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Text Segmentation with Topic Models

This article presents a general method to use information retrieved from
the Latent Dirichlet Allocation (LDA) topic model for Text Segmentation:
Using topic assignments instead of words in two well-known Text Segmenta-
tion algorithms, namely TextTiling and C99, leads to significant improve-
ments. Further, we introduce our own algorithm called TopicTiling, which is
a simplified version of TextTiling (Hearst, 1997). In our study, we evaluate
and optimize parameters of LDA and TopicTiling. A further contribution
to improve the segmentation accuracy is obtained through stabilizing topic
assignments by using information from all LDA inference iterations. Fi-
nally, we show that TopicTiling outperforms previous Text Segmentation
algorithms on two widely used datasets, while being computationally less
expensive than other algorithms.

1 Introduction

Text Segmentation (TS) is concerned with “automatically break[ing] down documents
into smaller semantically coherent chunks” (Jurafsky and Martin, 2009). We assume
that semantically coherent chunks are also similar in a topical sense. Thus, we view a
document as a sequence of topics. This semantic information can be modeled using
Topic Models (TMs). TS is realized by an algorithm that identifies topical changes in
the sequence of topics.

TS is an important task, needed in Natural Language Processing (NLP) tasks, e.g.
information retrieval and text summarization. In information retrieval tasks, T'S can
be used to extract segments of the document that are topically interesting. In text
summarization, segmentation results are important to ensure that the summarization
covers all themes a document contains. Another application could be a writing aid to
assist authors with possible positions for subsections.

In this article, we use the Latent Dirichlet Allocation (LDA) topic model (Blei
et al., 2003). We show that topic IDs, assigned to each word in the last iteration
of the Bayesian inference method of LDA, can be used to improve TS significantly
in comparison to methods using word-based features. This is demonstrated on three
algorithms: TextTiling (Hearst, 1997), C99 (Choi, 2000) and a newly introduced
algorithm called TopicTiling. TopicTiling resembles TextTiling, but is conceptually
simpler since it does not have to account for the sparsity of word-based features.

In a sweep over parameters of LDA and TopicTiling, we find that using topic IDs
of a single last inference iteration leads to enormous instabilities with respect to TS
error rates. These instabilities can be alleviated by two modifications: (i) repeating the
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inference iterations several times and selecting the most frequently assigned topic ID
for each word across several inference runs, (ii) storing the topic IDs assigned to each
word for each iteration during the Bayesian inference and selecting most frequently
assigned topic ID (the mode) per word. Both modifications lead to similar stabilization,
however (ii) needs less computational resources. Furthermore, we can also show that
the standard parameters recommended by Griffiths and Steyvers (2004) do not always
lead to optimal results.

Using what we have learned in these series of experiments, we evaluate the performance
of an optimized version of TopicTiling on two datasets: The Choi dataset (Choi, 2000)
and a more challenging Wall Street Journal (WSJ) corpus provided by Galley et al.
(2003). Not only does TopicTiling deliver state-of-the-art segmentation results, it
also performs the segmentation in linear time, as opposed to most other recent TS
algorithms.

The paper is organized as follows: The next section gives an overview of TS algo-
rithms. Then we introduce the method of replacing words by topic IDs, lay out three
algorithms using these topic IDs in detail, and show improvements for the topic-based
variants. Section 5 evaluates parameters of LDA in combination with parameters of
our TopicTiling algorithm. In Section 6, we apply the method to various datasets and
end with a conclusion and a discussion.

2 Related Work

Topic segmentation can be divided into two sub-fields: (i) linear topic segmentation and
(ii) hierarchical topic segmentation. Whereas linear topic segmentation deals with the
sequential analysis of topical changes, hierarchical segmentation concerns with finding
more fine grained subtopic structures in texts.

One of the first unsupervised linear topic segmentation algorithms was introduced by
Hearst (1997): TextTiling segments texts in linear time by calculating the similarity
between two blocks of words based on the cosine similarity. The calculation is accom-
plished by two vectors containing the number of occurring terms of each block. LcSeg,
a TextTiling-based algorithm, was published by Galley et al. (2003). In comparison
to TextTiling, it uses tf-idf term weights, which improves TS results. Choi (2000)
introduced an algorithm called C99, that uses a matrix-based ranking and a clustering
approach in order to relate the most similar textual units. Similar to the previous
introduced algorithms, C99 uses words. Utiyama and Isahara (2001) introduced one of
the first probabilistic approaches using Dynamic Programming (DP) called U00. DP is
a paradigm that can be used to efficiently find paths of minimum cost in a graph. Text
Segmentation algorithms using DP, represent each possible segment (e.g. every sentence
boundary) as an edge. Providing a cost function that penalizes common vocabulary
across segment boundaries, DP can be applied to find the segments with minimal cost.

Related to our work are a modified C99 algorithm, introduced by Choi et al. (2001)
that uses the term-representation matrix in latent space of LSA in combination with
a term frequency matrix to calculate the similarity between sentences and two DP
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approaches described in Misra et al. (2009) and Sun et al. (2008): here, topic modeling
is used to alleviate the sparsity of word vectors. The algorithm of Sun et al. (2008)
follows the approach described in Fragkou et al. (2004), but uses a combination of topic
distributions and term frequencies. A Fisher kernel is used to measure the similarity
between two blocks, where each block is represented as a sequence of sentences. The
kernel uses a measure that indicates how much topics two blocks share, combined
with the term frequency, which is weighted by a factor that indicates how likely the
terms belong to the same topic. They use entire documents as blocks and generate
the topic model using the test data. This method is evaluated using an artificially
garbled Chinese corpus. In a similar fashion, Misra et al. (2009) extended the DP
algorithm UQO from Utiyama and Isahara (2001) using topic models. Instead of using
the probability of word co-occurrences, they use the probability of co-occurring topics.
Segments with many different topics have a low topic-probability, which is used as a
cost function in their DP approach. (Misra et al., 2009) trained the topic model on a
collection of the Reuters corpus and a subset of the Choi dataset, and tested on the
remaining Choi dataset. The topics for this test set have to be generated for each
possible segment using Bayesian inference methods, resulting in high computational
cost. In contrast to these previous DP approaches, we present a computationally more
efficient solution. Another approach would be to use an extended topic model that
also considers segments within documents, as proposed by Du et al. (2010). A further
approach for text segmentation is the usage of Hidden Markov Model (HMM), first
introduced by Mulbregt et al. (1998). Blei and Moreno (2001) introduced an Aspect
Hidden Markov Model (AHMM) which combines an aspect model (Hofmann, 1999)
with a HMM. The limiting factor of both approaches is that a segment is assumed to
have only one topic. This problem has been solved by Gruber et al. (2007) who extends
LDA to consider the word and topic ordering using a Markov Chain. In contrast to
LDA, not a word is assigned to a topic, but a sentence, so the segmentation can be
performed sentence-wise.

