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Word and Sentence Tokenization with Hidden Markov Models

We present a novel method (“waste”) for the segmentation of text
into tokens and sentences. Our approach makes use of a Hidden Markov
Model for the detection of segment boundaries. Model parameters can be
estimated from pre-segmented text which is widely available in the form of
treebanks or aligned multi-lingual corpora. We formally define the waste
boundary detection model and evaluate the system’s performance on corpora
from various languages as well as a small corpus of computer-mediated
communication.

1 Introduction

Detecting token and sentence boundaries is an important preprocessing step in natural
language processing applications since most of these operate either on the level of words
(e.g. syllabification, morphological analysis) or sentences (e.g. part-of-speech tagging,
parsing, machine translation). The primary challenges of the tokenization task stem
from the ambiguity of certain characters in alphabetic and from the absence of explicitly
marked word boundaries in symbolic writing systems. The following German example
illustrates different uses of the dot character1 to terminate an abbreviation, an ordinal
number, or an entire sentence.

(1) Am
On

24.1.1806
24/1/1806

feierte
celebrated

E.
E.

T.
T.

A.
A.

Hoffmann
Hoffmann

seinen
his

30.
30th

Geburtstag.
birthday.

‘On 24/1/1806, E. T. A. Hoffmann celebrated his 30th birthday.’

Recently, the advent of instant written communications over the internet and its
increasing share in people’s daily communication behavior has posed new challenges for
existing approaches to language processing: computer-mediated communication (CMC)
is characterized by a creative use of language and often substantial deviations from
orthographic standards. For the task of text segmentation, this means dealing with
unconventional uses of punctuation and letter-case, as well as genre-specific elements
such as emoticons and inflective forms (e.g. “*grins*”). CMC sub-genres may differ
significantly in their degree of deviation from orthographic norms. Moderated discussions
from the university context are almost standard-compliant, while some passages of
casual chat consist exclusively of metalinguistic items.

(2) schade,
shame,

dass
that

wien
Vienna

so
so

weit
far

weg
away

ist
is

d.h.
i.e.

ich
I

hätt´´s
havesubj-it

sogar
even

überlegt
considered

‘It’s a shame that Vienna is so far away; I would even have considered it.’
1“.”, ASCII/Unicode codepoint 0x2E, also known as “full stop” or “period”.
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In addition, CMC exhibits many structural similarities to spoken language. It is in
dialogue form, contains anacolutha and self-corrections, and is discontinuous in the
sense that utterances may be interrupted and continued at some later point in the
conversation. Altogether, these phenomena complicate automatic text segmentation
considerably.

In this paper, we present a novel method for the segmentation of text into tokens and
sentences. Our system uses a Hidden Markov Model (HMM) to estimate the placement
of segment boundaries at runtime, and we refer to it in the sequel as “waste”.2 The
remainder of this work is organized as follows: first, we describe the tasks of tokenization
and EOS detection and summarize some relevant previous work on these topics. Section
2 contains a description of our approach, including a formal definition of the underlying
HMM. In Section 3, we present an empirical evaluation of the waste system with
respect to conventional corpora from five different European languages as well as a
small corpus of CMC text, comparing results to those achieved by a state-of-the-art
tokenizer.

1.1 Task Description

Tokenization and EOS detection are often treated as separate text processing stages.
First, the input is segmented into atomic units or word-like tokens. Often, this
segmentation occurs on whitespace, but punctuation must be considered as well, which
is often not introduced by whitespace, as for example in the case of the commas in
Examples (1) and (2). Moreover, there are tokens which may contain internal whitespace,
such as cardinal numbers in German, in which a single space character may be used
as thousands separator. The concept of a token is vague and may even depend on the
client application: New York might be considered a single token for purposes of named
entity recognition, but two tokens for purposes of syntactic parsing.

In the second stage, sentence boundaries are marked within the sequence of word-like
tokens. There is a set of punctuation characters which typically introduce sentence
boundaries: the “usual suspects” for sentence-final punctuation characters include the
question mark (“?”), exclamation point (“!”), ellipsis (“. . .”), colon (“:”), semicolon
(“;”), and of course the full stop (“.”). Unfortunately, any of these items can mislead
a simple rule-based sentence splitting procedure. Apart from the different uses of the
dot character illustrated in Ex. (1), all of these items can occur sentence-internally
(e.g. in direct quotations like “‘Stop!’ he shouted.”), or even token-internally in the case
of complex tokens such as URLs. Another major difficulty for EOS detection arises
from sentence boundaries which are not explicitly marked by punctuation, as e.g. for
newspaper headlines.

