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Meronymy Extraction Using An Automated Theorem Prover

In this paper we present a truly semantic-oriented approach for meronymy
relation extraction. It directly operates, instead of syntactic trees or surface
representations, on semantic networks (SNs). These SNs are derived from
texts (in our case, the German Wikipedia) by a deep linguistic syntactico-se�
mantic analysis. The extraction of meronym/holonym pairs is carried out
by using, among other components, an automated theorem prover, whose
work is based on a set of logical axioms. The corresponding algorithm
is combined with a shallow approach enriched with semantic information.
Through the employment of logical methods, the recall and precision of
the semantic patterns pertinent to the extracted relations can be increased
considerably.

1 Introduction

In most cases, objects are not elementary, rather composed of smaller objects, e.g., a
car consists of wheels, windows, a gearshift, etc. Similarly, a group can be split up
into its elements, e.g., a soccer team is composed of soccer players. Theses types of
relationships are called meronymy. The whole or set is called the holonym while the
corresponding part or element is called meronym.
Meronymy relations are required for a multitude of tasks in natural language pro�

cessing, such as information retrieval or question answering. Let us consider a simple
example. A user asks: �When was the last earthquake in Europe?�. If the knowledge
base contains the dates of recent earthquakes for all countries and also the information
which countries are part (meronyms) of Europe, then this question can be answered.
To create large meronymy databases manually is very tedious and requires a lot of

work. Thus, automatic approaches are preferable. A lot of approaches retrieve such
relations by text mining. The �rst step is to develop a set of patterns. In the second
step, these patterns are then applied to new texts, where they are used to recognize
meronym/holonym pairs. Normally, these approaches only use surface or syntactical
tree representations, i.e., constituency or dependency trees derived by a syntactical
parser. They do not employ any semantic formalism and are therefore unable to incor�
porate background knowledge. Furthermore, they mostly extract meronyms between
words and not word-readings. From this, it follows that results cannot be (directly)
used in concept-based ontologies.
In this paper, a semantic approach is described which directly operates on SNs fol�

lowing the MultiNet (Helbig, 2006) formalism1 in order to extract meronymy relations.

1MultiNet is the abbreviation of Multilayered Extended Semantic Networks.
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This approach takes a knowledge base and a set of logical axioms into account. To this
end, the entire content of the German Wikipedia with more than 20 million sentences
is transformed into SNs using the WOCADI parser (Hartrumpf, 2002). The extraction
patterns de�ned on a semantic level are mainly derived from the patterns given in
(Girju et al., 2006). It is combined with a method based on shallow patterns enriched
with semantic information if present.

In the next section, we review existing work on meronymy extraction. Section 3

describes the MultiNet formalism which is our representation for texts. An overview
about the application of semantic patterns based on the MultiNet formalism is pre�
sented in Section 4. Section 5 describes how to incorporate a set of logical axioms and
a knowledge base. The validation of extracted meronymy hypotheses is presented in
Section 6. Section 7 illustrates how the correct meronymy subrelation can be selected.
The architecture of our meronymy extraction system is given in Section 8. Evaluation
results are speci�ed in Section 9. Finally, the conclusion and an outlook of future work
is given in Section 10.

2 Review of Existing Work

In this section, we give an overview on existing work on meronymy extraction. Quite
popular are pattern-based approaches. Table 1 lists a collection of the patterns de�ned
by Girju et al. (2006).

ID Surface Pattern Example
S1 NPmero is part of NPholo the engine is part of the car
S2 NPholo's NPmero girl's mouth
S3 NPmero of NPholo eyes of the baby
S4 NPholo verb:have NPmero The table has four legs.
S5 NPholo P NPmero A bird without wings cannot �y.
S6 NPmero P NPholo A room in the house.
S7 NP(Nholo Nmero) (noun compound) door knob
S8 NP(Nmero Nholo) (noun compound) turkey pie

Table 1: Some of the patterns suggested for the recognition of meronyms by Girju et al. (the lower indices
mean: mero=meronym, holo=holonym)

These patterns are applied to arbitrary texts, and the instantiated variable NPmero
is extracted as meronym hypothesis of the assumed holonym NPholo. Since hypotheses
extracted by these patterns are not always correct, an additional validation component
is required. Girju et al. employ a decision tree on annotated meronymy training data
by making use of the WordNet hypernymy hierarchy.

Another pattern based approach is introduced by (Berland and Charniak, 1999). The
validation of the extracted hypotheses is done by several statistical features taking the
pattern by which a meronymy hypothesis was extracted into account as well as how
likely the occurrence of the holonym hypothesis is if the given meronym hypothesis
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shows up. In contrast to the approach of Girju et al., this method is not supervised
and needs no annotated data.

Some of the patterns are very often applicable but the extracted hypotheses are rarely
correct. An example of such a pattern is NPholo's NPmero, as proposed by Girju et al.
(2006). The ESPRESSO system introduced a bootstrapping approach geared towards
handling this problem in particular. The reliability scores of relation hypotheses are
used to derive reliability scores for the patterns that extracted such hypotheses and
vice-versa (Pantel and Pennacchiotti, 2006).

An alternative approach to pattern matching is the use of support vector machines
and tree kernel functions, which are employed to assign one of several semantic rela�
tions including meronymy to a given word or concept pair. A tree kernel function is
a function for comparing trees, where the matrix of kernel values is symmetric and
positive-semide�nite. Such approaches follow the assumption that a certain semantic
relation (e.g., meronymy) is quite likely to hold if there exist a lot of sentences with
similar tree structures (or similar paths in the dependency trees) in which this relation
is known to hold (Culotta and Sorenson, 2004; Bunescu and Mooney, 2005; Zhao and
Grishman, 2005; Reichartz et al., 2009).

Current approaches for meronymy extraction as described above are practically nei�
ther semantic-based nor do they take background knowledge into account. Let us con�
sider two examples which demonstrate how background knowledge can improve the
evaluation results.