In early TS evaluations, Hearst (1994) measured the fitting of the estimated segments
using precision and recall. But these measures are considered inappropriate for the task,
since the distance of a falsely estimated boundary to the correct one is not considered
at all. With P, (Beeferman et al., 1999), a measure was introduced that regulates this
problem. But there are issues concerning the P, measure, as it uses an unbalanced
penalizing between false negatives and false positives. WindowDiff (WD) (Pevzner
and Hearst, 2002) solves this problem, but most published algorithms still use the
Pi, measure. In practice, both measures are highly correlated. While there are newer
published metrics (see Georgescul et al. (2006), Lamprier et al. (2007) and Scaiano and
Inkpen (2012)), in practice still the two metrics P, and WD are commonly used.

To handle near misses, Py uses a sliding window with a length of k£ tokens, which is
moved over the text to calculate the segmentation penalties. This leads to following
pairs: (1,k),(2,k +1),...,(n — k,n), with n denoting the length of the document. For
each pair (7, 7) it is checked whether positions ¢ and j belong to the same segment or to
different segments. This is done separately for the gold standard boundaries and the
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estimated segment boundaries. If the gold standard and the estimated segments do not
match, a penalty of 1 is added. Finally, the error rate is computed by normalizing the
penalty by the number of pairs (n — k), leading to a value between 0 and 1. A value
of 0 denotes a perfect match between the gold standard and the estimated segments.
The value of parameter k is assigned to half of the number of tokens in the document
divided by the number of segments, given by the gold standard.

According to Pevzner and Hearst (2002), a drawback of the P, measure is its
unawareness of the number of segments between the pair (¢, 7). WD is an enhancement
of Py: the number of segments between position i and j are counted, where again the
distance between the positions is parameterized by k. Then the number of segments is
compared between the gold standard and the estimated segments. If the number of
segments are not equal, 1 is added to the penalty, which is again normalized by the
number of pairs to get an error rate between 0 and 1.

The first hierarchical algorithm was proposed by Yaari (1997), using the cosine
similarity and agglomerative clustering approaches. A hierarchical Bayesian algorithm
based on LDA is introduced by Eisenstein (2009). In our work, however, we focus on
linear topic segmentation.

LDA was introduced by Blei et al. (2003) and is a generative model that discovers
topics based on a training corpus. Model training estimates two distributions: A
topic-word distribution and a topic-document distribution. As LDA is a generative
probabilistic model, the creation process follows a generative story: First, for each
document a topic distribution is sampled. Then, for each document, words are randomly
chosen, following the previously sampled topic distribution. Using the Gibbs inference
method, LDA is used to apply a trained model for unseen documents. Here, words are
annotated by topic IDs by assigning the most probable topic ID on the basis of the two
distributions. Note that the inference procedure, in particular, marks the difference
between LDA and earlier dimensionality reduction techniques such as Latent Semantic
Analysis.

3 Text Segmentation Datasets

In this paper we use two datasets: A document collection generated based on the Brown
corpus and a more challenging corpus generated using WSJ documents.

3.1 Choi Dataset

The Choi dataset (Choi, 2000) is commonly used in the field of TS (see e.g. Misra
et al. (2009); Sun et al. (2008); Galley et al. (2003)). It is an artificially generated
corpus generated from the Brown corpus and consists of 700 documents. Each document
consists of ten segments. The document generation was performed extracting consecutive
snippets of 3-11 sentences from different documents from the Brown corpus. 400
documents consist of segments with a sentence length of 3-11 sentences and there are
100 documents each with sentence counts of 3-5, 6-8 and 9-11.
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3.2 Galley Dataset

Galley et al. (2003) present two corpora for written language, each having 500 documents,
which are also generated artificially. In comparison to Choi’s dataset, the segments
in its ’"documents’ vary from 4 to 22 segments, and are composed by concatenating
full source documents. Use of full documents make this corpus a more realistic one
in comparison to the one provided by Choi. One dataset is generated based on WSJ
documents of the Penn Treebank (PTB) project (Marcus et al., 1994) and the other is
based on Topic Detection Track (TDT) documents (Wayne, 1998). As the WSJ dataset
seems to be harder (consistently higher error rates across several works), we use this
dataset for experimentation.

4 From Words to Topics

4.1 Method to Represent Words with Topic IDs

The method (see also Misra et al., 2009; Sun et al., 2008) for using information gained
by topic models is conceptually simple: Instead of using words directly as features to
characterize textual units, we use their topic IDs as assigned by Bayesian inference. LDA
inference assigns a topic ID to each word in the test document in each inference iteration
step, based on a TM trained on a training corpus. The first series of experiments use
the topic IDs assigned to each word in the last inference iteration. Figure 1 depicts the
general setup.

Reader,
Tokenizer, Topic
ﬁ
Pre- Model
Training processing
documents
Reader, Topic
Tokenizer, Seg-
—. ’ _
Pre. —> Anno- — menter > Evaluator
. tator
processing
Test
documents

Figure 1: Basic concept of text segmentation using Topic Models

First, preprocessing steps' like tokenizing, sentence segmentation, part-of-speech
tagging or filtering are applied to the training and test documents.