2An acronym for “Word and Sentence Token Estimator”, and occasionally for “Weird And Strange
Tokenization Errors” as well.
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1.2 Existing Approaches

Many different approaches to tokenization and EOS detection have been proposed in
the literature. He and Kayaalp (2006) give an interesting overview of the characteristics
and performance of 13 tokenizers on biomedical text containing challenging tokens like
DNA sequences, arithmetical expressions, URLs, and abbreviations. Their evaluation
focuses on the treatment of particular phenomena rather than general scalar quantities
such as precision and recall, so a clear “winner” cannot be determined. While He and
Kayaalp (2006) focus on existing and freely available tokenizer implementations, we
briefly present here the theoretical characteristics of some related approaches. All of
these works have in common that they focus on the disambiguation of the dot character
as the most likely source of difficulties for the text segmentation task.

Modes of evaluation differ for the various approaches, which makes direct comparisons
difficult. Results are usually reported in terms of error rate or accuracy, often focusing
on the performance of the disambiguation of the period. In this context, Palmer and
Hearst (1997) define a lower bound for EOS detection as “the percentage of possible
sentence-ending punctuation marks [. . .] that indeed denote sentence boundaries.” The
Brown Corpus (Francis and Kucera, 1982) and the Wall Street Journal (WSJ) subset
of the Penn Treebank (Marcus et al., 1993) are the most commonly used test corpora,
relying on the assumption that the manual assignment of a part-of-speech (PoS) tag to
a token requires prior manual segmentation of the text.

Riley (1989) trains a decision tree with features including word length, letter-case and
probability-at-EOS on pre-segmented text. He uses the 25 million word AP News text
database for training and reports 99.8% accuracy for the task of identifying sentence
boundaries introduced by a full stop in the Brown corpus. Grefenstette and Tapanainen
(1994) use a set of regular rules and some lexica to detect occurrences of the period
which are not EOS markers. They exhibit rules for the treatment of numbers and
abbreviations and report a rate of 99.07% correctly recognized sentence boundaries
for their rule-based system on the Brown corpus. Palmer and Hearst (1997) present a
system which makes use of the possible PoS-tags of the words surrounding potential
EOS markers to assist in the disambiguation task. Two different kinds of statistical
models (neural networks and decision trees) are trained from manually PoS-tagged
text and evaluated on the WSJ corpus. The lowest reported error rates are 1.5% for a
neural network and 1.0% for a decision tree. Similar results are achieved for French
and German.

Mikheev (2000) extends the approach of Palmer and Hearst (1997) by incorporating
the task of EOS detection into the process of PoS tagging, and thereby allowing the
disambiguated PoS tags of words in the immediate vicinity of a potential sentence
boundary to influence decisions about boundary placement. He reports error rates of
0.2% and 0.31% for EOS detection on the Brown and the WSJ corpus, respectively.
Mikheev’s treatment also gives the related task of abbreviation detection much more
attention than previous work had. Making use of the internal structure of abbreviation
candidates, together with the surroundings of clear abbreviations and a list of frequent
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abbreviations, error rates of 1.2% and 0.8% are reported for Brown and WSJ corpus,
respectively.

While the aforementioned techniques use pre-segmented or even pre-tagged text for
training model parameters, Schmid (2000) proposes an approach which can use raw,
unsegmented text for training. He uses heuristically identified “unambiguous” instances
of abbreviations and ordinal numbers to estimate probabilities for the disambiguation of
the dot character, reporting an EOS detection accuracy of 99.79%. More recently, Kiss
and Strunk (2006) presented another unsupervised approach to the tokenization problem:
the Punkt system. Its underlying assumption is that abbreviations may be regarded
as collocations between the abbreviated material and the following dot character.
Significant collocations are detected within a training stage using log-likelihood ratios.
While the detection of abbreviations through the collocation assumption involves type-
wise decisions, a number of heuristics involving its immediate surroundings may cause
an abbreviation candidate to be reclassified on the token level. Similar techniques are
applied to possible ellipses and ordinal numbers, and evaluation is carried out for a
number of different languages. Results are reported for both EOS- and abbreviation-
detection in terms of precision, recall, error rate, and unweighted F score. Results for
EOS detection range from F = 98.83% for Estonian to F = 99.81% for German, with
a mean of F = 99.38% over all tested languages; and for abbreviation detection from
F = 77.80% for Swedish to F = 98.68% for English with a mean of F = 90.93% over all
languages.
A sentence- and token-splitting framework closely related to the current approach

