Dataset

To contrast with several aspects of the KI-o4 dataset, we also performed an evaluation
on the retail store dataset that we used in previous research (Levering et al., 2008). This
dataset has a genre palette fully within the retail store universe of Web pages. It has
three positive, labeled genres - store home page, store product list, and store product
page - with over a hundred examples of each. It also has a large negative class of other
pages in the retail store Web page universe. The goal is to train binary classifiers to be
able to recognize those types of pages out of the noise of the entire Web site.

In that paper, we concluded that visual features were useful for this particular problem
and raised the accuracy of classification by a significant amount. We wanted to revisit
that now with measurement cost factored in to figure out what that gain is costing.

Performance in this experiment was measured as Fj-measure. This is a standard
classification metric that balances precision and recall. Generally, there is an inverse
relationship between these two metrics, since you can always overtrain a classifier to
improve precision at the cost of recall. Fi provides a single metric that penalizes either
measurement being poor.

We evaluated the dataset using a ten-fold cross-validating linear SVM like for the
previous experiment but with a single classifier for each of the three positive classes
against every other class. This way, we were able to generate a separate performance-cost
graph for each classification. The graphs are shown in Figure 6.

One of the most dramatic things about this graph is, like in the previous dataset,
just how well a URL alone predicts genre with an extremely low computation cost.
You could never use a system with an Fj-measure around 0.5 as shown in the figure
for store-products, but it does show the feature group’s worth. On the other hand, it
was intuitively obvious that store-fronts were easy to figure out from the URL and the
classifier agreed with a nearly perfect Fi-measure.

Volume 24 (1) - 2009 69

Levering, Cutler

1.000

0.875

L 0750 T 4

e e R —— 4
____________ PR S il
———— store-lists
0625
— — - store-fronts
— — — - store-products

0 100 200 300 400
C (Time in ms)

0.500

Figure 6: Retail store feature extraction performance vs. costs.

The store-lists genre favored non-rendered textual models until it stopped getting
improvements, whereupon the search algorithm finally paid the performance cost to
render the page in exchange for slightly increased performance. It then produced several
more inexpensive models for visually central feature groups that were slightly more
accurate than the general feature groups.

Our store-products genre did not perform well on non-rendered HTML features (the
Fi-measure actually decreased), so the search algorithm opted to render the page and
then had several more textual feature groups that it found useful. This is a case of the
algorithm choosing incorrectly. If the algorithm included a look-ahead or the second
approach was used, it most likely could have found gains with textual features after
generating the HTML model without paying the rendering cost.

In all, this experiment verified that while visual features did improve performance on
this classification task, simpler features could get nearly the same level of performance.
We theorize that it could be useful to have a multi-tiered classifier that first extracts
lightweight features. If these features strongly indicate a certain genre, then we can stop
extraction; otherwise, we extract more complex features. This is left to future work.

7 Conclusion

The goal of this research was neither to point out interesting facets of the experimental
datasets nor to show improvement on classification tasks. Yet at the same time, we
made some gains on both of these fronts. Both of our experiments showed that genre
is particularly sensitive to URL features and some effort should be spent on more
interesting tokenizations and patterns of URLs. Web pages are not just text documents
and in a classification task every bit of relevant information should be used.

70 JLCL

Feature Extraction in Genre Classification

We improved the accuracy on the Kl-o4 dataset by using some dynamic URL tokens
and textual vocabulary. More importantly, it was done without any focused effort. The
same process was applied on both classification tasks to extract features. By having
a process to analyze a new classification task on a very generic and powerful feature
extraction platform and then perform a cost-sensitive feature selection, we insure that
we get acceptable performance while not using unnecessary transformation or extraction
techniques.

The real goal of this research was to attempt to break down the process of Web
page feature extraction into smaller functional units (transformations) that could be
more easily compared and analyzed. We proposed a tree-based abstraction for feature
extraction where intermediate models can have their feature groups extracted. Transfor-
mations between these models are represented by URIs that convey the semantics of a
particular transformation.

One of the benefits of this feature extraction tree is that we can perform a cost-sensitive
feature selection as described in this paper. Having intermediate models also would
allow researchers to more easily build complex features without repeating earlier work.
Finally, by using methods backed by URIs that represent certain algorithmic choices,
researchers can more quickly and accurately communicate results.

This work has many directions for improvement. A methodology without a concrete
tool that supports the methodology is quickly forgotten. A tool or library to allow
sharing of common transformation and extraction techniques would be very productive,
much in the same way that Weka has improved the ease of classification research.

Also, there are always more interesting features to be discovered. Visual features
may not improve performance on all genre classification tasks, but the Web is becoming
a more visual, media-intensive environment and Web classification researchers need to
find ways to use these extra layers of information.

References

Boese, E. (2005). Stereotyping the web: Genre classification of web documents. Master’s
thesis, Colorado State University.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107-113.

Eissen, S. M. and Stein, B. (2004). Genre classification of web pages: user study and
feasibility analysis. KI-2004: Advances in Artificial Intelligence, pages 256—269.

Joachims, T., Cristianini, N., and Shawe-Taylor, J. (2001). Composite kernels for
hypertext categorisation. In ICML ’01: Proceedings of the Fighteenth International
Conference on Machine Learning, pages 250—257, San Francisco, CA; USA. Morgan
Kaufmann Publishers Inc.

Volume 24 (1) — 2009 71

Levering, Cutler

Karlgren, J., Bretan, I., Dewe, J., Hallberg, A., and Wolkhert, N. (1998). Iterative
information retrieval using fast clustering and usage-specific genres. In Eighth DELOS
Workshop - User Interface in Digital Libraries, pages 85—92.

Kovacevic, M., Diligenti, M., Gori, M., and Milutinovic, V. (2002). Recognition of
common areas in a web page using visual information: a possible application in a page
classification. In ICDM ’02: Proceedings of the 2002 IEEE International Conference
on Data Mining, page 250, Washington, DC, USA. IEEE Computer Society.

Levering, R., Cutler, M., and Yu, L. (2008). Using visual features for fine-grained genre
classification of web pages. In HICSS ’08: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, page 131, Washington, DC, USA. IEEE
Computer Society.

Paclik, P., Duin, R. P. W., Kempen, G. M. P. v., and Kohlus, R. (2002). On fea-
ture selection with measurement cost and grouped features. In Proceedings of the
Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, pages 461—469, London, UK. Springer-Verlag.

Santini, M. (2006). Common criteria for genre classification: Annotation and granularity.
In Proceedings of the workshop on text-based information retrieval.

Santini, M. (2007). Automatic Identification of Genre in Web Pages. PhD thesis,
University of Brighton.

Stamatatos, E., Fakotakis, N., and Kokkinakis, G. (2000). Text genre detection using
common word frequencies. In Proceedings of the 18th conference on Computational
linguistics, pages 808-814, Morristown, NJ, USA. Association for Computational
Linguistics.

Toms, E. G. and Campbell, D. G. (1999). Genre as interface metaphor: Exploiting
form and function in digital environments. In HICSS ’99: Proceedings of the g2nd
Annual Hawaii International Conference on System Sciences.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco.

72 JLCL