!we use the DKPro framework, http://code.google.com/p/dkpro-core-asl/
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The training data used to estimate the topic models should ideally be from the same
domain as the test documents. Since no information about the test data should inform
the training, no test documents should be used for the topic model estimation, even
though topic models belong to the unsupervised learning paradigm. The topic model is
estimated once in advance and can then be used for inference on the test documents:
LDA inference assigns a topic ID to each word in the test document and generates a
document topic distribution.

An example of a text annotated with topic IDs, taken from the WSJ test data, is
presented in Figure 2. One can clearly see the boundary by looking at the most probable
topic IDs. The first text is about a telecommunication company, having mostly topic
ID 2 assigned to words. The second segment is about an anti-government rally in South
Africa. Most words of this segment are annotated with topic ID 37. The topic IDs are
not assigned statically per word, but converge from Gibbs Sampling inference, which
iterates over the words and re-samples topic IDs according to the per-document topic
distribution and the per-topic word probabilities from the previous inference step. For
example, the word people (marked bold in Figure 2) is marked with topic 37 since this
topic is highly probable in the document. Using this word in a different context would
most likely lead to a different topic ID.

Mr:62 .:97 Pohs:2 ,:2 previously:4 executive:2 vice:2 president:2 and:17 chief:2 operating:2
officer:2 ,:72 was:2 named:2 interim:2 president:2 and:73 chief:2 executive:2 officer:2 after:17
David:2 M:27 .:36 Harrold:65 ,:2 a:84 company:2 founder:2 ,:26 resigned:2 from:91 the:3/
posts:2 for:62 personal:61 reasons:2 in:84 August:2 .:58 Cellular:70 said:54 Robert:2 J:61
.42 Lunday:2 Jr:18 .:81 ,:44 its:57 chairman:2 and:73 another:25 founder:2 ,:31 resigned:2
from:91 the:57 company:2 ’s:24 board:2 to:10 pursue:2 the:10 sale:55 of:67 his:28 telephone:31
company:42 ,:74 Big:10 Sandy:50 Telecommunications:31 Inc:2 .:74

APARTHEID:37 FOES:37 STAGED:41 a:37 massive:37 anti-government:37 rally:37 in:40
South:37 Africa:37 .:19 More:29 than:34 70:45 ,:26 000 people:37 filled:17 a:22 soccer:37
stadium:88 on:46 the:34 outskirts:37 of:93 the:24 black:37 township:37 of:45 Soweto:37 and:37
welcomed:11 freed:37 leaders:37 of:98 the:57 outlawed:37 African:37 National:45 Congress:87
72 1679 was:55 considered:37 South:37 Africa:37 ’s:33 largest:90 opposition:67 rally:37 .:37

Figure 2: Excerpt from a test document, taken from Galley’s WSJ corpus. Each word is followed
by a colon and a number, which represents the topic ID.

In the example, all tokens are used for topic model estimation — it is also possible
to filter tokens by parts-of-speech or very short sentences for the purpose of model
estimation and inference. This is expected to lead to even sparser topic distributions.

Once the topic IDs are assigned, most previous segmentation algorithm can be applied,
using the topic ID of each word instead of the word itself.

In this work, we implement topic-based versions of C99 (Choi, 2000), TextTiling
(Hearst, 1994) and develop a new TextTiling-based method called TopicTiling. Our
aim is to find a simplified algorithm that could solve the segmentation problem using
topic IDs.
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4.2 Text Segmentation Algorithms using Topic Models
4.2.1 C99 using Topic Models

The topic-based version of the C99 algorithm (Choi, 2000), called C99LDA, divides
the input text into minimal units on sentence boundaries. A similarity matrix Sy, xm
is computed, where m denotes the number of units (sentences). Every element s;; is
calculated using the cosine similarity (e.g. Manning and Schiitze, 1999) between unit
i and j. For these calculations, each unit 7 is represented as a T-dimensional vector,
where T' denotes the number of topics selected for the topic model. Each element ¢
of this vector contains the number of times topic ID k£ occurs in unit ¢. Next, a rank
matrix R is computed to improve the contrast of S: Each element r;; contains the
number of neighbors of s;; that have lower similarity scores then s;; itself. This step
increases the contrast between regions in comparison to matrix S. In a final step, a
top-down hierarchical clustering algorithm is performed to split the document into m
segments. This algorithm starts with the whole document considered as one segment
and splits off segments until the stop criteria are met, e.g. the number of segments or a
similarity threshold. At this, the ranking matrix is split at indices i, 7 that maximize
the inside density function D.

m

D— Z sum of ranks within segment k
k=1

(1)

area within segment k

As a threshold-based criterion, the gradient 6D is introduced as § D™ = D™ — p(n=1),
The threshold can then be calculated by u + ¢ X o, where mean p and the standard
deviation o are calculated from the gradients?.

4.2.2 TextTiling using Topic Models

In TTLDA, the topic-based version of TextTiling (TT) (Hearst, 1994), documents are
represented as a sequence of n topic IDs instead of words. TTLDA splits the document
into topic-sequences, instead of sentences, where each sequence consists of w topic IDs.
To calculate the similarity between two topic-sequences, called sequence-gap, TTLDA
uses k topic-sequences, named block, to the left and to the right of the sequence gap.
This parameter k defines the so-called blocksize. The cosine similarity is applied to
compute a similarity score based on the topic frequency vectors of the adjacent blocks
at each sequence-gap. A value close to 1 indicates a high similarity among two blocks,
a value close to zero denotes a low similarity. Then for each sequence-gap a depth score
d; is calculated for describing the sharpness of a gap, given by

2¢ = 1.2 as in Choi (2000).
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The function hl(i) returns the highest similarity score on the left side of the sequence-
gap index ¢ that does not increase and hr (i) returns the highest score on the right side.
Then all local maxima positions are searched based on the depth scores.