is presented by Tomanek et al. (2007), tailored to the domain of biomedical text.
Such text contains many complex tokens such as chemical terms, protein names, or
chromosome locations which make it difficult to tokenize. Tomanek et al. (2007)
propose a supervised approach using a pair of conditional random field classifiers to
disambiguate sentence- and token-boundaries in whitespace-separated text. In contrast
to the standard approach, EOS detection takes place first, followed by token-boundary
detection. The classifiers are trained on pre-segmented data, and employ both lexical
and contextual features such as item text, item length, letter-case, and whitespace
adjacency. Accuracies of 99.8% and 96.7% are reported for the tasks of sentence- and
token-splitting, respectively.

2 The WASTE Tokenization System

In this section, we present our approach to token- and sentence-boundary detection using
a Hidden Markov Model to simultaneously detect both word and sentence boundaries
in a stream of candidate word-like segments returned by a low-level scanner. Section 2.1
briefly describes some requirements on the low-level scanner, while Section 2.2 is
dedicated to the formal definition of the HMM itself.
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2.1 Scanner

The scanner we employed in the current experiments uses Unicode3 character classes in
a simple rule-based framework to split raw corpus text on whitespace and punctuation.
The resulting pre-tokenization is “prolix” in the sense that many scan-segment bound-
aries do not in fact correspond to actual word or sentence boundaries. In the current
framework, only scan-segment boundaries can be promoted to full-fledged token or
sentence boundaries, so the scanner output must contain at least these.4 In particular,
unlike most other tokenization frameworks, the scanner also returns whitespace-only
pseudo-tokens, since the presence or absence of whitespace can constitute useful infor-
mation regarding the proper placement of token and sentence boundaries. In Ex. (3)
for instance, whitespace is crucial for the correct classification of the apostrophes.

(3) Consider Bridges’ poem’s “And peace was ’twixt them.”

2.2 HMM Boundary Detector

Given a prolix segmentation as returned by the scanner, the task of tokenization can be
reduced to one of classification: we must determine for each scanner segment whether
or not it is a word-initial segment, and if so, whether or not it is also a sentence-initial
segment. To accomplish this, we make use of a Hidden Markov Model which encodes the
boundary classes as hidden state components, in a manner similar to that employed by
HMM-based chunkers (Church, 1988; Skut and Brants, 1998). In order to minimize the
number of model parameters and thus ameliorate sparse data problems, our framework
maps each incoming scanner segment to a small set of salient properties such as word
length and typographical class in terms of which the underlying language model is then
defined.

2.2.1 Segment Features

Formally, our model is defined in terms of a finite set of segment features. In the
experiments described here, we use the observable features class, case, length, stop,
abbr, and blanks together with the hidden features bow, bos, and eos to specify
the language model. We treat each feature f as a function from candidate tokens
(scanner segments) to a characteristic finite set of possible values rng(f). The individual
features and their possible values are described in more detail below, and summarized
in Table 1.

• [class] represents the typographical class of the segment. Possible values are
given in Table 2.

3Unicode Consortium (2012), http://www.unicode.org
4In terms of the evaluation measures described in Section 3.2, the pre-tokenization returned by
the scanner places a strict upper bound on the recall of the waste system as a whole, while its
precision can only be improved by the subsequent procedure.
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• [case] represents the letter-case of the segment. Possible values are ‘cap’ for
segments in all-capitals, ‘up’ for segments with an initial capital letter, or ‘lo’ for
all other segments.

• [length] represents the length of the segment. Possible values are ‘1’ for single-
character segments, ‘≤3’ for segments of length 2 or 3, ‘≤5’ for segments of length
4 or 5, or ‘>5’ for longer segments.

• [stop] contains the lower-cased text of the segment just in case the segment
is a known stopword; i.e. only in conjunction with [class : stop]. We used
the appropriate language-specific stopwords distributed with the Python NLTK
package whenever available, and otherwise an empty stopword list.

• [blanks] is a binary feature indicating whether or not the segment is separated
from its predecessor by whitespace.

• [abbr] is a binary feature indicating whether or not the segment represents a
known abbreviation, as determined by membership in a user-specified language-
specific abbreviation lexicon. Since no abbreviation lexica were used for the
current experiments, this feature was vacuous and will be omitted henceforth.5

• [bow] is a hidden binary feature indicating whether or not the segment is to be
considered token-initial.