The following pattern is given:

mero(a1 , a2)← a1 is a member of a2

This formula speci�es that if a sentence contains the statement that a1 is a member
of a2, then a1 is also a meronym (element) of a2. This pattern can be applied to
the sentence Mr. Peters is a member of AT&A. to derive the meronymy relation2

mero(Mr.P eters, AT &T ). Now consider the sentence: Mr. Peters is the leader of
AT&T. Naturally, the pattern is not applicable to this sentence. However, if we use
background knowledge, then the fact that Mr. Peters is a member of AT&T can
eventually be inferred by the fact that Mr. Peters is the leader of AT&T, which makes
the pattern applicable. Thus, a large knowledge base can reduce the number of required
patterns considerably and therefore the amount of work for the pattern developer. In
this example the knowledge base was employed to improve the recall but it is also
possible to improve precision.

Consider a sentence matching the surface pattern x is a mixture of y and z
(e.g., Water is a mixture of hydrogen and oxygen.). Two meronymy relations can
be extracted from such a sentence: mero(y, x) and mero(z, x) (in the example
mero(hydrogen, water) and mero(oxygen, water)). Note that the word mixture can
also be used in a more abstract sense, e.g., His attitude is a mixture of enthusiasm and
diligence. In order to prevent in this case the extraction of assumed meronymy rela�

2This expression is not a valid MultiNet expression but stated rather informally.
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tions like mero(enthusiasm, attitude) and mero(diligence, attitude), one has to require
that x and/or y/z are known to be hyponyms of substance, which can be expressed
by a logical constraint taking the transitivity axiom of hyponymy into account. This
example is described in more detail in Section 5.

Finally, a knowledge base can be advantageous for a multitude of other tasks, e.g.,
the majority of the axioms presented here are also used for question answering.

3 MultiNet as a Fine-grained Semantic Network Formalism

As described in Section 2, axioms can be used to make patterns more generally usable
or to support the speci�cations of logical constraints. Naturally, in order to use logical
axioms, all sentences have to be converted into a logical representation. We have de�
cided to use the MultiNet SN formalism since this is a logical representation with great
expressiveness (even beyond �rst order predicate logic) and is excellently supported by
several software tools. In contrast to networks such as GermaNet (Hamp and Feldweg,
1997) or WordNet (Fellbaum, 1998), MultiNet is designed to represent both semantic
and lexical relations between lexems as well as the meaning of whole natural language
expressions. An SN consists of nodes representing concepts (word readings) and arcs
denoting relations between concepts or functions involving concepts. In total there are
approximately 120 relations and functions de�ned in MultiNet, including the following:

� arg1/2: Speci�cation of relational arguments at the metalevel
� attch: Attachment of an objects to another object
� attr/val: Attribute-value speci�cation
� elmt: Element relation
� hsit: Relation specifying the constituents of a hyper-situation
� *itms: Function enumerating a set
� mero: Meronymy relation, hyper-relation of elmt, hsit, origm−1, pars, subm,
and temp

� origm: Relation of material origin
� pars: Meronymy relation except elmt, hsit, origm−1, subm, and temp
� *pmod: Modi�cation of objects by associative or operational properties
� pred: Predicative concept characterizing a plurality
� sub: Relation of subordination for conceptual objects (hyponym/instance of)
� sub0: Relation of general hyponymy, hyper-relation of sub, subr and subs
� subm: Set inclusion (subset)
� subr: Relation of conceptual subordination for relations
� subs: Relation of conceptual subordination for situations
� temp: Relation specifying the temporal embedding of a relation

In MultiNet, concepts are speci�ed by a word label and a pair of indices .n.m in�
dicating the intended reading from a list of homographs or sememes of a polysemic
word, respectively. These indices will henceforth be omitted from the text for the sake
of brevity.
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MultiNet is connected to the semantic lexicon HaGenLex (Hartrumpf et al., 2003).
Each lexical entry of HaGenLex contains, aside from the typical morpho-syntactical
information, one or more ontological sorts, a set of semantic features, and several layer
features. The ontological sorts (currently more than 40) form a taxonomy. In contrast
to other taxonomies, ontological sorts are not necessarily lexicalized, i.e., their names
do not necessarily denote lexical entries.

The following list shows a small selection of ontological sorts:

� Object (o)
� Concrete object (co): e.g., milk, chair

* Discrete object (d): e.g., chair
* Substance (s): e.g., milk, honey

� Abstract object (ab): e.g., thought, idea
* Abstract temporal object (ta): e.g., month

� Situation (si): e.g., being warm
� Quality (ql)

� Property in the narrower sense (p): e.g., tall, heavy
� Functional quality (fq): Such a quality obtains their full meaning only in
connection with another entity.
* Associative quality (aq), e.g., chemical, philosophical
* Operational property (oq), e.g., latter, third

Semantic features denote semantic properties of objects; the values can be '+' (meaning
applicable), '-' (not applicable) or 'underspeci�ed'. A selection of semantic features is
provided below:

� animal
� animate
� artif (arti�cial)
� human
� spatial
� thconc (theoretical concept).

Sample characteristics of the nominal concept bear :

� Ontological sort: d (discrete object)
� Semantic features: animal +, animate +, artif -, human -, spatial +, thconc
-, . . .

In this paper we only employ the layer feature type of extensionality (etype). There�
fore only this feature is described. It classi�es nodes on the pre-extensional knowledge
representation level (see (Helbig, 2006) or (Lyons, 2002) for a distinction of intensional
and (pre)extensional interpretation) and can assume one of the following values:

0: Representative of the extensional of an elementary concept, which is itself not a
set, e.g., house, Max (person named Max)

1: Set of elements of type 0, e.g., several children, three cars, team, brigade
2: Set of elements of type 1, e.g., three crews, many organizations, umbrella organi�

zation
3: Set of elements of type 2, e.g., three umbrella organizations
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This list can theoretically be continued to arbitrary type numbers but only types of
extensionality until the value of three are realistic in practice.
The networks expressed in the MultiNet formalism are obtained from surface texts

by means of the syntactico-semantic parser WOCADI (Hartrumpf, 2002), based on a
word-class controlled functional analysis. Note that, although a meronymy relation can
be represented in the MultiNet formalism, it is usually not contained in the SNs which
are created by the parser unless such a relation is already comprised in the knowledge
base.

c1
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Figure 1: Application of the deep pattern D4 to an SN representing the sentence: Lindenthal is a district
of Cologne. Inferred edges are marked by dashed lines. SUBR(c1, sub) indicates that the two
arguments of c1 (c2 and c3) are connected by a SUB relation.