In the next step, these obtained maxima scores are sorted. If the number of segments
n is given as input parameter, the n highest depth scores are used, otherwise a cut-off
function is used that applies a segment only if the depth score is larger than u — o/2,
where mean p and the standard deviation o are calculated based on the entirety of
depth scores. As TTLDA calculates the depth on every topic-sequence using the highest
gap, this could lead to a segmentation in the middle of a sentence. To avoid this, a
final step ensures that the segmentation is positioned at the nearest sentence boundary.

4.2.3 TopicTiling

This section introduces our own Text Segmentation algorithm called TopicTiling which
is based on TextTiling, but conceptually simpler. TopicTiling assumes a sentence s;
as the smallest basic unit. Between each position p between two adjacent sentences,
a coherence score cp is calculated. To calculate the coherence score, we exclusively
use the topic IDs assigned to the words by inference: Assuming an LDA model with
T topics, each block is represented as a T-dimensional vector. The t-th element of
each vector contains the frequency of the topic ID ¢ obtained from the respective
block. The coherence score is calculated by cosine similarity for each adjacent “topic
vector”. Values close to zero indicate marginal relatedness between two adjacent blocks,

0.4

0.2

cosine similarity

0.0

0 5 10 15 20 25 30
Sentence

Figure 3: Similarity scores plotted for a document. The vertical lines indicate all possible segment
boundaries. The solid lines indicate segments chosen by the threshold criterion, when the
number of segments is not given in advance.

whereas values close to one denote a substantial connectivity. Next, the coherence
scores are plotted to trace the local minima (see Figure 3). These minima are utilized
as possible segmentation boundaries. But rather using the ¢, values itself, a depth score
dp is calculated for each minimum (cf. TextTiling, Hearst (1997)). In comparison to
TopicTiling, TextTiling calculates the depth score for each position and than searches
for maxima. The depth score measures the deepness of a minimum by looking at the
highest coherence scores on the left and on the right and is calculated using this formula
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(cf. depth score formula in the previous section):
dp =1/2% (hl(p) — cp + hr(p) — cp)

The functionality of the function hl (highest peak on the left side) and hr (highest
peak on the right side) is illustrated in Figure 4. The function hl(p) iterates to the

highest left (hl) highest right (hr)

coherence score
00 04 08 1.2
L L L L L L L

, chal m‘lnimu‘m : : :
1 2 3 4 5 6 7 8
sequence

Figure 4: lllustration of the highest left and the highest right peak according to a local minimum.

left as long as the score increases and returns the highest coherence score value. The
same is done, iterating in the other direction with the hr(p) function. According to the
illustration, hl(4) = 0.93, the score value at position 2, and hr(4) = 0.99 from the value
at position 7.

If the number of segments n is given as input, the n highest depth scores are used as
segment boundaries. Otherwise, a threshold is applied (cf. TextTiling). This threshold
predicts a segmentation if the depth score is larger than u — o/2, with u being the
mean and o being the standard variation calculated on the depth scores.

The algorithm runtime is linear in the number of possible segmentation points, i.e.
the number of sentences: for each segmentation point, the two adjacent blocks are
sampled separately and combined into the coherence score. This is the main differences
to the dynamic programming approaches for TS described in (Utiyama and Isahara,
2001; Misra et al., 2009).

4.3 Experiment: Word-based vs. Topic-based Methods

To show the impact of the topic-based representation introduced in Section 4.1, we
show results for TT and C99 using words and topic IDs, and for TopicTiling.

4.3.1 Experimental Setup

As laid out in Section 4.1, an LDA Model is estimated on a training dataset and used
for inference on the test set. To ensure that we do not use information from the test
set, we perform a 10-fold Cross Validation (CV) for all reported results. To reduce the
variance stemming from the random nature of sampling and inference, the results for
each fold are calculated 30 times using different LDA models.

While we aim at not using the same documents for training and testing by using a
folded CV scheme, it is not guaranteed that all testing data is unseen, since the same
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source sentences can find their way in several artificially crafted documents. We could
detect that all sentences from the training subset also occur in the test subset, but not
in the same combinations. This makes the Choi data set artificially easy for supervised
approaches. This problem, however, affects all evaluations on this dataset that use any
kind of training, be it LDA models in Misra et al. (2009) or tf-idf values in Fragkou
et al. (2004) and Galley et al. (2003).

The LDA model is trained with 7" = 100 topics, 500 sampling iterations and symmetric
hyperparameters as recommended by Griffiths and Steyvers (2004)(a = 50/N and
B = 0.01), using the JGibbsLda implementation of Phan and Nguyen (2007). Unseen
data is annotated with topic information, using LDA inference, sampling ¢ = 100
iterations. Inference is executed sentence-wise, since sentences form the minimal unit
of our segmentation algorithms and we cannot use document information in the test
setting. The performance of the algorithms is measured using Pr and WindowDiff
(WD) metrics, cf. Section 2. The C99 algorithm is initialized with a 11x11 ranking
mask, as recommended in Choi (2000). TT is configured according to Choi (2000) with
sequence length w = 20 and block size k = 6.

4.3.2 Results

The experiments are executed in two settings using the C99 and T'T implementations®:
using words (C99, TT) and using topics (C99LDA, TTLDA). TT and C99 use stemmed
words and filter out words using a stopword list. C99 additional removes words using
predefined regular expressions. In the case of topic-based variants, no stopword filtering
or stemming was deemed necessary. Table 1 shows the result of the different algorithms
with segments provided and unprovided.

Method Segments provided | Segments unprovided

Py, WD Py WD
C99 11.20 12.07 | 12.73 14.57
C99LDA 4.16 4.89 8.69 10.52
TT 44.48 47.11 | 49.51 66.16
TTLDA 1.85 2.10 | 16.41 21.40
TopicTiling 2.65 3.02 4.12 5.75
TopicTiling 1.50 1.72 3.24 4.58
(filtered)

Table 1: Results by segment length for TT with words and topics (TTLDA), C99 with words and
topics (C99LDA) and TopicTiling using all sentences and using only sentences with more
than 5 word tokens (filtered).