• [bos] is a hidden binary feature indicating whether or not the segment is to be
considered sentence-initial.

• [eos] is a hidden binary feature indicating whether or not the segment is to be
considered sentence-final. Sentence boundaries are only predicted by the final
system if a [+eos] segment is immediately followed by a [+bos] segment.

Among these, the feature stop is context-independent in the sense that we do not
allow it to contribute to the boundary detection HMM’s transition probabilities. We
call all other features context-dependent or contextual. An example of how the features
described above can be used to define sentence- and token-level segmentations is given
in Figure 1.

2.2.2 Language Model

Formally, let Fsurf = {class,case, length, stop,blanks} represent the set of surface
features, let Fnoctx = {stop} represent the set of context-independent features, and let
Fhide = {bow,bos, eos} represent the set of hidden features, and for any finite set of
features F = {f1, f2, . . . , fn} over objects from a set S, let

∧
F be a composite feature

5Preliminary experiments showed no significant advantage for models using non-empty abbreviation
lexica on any of the corpora we tested. Nonetheless, the results reported by Grefenstette and
Tapanainen (1994); Mikheev (2000); and Tomanek et al. (2007) suggest that in some cases at
least, reference to such a lexicon can be useful for the tokenization task.
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f rng(f) Hidden? Description
class {stop, alpha, num, . . .} no typographical class
case {lo, up, cap} no letter-case
length {1,≤3,≤5, >5} no segment length
stop finite set SL no stopword text
blanks {+,−} no leading whitespace?
abbr {+,−} no known abbreviation?
bow {+,−} yes beginning-of-word?
bos {+,−} yes beginning-of-sentence?
eos {+,−} yes end-of-sentence?

Table 1: Features used by the waste tokenizer model.

Class Description
stop language-specific stopwords
roman segments which may represent roman numerals
alpha segments containing only alphabetic characters

num segments containing only numeric characters
$. period
$, comma
$: colon
$; semicolon
$? sentence-final punctuation (‘?’, ‘!’, or ‘. . .’)
$( left bracket (‘(’, ‘[’, or ‘{’)
$) right bracket (‘)’, ‘]’, or ‘}’)
$- minus, hyphen, en- or em-dash
$+ plus
$/ backward or forward slash
$" double quotation marks
$’ single quotation mark or apostrophe
$˜ other punctuation marks, superscripts, vulgar fractions, etc.

other all remaining segments

Table 2: Typographical classes used by the waste tokenizer model.
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function representing the conjunction over all individual features in F as an n-tuple:∧
F : S → rng(f1)× rng(f2)× . . .× rng(fn) (1)

: x 7→ 〈f1(x), f2(x), . . . , fn(x)〉

Then, the boundary detection HMM can be defined in the usual way (Rabiner, 1989;
Manning and Schütze, 1999) as the 5-tuple D = 〈Q,O,Π, A,B〉, where:

1. Q = rng
(∧

(Fhide ∪ Fsurf\Fnoctx)
)
is a finite set of model states, where each state

q ∈ Q is represented by a 7-tuple of values for the contextual features class,
case, length, blanks, bow, bos, and eos;

2. O = rng
(∧

Fsurf
)
is a finite set of possible observations, where each observation

is represented by a 5-tuple of values for the surface features class, case, length,
blanks, and stop;

3. Π : Q → [0, 1] : q 7→ p(Q1 = q) is a probability distribution over Q representing
the model’s initial state probabilities;

4. A : Qk → [0, 1] : 〈q1, . . . , qk〉 7→ p(Qi = qk|Qi−k+1 = q1, . . . , Qi−1 = qk−1) is a
conditional probability distribution over state k-grams representing the model’s
state transition probabilities; and

5. B : Q × O → [0, 1] : 〈q, o〉 7→ p(O = o|Q = q) is a probability distribution over
observations conditioned on states representing the model’s emission probabilities.