An example of an SN based on the MultiNet formalism is given3 in Figure 1 and
represents the sentence: Lindenthal is a district of Cologne. The speci�cation of names
(here Lindenthal and Cologne) is done by attribute/value constructs (MultiNet rela�
tions: attr and val). For better readability, an attribute value construct connected
with a node c and subordinated to an attribute named n with value v, which is rep�
resented by the MultiNet expression attr(c, d) ∧ sub(d, n) ∧ val(d, v), is written as
[n ∶ v] in this �gure. The parser recognized that a hyponymy relation is speci�ed
(subr(c1,sub)) and that the concept named Lindenthal is a hyponym (MultiNet rela�
tion: sub) of the concept capsule associated to district of Cologne. The preposition of
is realized by the relation attch (attach) in the SN.

3Concept names are translated from German into English for better readability.
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ID Deep Pattern Example

D1

mero(a1 , a2)← subs(d, consist) ∧ arg1(d, e)∧
sub(e, a2) ∧ arg2(d, f)∧
P AR*itms(f, g) ∧ pred(g, a1)

A car (a2) consists of
wheels (a1),. . .

D2
mero(a1 , a2)← sub(c, a1)∧
attch(d, c) ∧ sub(d, a2) wheel(a1) of a car(a2)

D3

mero(a1 , a2)← arg1(e, d) ∧ sub(d, a2)∧
arg2(e, f) ∧ sub(f, mixture)∧
attch(g, f) ∧ P AR*itms(g, h) ∧ sub(h, a1)∧
subr(e, sub) ∧ (sub(a2 , substance)∨
sub(a1 , substance)) ∧ a2 ≠mixture

Water (a2) is a mixture of
hydrogen (a1) and . . ..

D4

N1 ∶= attr(a1 , e) ∧ sub(e, name) ∧ val(e, d)
N2 ∶= attr(a2 , g) ∧ sub(g, name) ∧ val(g, h)
mero(a1 , a2) ∧N1 ∧N2 ←
N1 ∧N2∧
arg1(c, a1) ∧ arg2(c, f)∧
sub(f, part) ∧ attch(a2 , f)∧
subr(c, sub)

Germany (a1) is part
of Europe (a2).

D5

mero(a1 , a2)← arg1(d, e)∧
P AR*itms(e, f) ∧ sub(f, a1)∧
arg2(d, g) ∧ pred(g, part)∧
attch(h, g) ∧ sub(g, a2)∧
subr(d, equ)

Wheels, windows and a
roof (a1) are part of
car (a2).

D6

mero(a1 , a2)← sub(d, member)∧
attch(e, d) ∧ sub(e, a2) ∧ arg2(f, d)∧
arg1(f, g) ∧ sub(g, d) ∧ sub(g, a1)

A goalkeeper (a1) is
a member of a
soccer-team (a2).

Table 2: A selection of deep meronymy patterns formulated by means of MultiNet relations
(P ARf (x, y) denotes the fact that x is the result of function f where one of the arguments of f is
y).

4 Application of Deep Meronymy Patterns

The meronymy extraction process is based on semantic patterns (see Table 2). Each
pattern consists of a premise and a conclusion mero(a1 , a2) (mero is the MultiNet
relation indicating meronymy) for generic concepts and mero(a1 , a2) ∧ N1 ∧ N2 for
instances where N1 and N2 are attribute/value constructs for a1 and a2 . The premise
is given as an SN. Two of the nodes in this SN should be labeled with a1 and a2 in
order for the pattern be applicable.
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Shallow pattern Matching expression

mero(a1 , a2)← a1 ((word �of�))
? (((cat (art)))) a2

wheel (a1) of a car (a2)

mero(a1 , a2)← a2 ((word �with� )) a1 house (a2) with balcony (a1)

mero(a1 , a2)← a2 ((word �without�)) a1 bird (a2) without wings (a1)

mero(a1 , a2)← a1 ((word �is�))
((word �the�)) ((word �main component�)
((word �of�)) a2

A CPU (a1) is the
main component
of computers (a2).

mero(a1 , a2)← a1 * (((word �,�))
? (((cat (art)))) a1)
((word �and�)) a1 ((word �are�))
((word �parts�)) ((word �of�))
? (((cat (art)))) a2

CPU (a1), . . .are parts of
a computer (a2)

mero(a1 , a2)← a1 * (((word �,�))
? (((cat (art)))) a1)
((word �and�)) ? (((cat (art))))
a ((word �are�))
((word �components�))
((word �of�)) ? (((cat (art)))) a2)

CPU (a1) and
display card (a1) are
components of
computers (a2)

mero(a1 , a2)← a2 ((word �consists�))
((word �of�)) a1 ? ( * (((word �,�)) a1)
((word �and�)) a1))

a computer (a2) consists
of transistors (a1),. . .

Table 3: Selection of shallow patterns for meronymy extraction. The expressions occurring in the patterns are
translated from German to English.

The matching of the pattern with an SN is done by an automated theorem prover
for �rst order predicate calculus. In comparison to ordinary pattern matching, this has
the advantage that logical axioms can be included into the pattern-matching process.
Note that this paper only describes the use of a theorem prover for extracting and not
for validating meronymy hypotheses, which is, for instance done by Suchanek et al.
(2009); vor der Brück and Stenzhorn (2010). In total, there are 19 deep patterns which
are mainly derived from the patterns introduced by (Girju et al., 2006).