We note that W D values are always higher than the appropriate Py values. But
we also observe that these measures are highly correlated. First we discuss results
for the setting with number of segments provided (see column 2-3 of Table 1). A
significant improvement for C99 and TT can be achieved when using topic IDs. In case

3We use the implementations by Choi available at http://code.google.com/p/uima-text-segmenter/.
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of C99LDA, the error rate is at least halved and for TTLDA the error rate is reduced
by a factor of 20. The newly introduced algorithm TopicTiling as described above does
not improve over TTLDA. Analysis revealed that the Choi corpus includes also captions
and other “non-sentences” that are marked as sentences, which causes TopicTiling
to introduce false positive segments since the topic vectors are too sparse for these
short “non-sentences”. We therefore filter out “sentences” with less than 5 words (see
bottom line in Table 1). This leads to smaller errors values in comparison to the results
achieved with TTLDA. Without the number of segments given in advance (see columns
3-4 in Table 1), we again observe significantly better results, comparing topic-based
methods to word-based methods. But the error rates of TTLDA are unexpectedly
high. We discovered in data analysis that TTLDA estimates too many segments, as
the topic ID distributions between adjacent sentences within a segment are often too
diverse, especially in face of random fluctuations from the topic assignments. Estimating
the number of segments is better achieved using TopicTiling instead of TTLDA even
without any additional sentence filtering. As we aimed to find a simple algorithm that
can cope with the topic-based approach, we will use TopicTiling for the next series of
experiments.

5 Sweeping the Parameter Space of LDA

Aside from the main parameter, the number of topics or dimensions 7', surprisingly little
attention has been spent to understand the interactions of hyperparameters, the number
of sampling iterations in model estimation and interference, and the stability of topic
assignments across runs using different random seeds in the LDA topic model. While
progress in the field of topic modeling is mainly made by adjusting prior distributions
(e.g. Sato and Nakagawa, 2010; Wallach et al., 2009), or defining more complex mixture
models (Heinrich, 2011), it seems unclear whether improvements, reached on intrinsic
measures like perplexity or on application-based evaluations, are due to an improved
model structure or could originate from sub-optimal parameter settings or due to the
randomized nature of the sampling process.

These subsections address these issues by systematically sweeping the parameter
space and evaluating LDA parameters with respect to text segmentation results achieved
by TopicTiling.

5.1 Experimental Setup

Again, the Choi dataset (see Section 3.1) is used, applying a 10-fold CV as described in
Section 4.3.1. To assess the robustness of the TM, we sweep over varying configurations
of the LDA model, and plot the results using Box-and-Whiskers plots: the box indicates
the quartiles and the whiskers are maximally 1.5 times Interquartile Range (IQR) or
equal to the data point that has not a distance larger than 1.5 times IQR. The following
parameters are subject to our exploration:
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e T: Number of topics used in the LDA model. Common values vary between 50
and 500.

e « : Hyperparameter that regulates the sparseness topic-per-document distribution.
Lower values result in documents being represented by fewer topics (Heinrich,
2004). Recommended: o = 50/T (Griffiths and Steyvers, 2004)

e (3 : Reducing 3 increases the sparsity of topics, by assigning fewer terms to each
topic, which is correlated to how related words need to be, to be assigned to a
topic (Heinrich, 2004). Recommended: § = {0.1,0.01} (Griffiths and Steyvers,
2004; Misra et al., 2009)

e m Model estimation iterations. Recommended / common settings: m = 500—5000
(Griffiths and Steyvers, 2004; Wallach et al., 2009; Phan and Nguyen, 2007)

e i Inference iterations. Recommended / common settings: 100 (Phan and Nguyen,
2007)

e d Mode of topic assignments. At each inference iteration step, a topic ID is
assigned to each word within a document (represented as a sentence in our
application). With this option (d = true), we count these topic assignments
for each single word in each iteration. After all ¢ inference iterations, the most
frequent topic ID is chosen for each word in a document.

e r Number of inference runs: We repeat the inference r times and assign the
most frequently assigned topic per word at the final inference iteration for the
segmentation algorithm. High r values might reduce fluctuations due to the
randomized process and lead to a more stable word-to-topic assignment.

e w Window: We introduce a so-called window parameter that specifies the number
of sentences to the left and to the right of position p that define two blocks:
Sp—w; Sp—wt1,- -, Sp AN Spy1, ... Sprw, Sprw -

All introduced parameters parameterize the TM. Other works stabilize topic assignments
by averaging assignments probed from every 50-100th iteration. Examining this effect
more closely, we look at the mechanisms of using several inference runs r to find the
correct segments and the mode of topic assignments d. Further, we did not find previous
work that systematically varies TM parameters in combination with measures other
than perplexity.

5.2 Parameter Sweeping Evaluation
5.2.1 Number of Topics T

To provide a first impression of the data, a 10-fold CV is calculated and the segmentation
results are visualized in Figure 5. Each box plot is generated from the Py values of 700
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P_kvalue

> S O &
R S S

Topic Number

Figure 5: Box plots for different number of topics T'. Each box plot is generated from the average
Py, value of 700 documents, o = 50/7", # = 0.1, m = 1000, 7 = 100,r = 1.

documents. As expected, there is a continuous range of topic numbers, namely between
50 and 150 topics, where we observe the lowest P, values. Using too many topics
leads to overfitting of the data and too few topics result in too general distinctions to
grasp text segment information. This general picture is in line with other studies that
determine an optimum for T, (cf. Griffiths and Steyvers, 2004), which is specific to
the application and the data set.

5.2.2 Estimation and Inference iterations

The next step examines the robustness of the model estimation iterations m needed
to achieve stable results. 600 documents are used for training an LDA model and the
remaining 100 documents are segmented using this model. This evaluation is performed
using 100 topics (as this number leads to stable results according to Figure 5) and
performed using 20 and 250 topics. To assess stability across different model estimation
runs, we trained 30 LDA models using different random seeds. Each box plot in Figures
6 is generated from 30 mean values, calculated from the Pj values of the 100 documents.
The variation indicates the score variance for the 30 different models.