Using the shorthand notation wi+j
i for the string wiwi+1 . . . wi+j , and writing fO(w)

for the observable features
[∧

Fsurf
]
(w) of a given segment w, the model D computes

the probability of a segment sequence wn
1 as the sum of path probabilities over all

possible generating state sequences:

p(W = wn
1 ) =

∑
qn

1 ∈Q
n

p(W = wn
1 , Q = qn

1 ) (2)

Assuming suitable boundary handling for negative indices, joint path probabilities
themselves are computed as:

p(W = wn
1 , Q = qn

1 ) =
n∏

i=1

p(qi|qi−1
i−k+1)p(wi|qi) (3)

Underlying these equations are the following assumptions:

p(qi|qi−1
1 , wi−1

1 ) = p(qi|qi−1
i−k+1) (4)

p(wi|qi
1, w

i−1
1 ) = p(wi|qi) = p(Oi = fO(wi)|Qi = qi) (5)

Equation (4) asserts that state transition probabilities depend on at most the preceding
k−1 states and thus on the contextual features of at most the preceding k−1 segments.
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Equation (5) asserts the independence of a segment’s surface features from all but the
model’s current state, formally expressing the context-independence of Fnoctx. In the
experiments described below, we used scan-segment trigrams (k = 3) extracted from a
training corpus to define language-specific boundary detection models in a supervised
manner. To account for unseen trigrams, the empirical distributions were smoothed
by linear interpolation of uni-, bi-, and trigrams (Jelinek and Mercer, 1980), using the
method described by Brants (2000) to estimate the interpolation coefficients.

2.2.3 Runtime Boundary Placement

Having defined the disambiguator model D, it can be used to predict the “best” possible
boundary placement for an input sequence of scanner segments W by application of the
well-known Viterbi algorithm (Viterbi, 1967). Formally, the Viterbi algorithm computes
the state path with maximal probability for the observed input sequence:

Viterbi(W,D) = arg max
〈q1,...,qn〉∈Qn

p(q1, . . . , qn,W |D) (6)

If 〈q1, . . . , qn〉 = Viterbi(W,D) is the optimal state sequence returned by the Viterbi
algorithm for the input sequence W , the final segmentation into word-like tokens is
defined by placing a word boundary immediately preceding all and only those segments
wi with i = 1 or qi[bow] = +. Similarly, sentence boundaries are placed before all and
only those segments wi with i = 1 or qi[bow] = qi[bos] = qi−1[eos] = +. Informally,
this means that every input sequence will begin a new word and a new sentence, every
sentence boundary must also be a word boundary, and a high-level agreement heuristic
is enforced between adjacent eos and bos features.6 Since all surface feature values are
uniquely determined by observed segment and only the hidden segment features bow,
bos, and eos are ambiguous, only those states qi need to be considered for a segment wi

which agree with respect to surface features, which represents a considerable efficiency
gain, since the Viterbi algorithm’s running time grows exponentially with the number
of states considered per observation.

3 Experiments

In this section, we present four experiments designed to test the efficacy of the waste
boundary detection framework described above. After describing the corpora and
software used for the experiments in Section 3.1 and formally defining our evaluation
criteria in Section 3.2, we first compare the performance of our approach to that of
the Punkt system introduced by Kiss and Strunk (2006) on corpora from five different
European languages in Section 3.3. In Section 3.4 we investigate the effect of training
corpus size on HMM-based boundary detection, while Section 3.5 deals with the effect

6Although either of the eos or bos features on its own is sufficient to define a boundary placement
model, preliminary experiments showed substantially improved precision for the model presented
above using both eos and bos features together with an externally enforced agreement heuristic.
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Corpus Sentences Words Segments
cz 21,656 487,767 495,832
de 50,468 887,369 936,785
en 49,208 1,173,766 1,294,344
fr 21,562 629,810 679,375
it 2,860 75,329 77,687
chat 11,416 95,102 105,297

Table 3: Corpora used for tokenizer training and evaluation.

of some common typographical conventions. Finally, Section 3.6 describes some variants
of the basic waste model and their respective performance with respect to a small
corpus of computer-mediated communication.

3.1 Materials

Corpora We used several freely available corpora from different languages for training
and testing. Since they were used to provide ground-truth boundary placements for
evaluation purposes, we required that all corpora provide both word- and sentence-
level segmentation. For English (en), we used the Wall Street Journal texts from the
Penn Treebank (Marcus et al., 1993) as distributed with the Prague Czech-English
Dependency Treebank (Cuřín et al., 2004), while the corresponding Czech translations
served as the test corpus for Czech (cz). The TIGER treebank (de; Brants et al., 2002)
was used for our experiments on German.7 French data were taken from the ‘French
Treebank’ (fr) described by Abeillé et al. (2003), which also contains annotations for
multi-word expressions which we split into their components.8 For Italian, we chose
the Turin University Treebank (it; Bosco et al., 2000). To evaluate the performance
of our approach on non-standard orthography, we used a subset of the Dortmund
Chat Corpus (chat; Beißwenger and Storrer, 2008). Since pre-segmented data are
not available for this corpus, we extracted a sample of the corpus containing chat
logs from different scenarios (media, university context, casual chats) and manually
inserted token and sentence boundaries. To support the detection of (self-)interrupted
sentences, we grouped each user’s posts and ordered them according to their respective
timestamps. Table 3 summarizes some basic properties of the corpora used for training
and evaluation.