To apply a pattern of the form4 mero(a1 , a2)← premise, where both a1 and a2
must show up in the premise, one has to �nd the bindings I for a1 and a2 , which are

4Patterns for instances can be applied similarly.
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required to cause the following formula to become a tautology:

mero(a1 I , a2 I
)←

((mero(a1 I , a2 I
)← premiseI

) ∧ SNX)
(1)

in which SNX = SN ∧ KB (KB=knowledge base). The knowledge base contains a
set of axioms as well as a large number of lexical and semantic relations. If variable
bindings are determined successfully, than the relation mero(a1 I , a2 I

) is extracted as
meronymy hypothesis.

The proof is found by deriving a contradiction (i.e., the empty clause) from the
negated expression (1), using resolution:

� ≡(((mero(a1 I , a2 I
)← premiseI

) ∧ SNX)∧

¬mero(a1 I , a2 I
)⇔

(Use distributive law and A← B ≡ ¬B ∨A)

� ≡¬premiseI
∧ SNX ∧ ¬mero(a1 I , a2 I

)⇐

� ≡¬premiseI
∧ SNX

(2)

Thus, since the trivial case that mero(a1 I , a2 I
) already appears in the knowledge

base, premise or SN should be disregarded, it is required to derive a contradiction from
¬premiseI

∧ SNX . This is done by showing that the empty clause can be obtained
applying logical resolution on ¬premiseI

∧ SNX . For this purpose, the MultiNet the�
orem prover is employed, which is also successfully used in question-answering tasks
(Glöckner, 2007) and is optimized for this SN scenario. In our tests, the MultiNet the�
orem prover was ten times faster than the well-known general purpose theorem prover
E-KRHyper (Baumgartner et al., 2007).

For easier processing, functions with a variable number of arguments are converted
into a set of binary relations. For each such function xp = f(x1, . . . , xl) we cre�
ate l relations P ARf(xp, x1),. . .,P ARf(xp, xl) to represent the parent-child relation�
ships between the result and the arguments and (l(l − 1))/2 relations to represent
the sequence of the arguments: F OLLf(xi, xj)⇔ i < j. Thus, an example expression
res = *itms(x1, x2, x3) (the MultiNet relation *itms combines several concepts in a
conjunction) can be replaced by the following formula:

P AR
*itms

(res, x1) ∧ P AR
*itms

(res, x2) ∧ P AR
*itms

(res, x3)∧

F OLL
*itms

(x1, x2) ∧ F OLL
*itms

(x1, x3) ∧ F OLL
*itms

(x2, x3)
(3)

In addition to deep patterns, several shallow patterns are employed. Instead of a
SN the premise consists of a regular expression involving feature value structures. The
features are

� word: surface word form
� lemmas: possible lemmas
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� categories: possible categories
� parse-lemma: lemma disambiguated by the Word Sense Disambiguation of the
parser

� parse-reading: concept disambiguated by the Word Sense Disambiguation of the
parser

These feature value structures are tried to be uni�ed with the token information list
provided by the parser. The most important employed shallow patterns are given
in table 3. The applicability of these patterns could be further improved by adding
additional optional tokens (like articles or adjectives). However, this make the patterns
more di�cult to read and also increases the extraction time. This is a drawback to
deep patterns where such optional parameters are not needed.

5 Support via Logical Axioms

The use of an automated theorem prover together with the axiomatic apparatus of
the MultiNet formalism has the advantage that the number of deep patterns can be
considerably reduced compared with the number of shallow patterns. The axioms
were mostly already developed for the task of question-answering and are reused for
meronymy extraction.

ID Axiom # Hypotheses

A1
sub(x, s)← sub(x, p)∧
*pmod(p, q, s) ∧ sort(q) = oq

25 576

A2 sub(x, z)← sub0(x, y) ∧ sub(y, z) 14 258

A3
P AR*itms(a, d) ∧ pred(d, c)←
pred(a, c) ∧ ¬P AR*itms(e, a)

2 117

A4
subs(x, z)← subs(x, y)∧
subs(y, z)

564

A5

attch(a, e)← loc(e, l)∧
{*in(l, a) ∨ *at(l, a)}∧
{subs(e, s) ∨ preds(e, s)}

194

A6
pred(x, s)← pred(x, p)∧
*pmod(p, q, s) ∧ sort(q) = oq

81

A7
sub(a, s)← {agt(e, a) ∨ exp(e, a)∨
mexp(e, a)} ∧ ctxt(e, c) ∧ sub(c, s)

57

Table 4: Selected MultiNet axioms and the number of extracted hypotheses.

Table 4 presents the most successful axioms together with the number of hypotheses
extractions for which a certain axiom was required. A1 from Table 4 is required most
often, where the function *pmod is used to combine a conceptual object s with an
operational property5 (see Section 3), denoted by q in axiom A1, which yields a more

5Operational properties having sort oq and associative properties are in contrast to properties in
the narrower sense, which are treated by the MultiNet relation prop (Helbig, 2006)).
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special object p. This axiom is needed, for example, to deduce that the �rst violinist
is a violinist.
Another example illustrating the usefulness of axioms is axiom A2 (see Table 4). This

axiom states the (generalized) transitivity of the hyponymy relation. Let us consider
the SN representing the sentence Lindenthal is a district of Cologne. as displayed in Fig�
ure 1. Let us further assume the knowledge base contains the fact: subr(district, part).
The concept represented by node c2 is a hyponym of district. It can thus be inferred
that c2 is also a hyponym of part. Thus, the deep pattern D4 (see Table 2) correspond�
ing roughly to the surface pattern a1 is a part of a2 , can also be applied to this SN.
This means that the pattern D4 becomes more generally usable by using axiom A2.
A further frequently used axiom is

A3 ∶ P AR
*itms

(a, d) ∧ pred(d, c)← pred(a, c) ∧ ¬P AR
*itms

(e, a) (4)

This axiom is employed to add an *itms-relation to a pred-edge, i.e., this axiom
creates a coordination existing of exactly one element. In this way, a meronym inside
and outside a coordination can be recognized by the same pattern.
Examples: Car wheels are part of a car. Car wheels, a blinker and a gearshift

are part of a car. By applying axiom A3 and pattern D4, the meronymy relation
mero(car_wheel, car) can be extracted from both example sentences. The literal
¬P AR*itms(e, a) prevents the generated relation pred(d, c) to be expanded by a further
application of this axiom.
Axiom A4 de�nes the transitivity of the subs-relation, and axiom A5 states that

an object located 'within' or 'at' another object is attached to this concept. A6 is a
variant of A1; it only applies if pluralities (indicated by the MultiNet relation pred) are
considered. Finally A7 is required if people act in certain roles (Example: If someone
does something as a father, then he is a father).
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Figure 2: Application of the deep pattern D3 to an SN representing the sentence: Water is a mixture of
hydrogen and oxygen. The inferred edges are marked by dashed lines.