Number of topics: 20 Number of topics: 100 Number of topics: 250

P_k value

EEEEE

O 5 9 9O O S O 5 9 90 O S
$ FSS IS S S8 S RIS S8 S

number of sample iterations number of sample iterations number of sample iterations

Figure 6: Box plots with different model estimation iterations m, with 7=20,100,250 (from left to
right), o = 50/T, 8 = 0.1, ¢ = 100, » = 1. Each box plot is generated from 30 mean
values calculated from 100 documents.
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Using 100 topics (see Figure 6), the burn-in phase starts with 810 iterations and
the mean P values stabilize after 40 iterations. But looking at the inset for large m
values, significant variations between the different models can be observed: note that
the Py error rates are between 0.021 - 0.037. As expected using 20 and 250 topics
leads to worse results as with 100 topics. Looking at the plot with 250 topics, a robust
range for the error rates can be found between 20 and 100 sample iterations. With
more iterations m, the results get both worse and unstable: as the 'natural’ topics of
the collection have to be split in too many topics in the model, perplexity reduction
that drives the estimation process leads to random fluctuations, which the TopicTiling
algorithm is sensitive to. Manual inspection of models for T = 250 revealed that in
fact many topics do not stay stable across estimation iterations. In the next step we
sweep over several inference iterations ¢ using 100 topics. Starting from 5 iterations,
error rates do not change much, see Figure 7a. But there is still substantial variance,
between about 0.019 - 0.038 for inference on sentence units.

P_kvalue

P_k value
°
S
8
/
/
/
/
//
/
fran’
P_kvalue
°
S
8
f

0.01 0.01 " 0.01

L T &

number of inference iterations number of repeated inferences number of inference iterations

(a) number of inferences ¢ (b) repeated inference runs r (c) mode method d = true

Figure 7: Figure a) shows the box plots for different inference iterations 4, Figure b) shows the box
plots for several inference runs r and Figure c) presents the usage of the mode method
d = true. All remaining parameters are set to the default values.

5.2.3 Repeat the inference r times

To decrease this variance, we assign the topic not only from a singe inference run, but
repeat the inference calculations several times, denoted by the parameter r. Then the
frequency of assigned topic IDs per token is counted across the r single runs, and we
assign the most frequent topic ID (frequency ties are broken randomly). The box plot
for several evaluated values of r is shown in Figure 7b. This log-scaled plot shows that
both variance and Py error rate can be substantially decreased. Already for r = 3, we
observe a significant improvement in comparison to the default setting of r = 1 and
with increasing r values, the error rates are reduced even more: for r» = 20, variance and
error rates are cut in less than half of their original values using this simple operation.
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5.2.4 Mode of topic assignment d

In the previous experiment, we use the topic IDs that have been assigned most frequently
at the last inference iteration step. Now, we examine something similar, but for all ¢
inference steps of a single inference run: we select the mode of topic ID assignments for
each word across all inference steps. The impact of this method on error and variance
is illustrated in Figure 7c. Using a single inference iteration, the topic IDs are almost
assigned randomly. After 20 inference iterations Py values below 0.02 are achieved.
Using further iterations, the decrease of the error rate is only marginal. In comparison
to the repeated inference method, the additional computational costs of this method
are much lower as the inference iterations have to be carried out anyway in the default
application setting. Note that this is different from using the overall topic distribution
as determined by the inference step, since this winner-takes-it-all approach reduces
noise from random fluctuations. As this parameter stabilizes the topic IDs at low
computational costs, we recommend using this option in all setups where subsequent
steps rely on single topic assignments.

5.2.5 Hyperparameters o and 3

In many previous works, hyperparameter settings @« = 50/7 and 8 = {0.1,0.01}
are commonly used. In the next series of experiments we investigate how different
parameters of these both parameters can change the TS task. Analyzing the « values,
shown in Figure 8, we can see that the recommended values for 7' = 100, o = 0.5 lead
to sub-optimal settings, and an error rate reduction of about 40% can be achieved by
setting o = 0.1. Regarding values of 3, we find that Py rates and their variance are

0.04 4

o
o
@

P_k value

o
9
N

W

0.01+

S o & L > > &

AN > 1 $ > 1 ¢
& S o o © & e T o o

alpha values beta values
Figure 8: Box plot for several alpha (left) and beta (right) values with m = 500, ¢ = 100, T = 100,
r=1and 8 =0.1 (left image) and o = 0.5 (right image).

relatively stable between the recommended settings of 0.1 and 0.01. Values larger than
0.1 lead to much worse performance. Regarding variance, no patterns within the stable
range emerge, see Figure 8.
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5.2.6 Window Parameter w

The optimal window parameter has to be specified according to the documents that
are segmented.

- default values
alpha=0.01
. =20
d=true

- combined

P_k values

(a) window parameter (b) Error distributions

Figure 9: Figure a) represents the box plots for varying window parameter w with m = 500, ¢ = 100,
T =100, a =50/T, B8 = 0.1, r = 1. The Density of the error distribution for the system
according to Table 2 is shown in Figure b).

Using the Choi corpus we observe that the window parameter could be increased
to a size of 3 before the error rate increases. Since the segment sizes vary from 3-11
sentences we expect a decline for w > 3, which is confirmed by the results shown in
Figure 9a.

5.3 Putting it all together

Until this point, we have examined different parameters with respect to stability and
error rates one at the time. Now, we combine what we have learned from this and strive
at optimal system performance. Table 2 shows P error rates for the different systems.
At this, we fixed the following parameters: T' = 100, m = 500, ¢ = 100, 8 = 0.1. For the
computations we use 600 documents for the LDA model estimation, apply TopicTiling
to the 100 remaining documents and repeat this 30 times with different random seeds.