7Unfortunately, corresponding (non-tokenized) raw text is not included in the TIGER distribution.
We therefore semi-automatically de-tokenized the sentences in this corpus: token boundaries
were replaced by whitespace except for punctuation-specific heuristics, e.g. no space was inserted
before commas or dots, or after opening brackets. Contentious cases such as date expressions,
truncations or hyphenated compounds were manually checked and corrected if necessary.

8Multi-word tokens consisting only of numeric and punctuation subsegments (e.g. “16/9” or
“3,2”) and hyphenated compounds (“Dassault-électronique”) were not split into their component
segments, but rather treated as single tokens.
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Software The waste text segmentation system described in Sec. 2 was implemented
in C++ and Perl. The initial prolix segmentation of the input stream into candidate
segments was performed by a traditional lex-like scanner generated from a set of 49
hand-written regular expressions by the scanner-generator RE2C (Bumbulis and Cowan,
1993).9 HMM training, smoothing, and runtime Viterbi decoding were performed by
the moot part-of-speech tagging suite (Jurish, 2003). Viterbi decoding was executed
using the default beam pruning coefficient of one thousand in moot’s “streaming mode,”
flushing the accumulated hypothesis space whenever an unambiguous token was en-
countered in order to minimize memory requirements without unduly endangering the
algorithm’s correctness (Lowerre, 1976; Kempe, 1997). To provide a direct comparison
with the Punkt system beyond that given by Kiss and Strunk (2006), we used the
nltk.tokenize.punkt module distributed with the Python NLTK package. Bound-
ary placements were evaluated with the help of GNU diff (Hunt and McIlroy, 1976;
MacKenzie et al., 2002) operating on one-word-per-line “vertical” files.

Cross-Validation Except where otherwise noted, waste HMM tokenizers were tested
by 10-fold cross-validation to protect against model over-fitting: each test corpus C was
partitioned on true sentence boundaries into 10 strictly disjoint subcorpora {ci}1≤i≤10 of
approximately equal size, and for each evaluation subcorpus ci, an HMM trained on the
remaining subcorpora

⋃
j 6=i

cj was used to predict boundary placements in ci. Finally,
the automatically annotated evaluation subcorpora were concatenated and evaluated
with respect to the original test corpus C. Since the Punkt system was designed to be
trained in an unsupervised fashion from raw untokenized text, no cross-validation was
used in the evaluation of Punkt tokenizers.

3.2 Evaluation Measures

The tokenization method described above was evaluated with respect to the ground-
truth test corpora in terms of precision, recall, and the harmonic precision-recall average
F, as well as an intuitive scalar error rate. Formally, for a given corpus and a set Brelevant
of boundaries (e.g. token- or sentence-boundaries) within that corpus, let Bretrieved be
the set of boundaries of the same type predicted by the tokenization procedure to be
evaluated. Tokenizer precision (pr) and recall (rc) can then be defined as:

pr = tp
tp + fp = |Brelevant ∩Bretrieved|

|Bretrieved|
(7)

rc = tp
tp + fn = |Brelevant ∩Bretrieved|

|Brelevant|
(8)

where following the usual conventions tp = |Brelevant∩Bretrieved| represents the number of
true positive boundaries predicted by the tokenizer, fp = |Bretrieved\Brelevant| represents

9Of these, 31 were dedicated to the recognition of special complex token types such as URLs and
e-mail addresses.
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the number of false positives, and fn = |Brelevant\Bretrieved| represents the number of
false negatives.
Precision thus reflects the likelihood of a true boundary given its prediction by

the tokenizer, while recall reflects the likelihood that that a boundary will in fact be
predicted given its presence in the corpus. In addition to these measures, it is often
useful to refer to a single scalar value on the basis of which to compare tokenization
quality. The unweighted harmonic precision-recall average F (van Rijsbergen, 1979) is
often used for this purpose:

F = 2× pr× rc
pr + rc (9)

In the sequel, we will also report tokenization error rates (Err) as the ratio of errors
to all predicted or true boundaries:10

Err = fp + fn
tp + fp + fn = |Brelevant4Bretrieved|

|Brelevant ∪Bretrieved|
(10)

To allow direct comparison with the results reported for the Punkt system by Kiss and
Strunk (2006), we will also employ the scalar measure used there, which we refer to
here as the “Kiss-Strunk error rate” (ErrKS):

ErrKS = fp + fn
number of all candidates (11)

Since the Kiss-Strunk error rate only applies to sentence boundaries indicated by a
preceding full stop, we assume that the “number of candidates” referred to in the
denominator is simply the number of dot-final tokens in the corpus.