In the examples above, the use of axioms increases the recall. However, axioms can
also help to increase the precision.

Consider the sentence Water is a mixture of hydrogen and oxygen. where the asso�
ciated SN is given 6 in Figure 2. subr(c1, sub) indicates that the two arguments of
c1 (target concepts of arg1 and arg2) are connected by a sub relation. The *itms
function is used to combine the two components hydrogen and oxygen in a conjunction.

The two meronymy relations mero(oxygen, water) and mero(hydrogen, water) can
be extracted from this sentence by applying pattern D3 from Table 2 (roughly corre�
sponding to the surface pattern given in Equation 5) to the associated SN.

mero(x, z) ∧mero(y, z)← z is a mixture of x and y (5)

Note that the word mixture can also be used in a more abstract sense, e.g.,
His attitude is a mixture of enthusiasm and diligence. In order to prevent, in this

6Please note that c5 and c6 are generic nodes, and the arcs labeled with mero should begin at c5
and c6, respectively. The latter is achieved in a post-processing step.
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case, the extraction of assumed meronymy relations, like mero(enthusiasm, attitude)
and mero(diligence, attitude), one has to require that at least one of y/z and x is
known to be a substance, which is expressed by the disjunction sub(a2 , substance) ∨
sub(a1 , substance) in pattern D3. A disjunction is used instead of the conjunction
sub(a2 , substance)∧ sub(a1 , substance) since the lexical resources are limited and the
hypernymy relations in the knowledge base are by no means complete. The pattern D3
is applicable to the sentence Water is a mixture of hydrogen and oxygen. since water is
a substance. The fact that water is a substance is derived by several applications of the
axiom A2 � Transitivity of sub. The logical restriction a2 ≠ mixture is required in order
to prevent the extraction of mero(oxygen, mixture) and mero(hydrogen, mixture).
This pattern is not applicable in the aforementioned example, where mixture is used

in an abstract sense, because neither attitude, diligence nor enthusiasm are hyponyms
of substance.

6 Validation

Not all of the extracted meronymy hypotheses extracted by deep or shallow patterns
are correct. Thus, a validation component is required which checks each hypothesis for
correctness by several semantic and statistical features.

The knowledge validation carried out is done in two steps. In the �rst step we
compare the ontological sorts of relational arguments and semantic features to each
other and �lter out hypotheses of non-allowed combinations. In the second step the
remaining hypotheses are assigned a con�dence score which estimates their probability
of correctness. This two step mechanism was chosen for performance reasons. In this
way the size of the database containing the meronymy hypotheses and the runtime of
the con�dence score computation can be greatly reduced.

Since the con�dence score represents a probability, hypotheses with a score of at
least 0.5 are considered to be correct. All other hypotheses are considered incorrect.
This score can be useful for two reasons:

� Hypotheses with a score beyond a certain score threshold could automatically be
added to the knowledge base.

� If the hypotheses are to be validated manually, the annotator can �rst check the
hypotheses with the high scores. In this way, he can add much more meronyms
to the knowledge base in a given time interval than if he chooses the hypotheses
randomly.

6.1 Filtering

Only certain combinations of ontological sorts and semantic features are permitted.
For instance, a concept denoting a human being (semantic feature: human +) can only
be meronym to another concept that denotes a set (recognizable in MultiNet by the
type of extensionality). The type of extensionality is zero for an individual concept
(which is not a set) and i for a set of elements of type i−1 for i > 0 (see Section 3). The
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ontological sorts of the meronym and holonym hypothesis must usually be identical
(exception: sort s (substance) for meronym and d (discrete) for holonym or vice-versa
are allowed).

The permitted combinations of ontological sorts are speci�ed manually, while the
regularities concerning features, which are a lot more complicated, are automatically
learned by a tree augmented naïve Bayes algorithm (TAN) (Friedmann et al., 1997).
The training is done separately for di�erent combinations of the type of extensional�
ity. The training data consists of a set of annotated meronymy relation hypotheses
(meronym/no meronym) and lists of semantic features where the features are sought
and found in the lexicon. Only relational candidates for whom semantic features and
ontological sorts can be shown to be compatible are stored in the knowledge base.

6.2 Scoring

All hypotheses in the knowledge base are assigned a con�dence score. This is done
by means of a support vector machine (SVM) applied on several feature values7 and
annotations. The SVM (here LIBSVM, Chang and Lin (2001)) determines the class
(meronymy or non-meronymy) and a probability estimate for each candidate pair and
is trained on a set of annotated meronymy hypotheses. The annotation is either one
(1) for meronymy or zero for non-meronymy. If the classi�cation is 'meronymy', the
score is de�ned by this probability estimate, otherwise as one minus this value. The
employed features are explained below:

Use of a Taxonomy : This feature exploits a collection of known meronyms, hy�
ponyms, synonyms, as well as a list of known non-meronym pairs. For that we used
the lexical and semantic relations contained in HaGenLex. These relations are in part
handcrafted, and in part derived from Wiktionary. Additionally, GermaNet relations,
where the synsets are mapped to HaGenLex concept ids, are employed. This method
works as follows: Consider a given pair of concepts (a1 , a2) being meronymically re�
lated to each other. Determine the Cartesian product S(a1)×S(a2) of all hypernyms
of both normalized components (including the components itself). Increase a counter
pos for all possible pairs of concepts in the resulting Cartesian product S(a1)×S(a2),
i.e., set

pos(x, y) ∶=pos(x, y) + 1
∀x ∈ S(a1), y ∈ S(a2)

(6)

where
S(x) = {syno_normalize(x)} ∪ {syno_normalize(z)∣sub(x, z)} (7)

7not to be confused with semantic features
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where syno_normalize ∶ Concepts → Concepts is a function which maps a concept to
the smallest element (according to some total ordering) of its synset:

syno_normalize(c) = d ∶⇔ syno(d, c) ∧ (∀e ∶ syno(e, d)⇒ e ≥ d) (8)

Example: Assume synset(car)={auto,car}. Then syno_normalize(car) = auto if lex�
icographic ordering is used. By employing a synonymy normalization, the set of re�
garded concepts can be reduced which leads to a smaller memory consumption.