System Py, error o? var.
red. red.
default 0.0302 0.00% 2.02e-5 0.00%
a=0.1 0.0183 | 39.53% | 1.22e-5 | 39.77%
r = 20 0.0127 | 57.86% | 4.65e-6 | 76.97%
d = true 0.0137 | 54.62% | 3.99e-6 | 80.21%
combined | 0.0141 | 53.45% | 9.17e-6 | 54.55%

Table 2: Comparison of single parameter optimizations, and combined system. P averages and
variance are computed over 30 runs, together with reductions relative to the default setting.
Default: a = 0.5, r =1, d = false. combined: a = 0.1, r = 20, d = true
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‘We observe massive improvements for optimized single parameters. The a-tuning
results in an error rate reduction of 39.77% in comparison to the default configurations.
Using r = 20, the error rate is cut in less than half its original value. Also for the mode
mechanism (d = true) the error rate is halved but slightly worse than when using the
repeated inference. Regarding the practice to assign the most frequent topic ID selected
from every 50-100th iteration, we conclude that — at least in our application — a much
smaller number of iterations suffices when taking assignments from all iterations. Here,
allowing long inference periods to account for possible topic drifts seems not required.
Using combined optimized parameters does not result to additional error decreases. We
attribute the slight decline of the combined method in both the error rate Pr and the
variance to complex parameter interactions that shall be examined in further work. In
Figure 9b, we visualize these results in a density plot. It becomes clear that repeated
inference leads to slightly better and more robust performance (higher peak) than
the mode method. We attribute the difference to situations, where there are several
highly probable topics in our sampling units, and by chance the same one is picked for
adjacent sentences that belong to different segments, resulting in failure to recognize
the segmentation point. However, since the differences are miniscule, only using the
mode method might be more suitable for practical purposes since its computational
cost is lower.

6 Comparison to other Algorithms

In a last series of experiments, we compare the performance of TopicTiling to other
TS algorithms on several datasets. All LDA models for these series were created using
T =100, o = 50/T, 8 = 0.01, m = 500, ¢ = 100.

6.1 Evaluation on the Choi Dataset

The evaluation uses the 10-fold CV setting as described in Section 4.3.1. For this
dataset, no word filtering based on parts of speech was deemed necessary. The results
for different parameter settings are listed in Table 3. Using only the window parameter

seg. size 3-5 6-8 9-11 3-11

P, \WD|P, |WD|P, |\WD|P, |WD
d=false,w=1| 2.71| 3.00| 3.64| 4.14| 5.90| 7.05| 3.81| 4.32
d=true,w=1 | 3.71| 4.16| 1.97| 2.23| 2.42| 2.92| 2.00| 2.30
d=false,w=2| 1.46| 1.51| 1.05| 1.20| 1.13| 1.31| 1.00| 1.15
d=true,w=2|1.24|1.27|0.76|0.85|0.56|0.71|0.95|1.08
d=false,w=>5| 2.78| 3.04| 1.71| 2.11| 4.47| 4.76| 3.80| 4.46
d=true,w=>5 | 2.34| 2.65| 1.17| 1.35| 4.39| 4.56| 3.20| 3.54

Table 3: Results based on the Choi dataset with varying parameters.

without the mode (d = false), the results demonstrate a significant error reduction
with a window of 2 sentences. An impairment is observed when using a too large
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window (w=>5) (cmp. Section 5.2.6). We can also see that the mode method improves
the results when using a window of 1, except for the documents having small segments
ranging from 3-5 sentences. The lowest error rates are obtained with the mode method
and a window size of 2. As described in Section 4.2.3, the algorithm is also able to
automatically estimate the number of segments using a threshold value (see Table 4).

35 6-8 9-11 311
P, WD |P, |WD |P, WD |P, |WD
d=Talse,w=1| 2.39] 2.45| 4.09| 5.85] 9.20|15.44| 4.87| 6.74
d=true,w=1| 3.54] 3.59| 1.08| 2.57| 3.01] 5.15| 2.04| 2.62
d=Talse,w=2|15.53|15.55| 0.79| 0.88| 1.98] 3.23| 1.03| 1.36
d=true,w=2|14.65|14.69] 0.62| 0.62|0.67| 0.88| 0.66| 0.78
d=Talse,w=>5|21.47|21.62|16.30|16.30| 6.01] 6.14|14.31|14.65
d=true,w=>5 |21.57|21.67|17.24|17.24| 6.44] 6.44|15.51|15.74

Table 4: Results on the Choi dataset without providing the number of segments

As can be seen the optimized parameters leads to worse results for segments of length
3-5. This is caused by the smoothing effect of the window parameter which leads to
less detected boundaries. But the results of the other documents are comparable to the
ones shown in Table 3. Some results (see segment length 6-8 and 3-11 with parameter
d=true and w=2) are even better than the results with segments provided which is
attributed to the remaining variance in the probabilistic inference computations. The
threshold method can outperform the setup with a given number of segments, since
not recognizing a segment produces less error in the measures than predicting a wrong
segment. Table 5 presents a comparison of the performance of TopicTiling compared to
different algorithms in the literature.

Method 3-5 [6-8 |9-11(3-11
TT (Choi, 2000) 44| 43 48 46
C99 (Choi, 2000) 2 9] 9 12
U00 (Utiyama and Isahara, 2001) 9 7 5/ 10
LCseg (Galley et al., 2003) 8.69

F04 (Fragkou et al., 2004) 5.5] 3.0 1.3] 7.0
MO09 (Misra et al., 2009) 22 23| 41| 23
TopicTiling (d=true, w=2) 1.24]0.76|0.56|0.95

Table 5: Lowest Py, values for the Choi data set for various algorithms in the literature with provided
segment number.

It is obvious that the results are far better than current state-of-the-art results. Using
a one-sample t-test with aw = 0.05 we can state significant improvements in comparison
to all other algorithms. With error rates below the 1% range, TS on the Choi dataset
can be considered as solved. However, since the dataset is comparatively easy, and
test data has probably been seen during model training (cf. Section 4.3), we assess the
performance of our algorithm on a second dataset.
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6.2 Evaluation on Galley’s WSJ Dataset

The evaluation on Galley’s WSJ dataset is performed, using a topic model created from
the WSJ collection of the PTB. The dataset for model estimation consists of 2499
WSJ articles, and is the same dataset Galley used as a source corpus. The evaluation
generally leads to higher error rates than in the evaluation for the Choi dataset, as
shown in Table 6.