3.3 Experiment 1: WASTE versus Punkt

We compared the performance of the HMM-based waste tokenization architecture
described in Sec. 2 to that of the Punkt tokenizer described by Kiss and Strunk (2006)
on each of the five conventional corpora from Table 3, evaluating the tokenizers with
respect to both sentence- and word-boundary prediction.

3.3.1 Sentence Boundaries

Since Punkt is first and foremost a disambiguator for sentence boundaries indicated
by a preceding full stop, we will first consider the models’ performance on these, as
given in Table 4. For all tested languages, the Punkt system achieved a higher recall
on dot-terminated sentence boundaries, representing an average relative recall error
reduction rate of 54.3% with respect to the waste tokenizer. Waste exhibited greater
precision however, providing an average relative precision error reduction rate of 73.9%
with respect to Punkt. The HMM-based waste technique incurred the fewest errors
10A4B represents the symmetric difference between sets A and B: A4B = (A\B) ∪ (B\A).
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Corpus Method tp fp fn pr% rc% F% ErrKS%
cz waste 20,808 158 143 99.25 99.32 99.28 1.20

punkt 19,892 1,019 46 95.13 99.77 97.39 4.52
de waste 40,887 128 420 99.69 98.98 99.33 1.23

punkt 41,068 399 292 99.04 99.29 99.17 1.56
en waste 47,309 151 109 99.68 99.77 99.73 0.40

punkt 46,942 632 77 98.67 99.84 99.25 1.09
fr waste 19,944 66 203 99.67 98.99 99.33 1.24

punkt 19,984 128 112 99.36 99.44 99.40 1.10
it waste 2,437 15 169 99.39 93.51 96.36 6.02

punkt 2,595 233 0 91.76 100.00 95.70 7.64

Table 4: Performance on dot-terminated sentences, evaluation following Kiss and Strunk (2006).

Corpus Method tp fp fn pr% rc% F% Err%
cz waste 21,230 242 425 98.87 98.04 98.45 3.05

punkt 20,126 1,100 1,529 94.82 92.94 93.87 11.55
de waste 47,453 965 3,014 98.01 94.03 95.98 7.74

punkt 41,907 497 8,560 98.83 83.04 90.25 17.77
en waste 48,162 452 1,045 99.07 97.88 98.47 3.01

punkt 47,431 724 1,776 98.50 96.39 97.43 5.01
fr waste 20,965 143 596 99.32 97.24 98.27 3.40

punkt 20,744 230 817 98.90 96.21 97.54 4.80
it waste 2,658 16 201 99.40 92.97 96.08 7.55

punkt 2,635 240 223 91.65 92.20 91.92 14.95

Table 5: Overall performance on sentence boundary detection.

overall, and those errors which it did make were more uniformly distributed between
false positives and false negatives, leading to higher F values and lower Kiss-Strunk
error rates for all tested corpora except French.

It is worth noting that the error rates we observed for the Punkt system as reported
in Table 4 differ from those reported in Kiss and Strunk (2006). In most cases,
these differences can be attributed to the use of different corpora. The most directly
comparable values are assumedly those for English, which in both cases were computed
based on samples from the Wall Street Journal corpus: here, we observed a similar error
rate (1.10%) to that reported by Kiss and Strunk (1.65%), although Kiss and Strunk
observed fewer false positives than we did. These differences may stem in part from
incompatible criteria regarding precisely which dots can legitimately be regarded as
sentence-terminal, since Kiss and Strunk provide no formal definition of what exactly
constitutes a “candidate” for the computation of Eq. (11). In particular, it is unclear
how sentence-terminating full stops which are not themselves in sentence-final position
– as often occurring in direct quotations (e.g. “He said ‘stop.’”) – are to be treated.