Analogously to pos, determine neg(x, y) for all non-meronym pairs. For a new pair
(x′, y′) opt for meronymy, i�

max
a∈S(x′),b∈S(y′)

{
pos(a,b)

pos(a,b)+neg(a,b) } >

max
c∈S(x′),d∈S(y′)

{
neg(c,d)

pos(c,d)+neg(c,d) }

(9)

That means that the decision is in favor of meronymy i� there is a pair in S(x′)×S(y′)
for which the indication for meronymy is stronger than the indication against meronymy
for any other pair in S(x′) × S(y′). This decision procedure basically follows the
approach presented by Costello (2007).

In addition to the approach of Costello, we employed the taxonomy to cancel out
all meronymy hypotheses that appear in or can be derived from this taxonomy since a
meronym cannot be a hyponym or a hypernym simultaneously. If one or both of the
considered concepts are associated to compound words, then we also check for known
hyponymy relations between all combinations of meronymy concept+base concept and
holonymy+base concept (base concept: concept corresponding to the correct reading
of the base word) candidates.

Correctness Rate: The feature Correctness Rate takes into account that the recog�
nized holonym alone is already a strong indication for the correctness or incorrectness
of the investigated hypothesis. The same holds for the assumed meronym as well.
For instance, meronymy candidate pairs with the assumed holonym computer, univer�
sity, or building were mostly correct. In contrast, meronymy candidate pairs with an
assumed holonym future or reason were usually incorrect.

Thus, this indicator determines how often a concept pair is actually correct if a
certain concept shows up in the �rst (meronym) or second (holonym) position. More
formally, we are interested in determining the following probability:

p = P (me = t∣arg1r = a1 ∧ arg2r = a2) (10)

where

� arg1r denotes the �rst concept (the assumed meronym) in a given relation r.
� arg2r denotes the second concept (the assumed holonym) in a given relation r.
� me(ronym) = t(rue) denotes the fact that a meronymy relation holds.
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Applying Bayes' theorem to Equation 10 leads to the Equation:

p = P (me = t) ⋅
P (arg1r = a1 ∧ arg2r = a2 ∣me = t)

P (arg1r = a1 ∧ arg2r = a2)
(11)

For better generalization, we assume that the events arg1r = a1 and arg2r = a2 as
well as (arg1r = a1 ∣me = t) and (arg2r = a2 ∣me = t) are independent. Using these
assumptions, Equation 11 can be rewritten:

p ≈ p′ = P (me = t) ⋅
P (arg1 r = a1 ∣me = t)

P (arg1 r = a1)
⋅

P (arg2 r = a2 ∣me = t)

P (arg2 r = a2)

=
P (arg1 r = a1 ∧me = t)

P (arg1 r = a1)
⋅

P (arg2 r = a2 ∧me = t)

P (me = t) ⋅ P (arg2 r = a2)

p′ =
1

P (me = t)
⋅ P (me = t∣arg1 r = a1) ⋅ P (me = t∣arg2 r = a2)

(12)

If a1 only rarely occurs in meronym position in assumed meronymy relations, we
approximate p by P (me = t∣arg2 r = a2), analogously for rarely occurring concepts in
the holonym position. As usual, the probabilities are estimated by relative frequencies
relying on a human annotation. Example: Let us consider that a hypothesis pair
(c1, c2) is given and concept c1 occurs in 90 annotated meronymy hypotheses as an
assumed meronym, 45 of them are known to be correct. The concept c2 occurs in 100

hypotheses as holonym candidate and 30 of them are known to be correct. Let the
probability that a meronym hypothesis is correct be 0.2. Then the total score is given
as: (1/0.2) ⋅ 0.5 ⋅ 0.3 = 0.75.
Graph Kernel : The use of kernels (see Section 2) is quite popular for semantic

relation extraction. Since relation extraction algorithms are mainly based on syntactic
or surface structures, tree or string kernels are usually applied. In our scenario, the
kernel is only applied for validation of hypotheses where the extraction is done by
the automated theorem prover. Hence, a hybrid approach is taken. In addition, our
method is based on SNs, which are graphs and not trees. Thus, instead of the usual
tree kernel, a graph kernel (vor der Brück and Helbig, 2010) based on common walks,
as proposed by (Gärtner et al., 2003) is applied.

Applied Pattern: There are major di�erences regarding the precision values of the
extracted meronymy hypotheses depending on the applied pattern (Berland and Char�
niak, 1999). Pattern D1 (see Table 2) is actually quite reliable where D2 generates a
lot of incorrect hypotheses. Thus, we provide a feature for each pattern which takes the
value of one if a meronymy hypothesis was extracted by this pattern, to zero otherwise.