Parameters All words Filtered

P, | WD P, | WD
d=false,w=1 37.31 43.20 37.01 43.26
d=true,w=1 35.31 41.27 33.52 39.86
d=false,w=2 22.76 28.69 21.35 27.28
d=true,w=2 21.79 27.35 19.75 25.42
d=false,w=5 14.29 19.89 12.90 18.87
d=true,w=>5 13.59 19.61 11.89 17.41
d=false,w=10 14.08 22.60 14.09 22.22
d=true,w=10 13.61 21.00 13.48 20.59

Table 6: Results for Galley's WSJ dataset using different parameters with using unfiltered documents
(column 2-3) and with filtered documents using only verbs, nouns (proper and common)
and adjectives (column 3-4).

This table shows results of the WSJ data when using all words of the documents
for training a topic model and assigning topic IDs to new documents. It also shows
results using only nouns (proper and common), verbs and adjectives®. Considering the
unfiltered results, we observe that performance benefits from using the mode assigned
topic ID and a window larger than one. In case of the WSJ dataset, we find the optimal
setting for the window parameter to be 5. As the test documents contain whole articles,
which consist of at least 4 sentences, a larger window is advantageous here, yet a value
of 10 is too large. Filtering the documents for parts of speech leads to ~ 1% absolute
error rate reduction, as can be seen in the last two columns of Table 6. Again, we
observe that the mode assignment always leads to better results, gaining at least 0.6%.
Especially the window size of 5 helps TopicTiling to decrease the error rate to a third
of the value observed with d=false and w=1. Table 7 shows the results we achieve with
the threshold-based estimation of segment boundaries for the unfiltered and filtered
data.

In contrast to the results obtained with the Choi dataset (see Table 4) no decline
occurs, when using the threshold approach in combination with the window method.
We attribute this due to the small segments and documents in the Choi dataset. Part-of-
speech-based filtering is always advantageous over using all words here. Also a decrease
of both error rates, P, and WD, is detected when using the mode and using a larger
window size. An improvement is even gained for a window of size 10. This can be
attributed to the fact that using small window sizes, too many boundaries are detected.

“as identified by the Treetagger http://code.google.com/p/tt4j/
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Parameters All words Filtered

Py [ WD Py [ WD
d=false,w=1 53.07 72.78 52.63 72.66
d=true,w=1 53.42 74.12 51.84 72.57
d=false,w=2 46.68 65.01 44.81 63.09
d=true,w=2 46.08 64.41 43.54 61.18
d=false,w=>5 30.68 43.73 28.31 40.36
d=true,w=5 28.29 38.90 26.96 36.98
d=false,w=10 19.93 32.98 18.29 29.29
d=true,w=10 17.50 | 26.36 | 16.32 | 24.75

Table 7: Table with results the WSJ dataset without providing the number of segments. Columns
2 and 3 show the results when using all words of the documents. Columns 4 and 5 show
the results with part-of-speech-based filtering.

As the window approach smooths the similarity scores, this leads to less segmentation
boundaries and improved results.

Table 8 presents the results of other algorithms, as published in Galley et al. (2003),
in comparison to TopicTiling. Again, TopicTiling improves over the state of the art.

Method I WD

C99 Choi (2000) 19.61 | 26.42
U00 Utiyama and Isahara (2001) 15.18 21.54
LCseg Galley et al. (2003) 12.21 18.25
TopicTiling (d=true,w=5) 11.89 | 17.41

Table 8: List of results based on the WSJ dataset. Values for C99, U00 and LCseg as stated in
Galley et al. (2003).

The improvements with respect to LCseg are significant using a one-sample t-test with
a = 0.05.

7 Conclusion

In this article we showed that replacing words in documents by topic IDs, as assigned by
the Bayesian inference method of LDA, leads to better results in the Text Segmentation
task. This technique is applied in the TT and C99 algorithms. Additionally, we
introduced a simplified algorithm based on TT called TopicTiling that outperforms the
topic-based versions of TT and C99. In contrast to other TS algorithms using topic
models (Misra et al. (2009); Sun et al. (2008)), the runtime of TopicTiling is linear
in the number of sentences. This makes TopicTiling a fast algorithm with complexity
of O(n) (n denoting the number of sentences) as opposed to O(n?) of the dynamic
programming approach as discussed in Fragkou et al. (2004).

During sweeping the parameter space of LDA and TopicTiling (see Section 5) we
show that repeating the Bayesian inference several times and using the most frequently
assigned topic IDs in the last iteration not only reduces the variance, but also improves
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overall results. We obtain almost equal performance, when selecting the most frequent
topic ID (mode) assigned per word across each inference step. Although the error rates
are slightly higher in our experiments, this method is preferred, as the computational
cost is much lower than repeating the inference step several times. This method is
not only applicable to Text Segmentation, but in all applications where performance
crucially depends on stable topic ID assignments per token. Using the Choi dataset
and the Galleys WSJ dataset we can show significant improved results in comparison
to actual state-of-the-art algorithms.

For further work, we would like to devise a method to detect the optimal setting
for the window parameter w automatically, especially in a setting where the number
of target segments is not known in advance. This is an issue that is shared with the
original TextTiling algorithm. Moreover, we will extend the usage of our algorithm to
more realistic corpora.

More interesting is the perspective on possible applications. Equipped with a highly
reliable segmentation mechanism, we would like to apply text segmentation as a writing
aid to assist authors with feasible segmentation boundaries. This could be applied in an
interactive manner by giving feedback about the coherence during the writing process.
As the author is responsible for accepting such segmentation, the need for automatically
determining the number of segments would be dispensable, and subject to tuning to
the author’s preferences.

Another direction of research that is more generic for approaches based on topic
models is the question of how to automatically select appropriate data for topic model
estimation, given only a small target collection. Since topic model estimation is
computationally expensive, and topic models for generic collections (think Wikipedia)
might not suit the needs of a specialized domain (such as with the WSJ data), it is a
promising direction to look at target-domain-driven automatic corpus synthesis.
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