Mutual Information: Relation hypotheses extracted several times are often more re�
liable than hypotheses that could only be found once. Thus, we introduce a feature
measuring the point-wise mutual information (in contrast to the conditional probabil�
ity in Berland and Charniak (1999)) between the meronym and holonym candidate
multiplied by the discounting factor suggested in (Pantel and Ravichandran, 2004).
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Deep/Shallow : This feature checks whether a hypothesis was extracted by both
shallow and deep patterns (1) or only by one of them (0).
Concrete/Abstract : This feature follows the assumption that most meronymically

related concepts are concrete. It is the product of the concreteness of both meronym
and holonym candidates. The concreteness of a single concept is de�ned as the fraction
of ontological sorts for a concept that are concrete (ontological sort: co or subordinated
to co). Note that a concept can be assigned several ontological sorts if it is a meaning
molecule (Helbig, 2006). A meaning molecule is assigned several meaning facets where
each facet can have di�erent ontological sorts, features and types of extensionality. Let
us consider an example for the calculation of the concreteness. If a concept is assigned
two concrete sorts and one abstract, then the concreteness of this concept is 2/3.
Ontological Sorts: Consider the case that at least one of the compared concepts

involved in the meronymy hypothesis is a meaning molecule and is associated to several
ontological sorts. The �ltering process as described in Section 6.1 tests if there is at
least one admissible combination of ontological sorts of the two concepts. All other
ontological sorts are disregarded for this test. However, the disregarded ontological
sorts can also give a clue about the hypothesis correctness. Therefore, we introduced a
feature which employs the total set of ontological sorts of the two compared concepts.
A meronymy relation is presumably more likely to hold if the involved concepts are

assigned similar sets of ontological sorts. Thus, this feature is set to the Jaccard coe��
cient considering the ontological sorts of the meronym (m) and holonym (h) candidates:

sort_feature(m, h) ∶=
∣ sorts(m) ∩ sorts(h)∣

∣ sorts(m) ∪ sorts(h)∣
(13)

7 Meronymy Subrelations

The algorithm described thus far only extracts relations of type mero. However, the
meronymy relation is divided into several subrelations. In this section we describe how
the correct subrelation is chosen. First, we introduce the set of all subrelations to
choose from. Second the decision procedure is described in detail.

7.1 Types of Meronymy Relations

Winston proposes six subrelations for meronymy (Winston et al., 1987), which unfor�
tunately are not su�ciently clearly de�ned. Therefore we base our approach on the
meronymy relations of MultiNet (see (Helbig, 2006), Chapt. 4.2 and 18.2.49) which
are systematically described and underpinned by an axiomatic apparatus. In the fol�
lowing it is tried to establish an approximate correspondence between both systems.
Please note, that the division of meronymy of WordNet (Fellbaum, 1998) into three
subrelations is considered by both aforementioned authors as being underspeci�ed and
not su�ciently di�erentiated. The following subrelations are proposed by Winston:

� Component-integral: A relation between an object and one of its components.
Important for this relation is the fact that object and component can be perceived
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separately from each other. MultiNet relation: pars (see Section 3). Example:
A car wheel is part of a car.

� Member-collection: This relation represents the membership in a set. MultiNet
relation: elmt. Example: A soccer player is a member of a soccer team.

� Portion-mass: Relations which refer to mass units and their parts. MultiNet rela�
tion: pars, for temporal units: temp. Example: A meter is part of a kilometer,
a slice of the cake is part of the cake.

� Stu�-object: This relation represents the chemical composition of an object.
MultiNet relation: origm−1 if the holonym denotes a physical object, otherwise
pars. Example: Alcohol is part of wine. Steel is part of a bike.

� Feature-activity: Activities can usually be divided into several subactions. Multi�
Net relation: hsit. Example: The following subactions belong to the activity
going out for dinner : visiting a restaurant, ordering, eating and payment

� Place-area: This relation holds between two objects if one of these objects is
geographically part of the other object. MultiNet relation: pars. Example:
Germany is part of Europe.

Additionally, (Helbig, 2006) de�nes a further meronymy subrelation for subsets called
subm in MultiNet. Example: A brigade is a subset of a division. Note that
brigade/division is not a member-collection relationship since both, a division and
a brigade, denote concepts with sets as their extension, whose elements are soldiers.

74 JLCL



Theorem Prover Based Meronymy Extraction

Premise Decision

etype(m) + 1 = etype(h) elmt

sort(m) ⊑ si∧
sort(h) ⊑ si hsit

sort(m) ⊑ s∧
sort(h) ⊑ d origm−1

etype(m) = etype(h)∧
etype(m) > 0 subm

sort(m) ⊑ ta∧
sort(h) ⊑ ta temp

otherwise pars

Table 5: Selecting the correct meronymy subrelation (d=discrete object, s=substance, si=situation,
ta=temporal abstracta, m=meronym, h=holonym), sort(x) ⊑ y ∶⇔ sort(x) = y or sort(x) is
a subsort of y.

7.2 Selecting the Correct Meronymy Subrelation

The semantic lexicon is employed to choose the correct subrelation for an extracted
meronymy relation, i.e., this process is not based on any machine learning algorithm.
The decision rules are given in Table 5. For the de�nition of ontological sorts and
the type of extensionality, which are required for the decision process, see Section 3.
This procedure requires that both concepts taken into consideration are contained
in the lexicon. If this is not the case, then one of the following fall-back strategies
are used. First, if one of the regarded concepts is represented by a compound word,
as determined by a morphological compound analysis, then the lexical entry of the
base concept (concept corresponding to the correct reading of the base word) can be
used. Second, for correct meronymy relations, which is assumed for this selection, the
semantic sorts of the two concepts must usually be identical (exception: origm−1).
This means, for instance, that if the �rst concept is known to be of sort ta the second
should have the same sort and the correct subrelation should be temp. If a concept is
a meaning molecule, the facets are chosen from both concepts for comparison, which
are most similar in regard to ontological sorts and semantic features.
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Figure 3: Activity diagram of the meronymy extraction done by SemQuire.

8 Architecture

To �nd meronymy relations from a text, this text is processed by our knowledge acqui�
sition tool called SemQuire8 (see Figure 3).

1. At �rst, the sentences of Wikipedia are analyzed by the deep linguistic parser
WOCADI employing the knowledge base KB, containing the general background
knowledge and the axiomatic apparatus.
As a result of the parsing, a token list, a set of syntactic dependency trees, and
a large semantic network (SN) are created.

2. Shallow patterns, consisting of a regular expression in the premise, are applied to
the token lists, and deep patterns are applied to the SNs to generate proposals
for meronymy relations (see Section 4 and Section 5).

3. A validation tool using ontological sorts and semantic features checks whether the
proposals are at all technically admissible to reduce the amount of data stored in
the hypotheses knowledge base HKB (see Section 6.1).

4. If the validation is successful, the meronymy candidate pair is added to the HKB.
Steps 2�4 are repeated until all sentences are processed.

5. Each meronymy candidate pair in HKB is assigned a con�dence score (see Sec�
tion 6.2) estimating the likelihood of its correctness.

6. The correct meronymy subrelation is determined (see Section 7).
7. The highest scored hypotheses in HKB are manually inspected and eventually

added to the knowledge base KB.

8SemQuire is derived from acquire knowledge semantic-based.
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Feature Correlation

Deep/Shallow 0.512
Ontological Sorts 0.436
Correctness Rate 0.397
Use of a Taxonomy 0.379
Concrete/Abstract 0.337
Mutual Information 0.030

Table 6: Correlation of features to relation correctness

9 Evaluation

The meronymy relations automatically acquired stem from the German Wikipedia
corpus from November 2006 consisting of 500 000 articles and 20 million sentences.
In more than 6 million cases, a relation candidate was �ltered out as being incorrect

by our validation component. In total, 1 449 406 (di�erent) meronymy relation hypothe�
ses were �nally stored in the knowledge base, 286 008 of them originating exclusively
from deep patterns. In total, the relations in the knowledge base were extracted by
approximately 2.5 million pattern applications.

GermaNet Costello SemQuire Sum
PNM PM PNM PM PNM PM (PM+

PNM)

NM 750 0 506 244 666 84 750

M 718 32 393 357 151 599 750

Sum 1468 32 899 601 817 683

Table 7: Confusion matrix for SVM optimization. NM = no meronymy relation present, M = meronymy relation
present, PNM = predicted non-meronymy relation, PM = predicted meronymy relation.

For relation hypotheses extracted by deep and shallow patterns together, the preci�
sion is more than three times higher than for the relations that were only extracted
by shallow patterns. 1 450 of the relations of the knowledge base were extracted alone
by employing the sub0 transitivity axiom A2, exploiting the fact that a district de�

Measure GermaNet Costello SemQuire

Accuracy 0.521 0.573 0.843
Recall 0.043 0.476 0.799
Precision 1.000 0.594 0.877
F-measure 0.082 0.528 0.837

Table 8: Accuracy, recall, precision, and F-measure for SVM optimization.
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notes a part (see the example in Section 5). In total, logical axioms have been applied
in 58 101 relation extraction processes, discovering 34 114 distinct relations. Table 4

shows a selection of axioms and the number of extracted hypotheses applying a certain
axiom.
1 500 hypotheses were selected for the evaluation and annotated for correctness. Ad�

ditional 50 000 hypotheses were annotated with their correctness exploited by the fea�
ture Correctness Rate, which is described in Section 6.2. Table 6 shows several scoring
features and their associated correlation to the hypothesis correctness as speci�ed by
the annotators (one (1) for hypothesis is correct, zero (0) for incorrect).
Accuracy, precision, recall, F-measure, and confusion matrices were determined by

a 10-fold cross-validation. Precision is the relative frequency with which a predicted
meronym is actually one, while accuracy denotes the relative frequency with which
the decision (meronymy/non-meronymy) is in fact correct. Note that recall does not
relate to the extraction process, but rather only to the (score-based) validation. Thus,
it speci�es the relative frequency with which a correct relation in the data set of 1500
relations is actually identi�ed as being correct by our system.
Our approach is compared with a GermaNet classi�er as a baseline that predicts a

relation of our hypotheses set to be meronymic if this relation is contained in GermaNet
(GermaNet synsets are mapped to HaGenLex concepts semi-automatically) or can be
derived by other GermaNet relations. A second baseline is the validation feature of
Costello (Costello, 2007) which is also used as a feature by our system. The evaluation
results are given in Tables 7 and 8. The evaluation showed that we were able to �nd a lot
of meronyms not contained in GermaNet. In particular, less than 6% of the meronyms
identi�ed by SemQuire were contained or derivable from GermaNet. In addition, our
extracted meronymy relations are, in contrast to GermaNet, all concept-based and not
synset-based.9

They are also further di�erentiated into several subrelations. The correct subrelation
was determined in 92.5% of the cases.
The results of our system are quite competitive in comparison with the results ob�

tained by Girju et al. (2006) (precision: 0.81 and recall: 0.759). For this comparison,
one has to take into consideration that Girju's approach is operated with English data
and employs semantic relations from WordNet. Therefore, for his results, larger lexical
resources were available than for German, which makes this task for a German text
corpus more di�cult.
The runtime of the algorithm heavily depends on the theorem prover timeout, i.e.,

the maximum amount of time which is available for a single proof. Currently the
timeout is set to 0.1 seconds. With that the total runtime of the meronymy extraction
algorithm is about three weeks on a Intel Core 2 Quad Q9550 CPU with 2.83 GHz
using 8MiB of memory. By reducing the timeout the calculation time can be arbitrarily

9The di�erence is seen in the fact that MultiNet concepts are embedded in a complex linguistic
and logical apparatus. Thus, concept ids of MultiNet are present in meaning postulates and
other logical axioms, they are contained in the analysis results derived automatically by word
disambiguation from the lexicon, and so on. This embedding in a whole process of language
understanding is lacking in the case of representatives of synsets.
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reduced. Naturally, the number of extracted hypotheses will decrease with descending
timeout threshold. The realistic lower limit for the entire processing time, where still
a reasonable amount of hypotheses can be found, is two days.

10 Conclusion and Future Work

In this paper, a logic-oriented approach has been presented for extracting meronymy
relations from Wikipedia via text mining, which has proven its value in acquiring
large stocks of knowledge. Unlike other approaches, our methods are based on a deep
semantic representation, employing logical axioms. The use of axioms improves the
generality of the method and can therefore increase the recall of the patterns in terms
of the number of extracted meronymy relations. Furthermore, axioms can also be used
to improve the precision of the patterns.
For future work, we plan on increasing the number of axioms and transferring this

approach to other semantic relations.
The application of semantic patterns and axioms proved to be important for

meronymy detection and is, in our opinion, an important step towards the use of real
text understanding for future knowledge extraction systems.
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