Despite its excellent recall for dot-terminated sentences, the Punkt system’s per-
formance dropped dramatically when considering all sentence boundaries (Table 5),
including those terminated e.g. by question marks, exclamation points, colons, semi-
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Corpus Method tp fp fn pr% rc% F% Err%
cz waste 487,560 94 206 99.98 99.96 99.97 0.06

punkt 463,774 10,445 23,993 97.80 95.08 96.42 6.91
de waste 886,937 533 431 99.94 99.95 99.95 0.11

punkt 882,161 9,082 5,208 98.98 99.41 99.20 1.59
en waste 1,164,020 9,228 9,745 99.21 99.17 99.19 1.60

punkt 1,154,485 22,311 19,281 98.10 98.36 98.23 3.48
fr waste 625,554 2,587 4,255 99.59 99.32 99.46 1.08

punkt 589,988 61,236 39,822 90.60 93.68 92.11 14.62
it waste 74,532 132 796 99.82 98.94 99.38 1.23

punkt 71,028 3,514 4,302 95.29 94.29 94.78 9.91

Table 6: Overall performance on word-boundary detection.

colons, or non-punctuation characters. Our approach outperformed Punkt on global
sentence boundary detection for all languages and evaluation modes except precision
on the German TIGER corpus (98.01% for the waste tokenizer vs. 98.83% for Punkt).
Overall, waste incurred only about half as many sentence boundary detection errors as
Punkt (µ = 49.3%, σ = 15.3%). This is relatively unsurprising, since Punkt’s rule-based
scanner stage is responsible for detecting any sentence boundary not introduced by
a full stop, while waste can make use of token context even in the absence of a dot
character.

3.3.2 Word Boundaries

The differences between our approach and that of Kiss and Strunk become even more
apparent for word boundaries. As the data from Table 6 show, waste substantially
outperformed Punkt on word boundary detection for all languages and all evaluation
modes, reducing the number of word-boundary errors by over 85% on average (µ =
85.6%, σ = 16.0%). Once again, this behavior can be explained by Punkt’s reliance on
strict rule-based heuristics to predict all token boundaries except those involving a dot
on the one hand, and waste’s deferral of all final decisions to the model-dependent
runtime decoding stage on the other. In this manner, our approach is able to adequately
account for both “prolix” target tokenizations such as that given by the Czech corpus –
which represents e.g. adjacent single quote characters (“) as separate tokens – as well
as “terse” tokenizations such as that of the English corpus, which conflates e.g. genitive
apostrophe-s markers (’s) into single tokens. While it is almost certainly true that
better results for Punkt than those presented in Table 6 could be attained by using
additional language-specific heuristics for tokenization, we consider it to be a major
advantage of our approach that it does not require such fine-tuning, but rather is able
to learn the “correct” word-level tokenization from appropriate training data.
Although the Punkt system was not intended to be an all-purpose word-boundary

detector, it was specifically designed to make reliable decisions regarding the status of
word boundaries involving the dot character, in particular abbreviations (e.g. “etc.”,
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Corpus Method tp fp fn pr% rc% F% Err%
cz waste 0 0 0 – – – –

punkt 0 2,658 0 0.00 – – 100.00
de waste 3,048 58 101 98.13 96.79 97.46 4.96

punkt 2,737 23 412 99.17 86.92 92.64 13.71
en waste 16,552 521 145 96.95 99.13 98.03 3.87

punkt 15,819 1,142 878 93.27 94.74 94.00 11.32
fr waste 1,344 30 68 97.82 95.18 96.48 6.80

punkt 1,315 60 97 95.64 93.13 94.37 10.67
it waste 182 11 12 94.30 93.81 94.06 11.22

punkt 153 76 41 66.81 78.87 72.34 43.33

Table 7: Performance on word boundary detection for dot-final words.

“Inc.”) and ordinals (“24.”). Restricting the evaluation to dot-terminated words
containing at least one non-punctuation character produces the data in Table 7. Here
again, waste substantially outperformed Punkt for all languages11 and all evaluation
modes except for precision on the German corpus (98.13% for waste vs. 99.17% for
Punkt), incurring on average 62.1% fewer errors than Punkt (σ = 15.5%).

3.4 Experiment 2: Training Corpus Size

It was mentioned above that our approach relies on supervised training from a pre-
segmented corpus to estimate the model parameters used for runtime boundary place-
ment prediction. Especially in light of the relatively high error-rates observed for the
smallest test corpus (Italian), this requirement raises the question of how much training
material is in fact necessary to ensure adequate runtime performance of our model.
To address such concerns, we varied the amount of training data used to estimate the
HMM’s parameters between 10,000 and 100,000 tokens,12 using cross-validation to
compute averages for each training-size condition. Results for this experiment are given
in Figure 2.
All tested languages showed a typical logarithmic learning curve for both sentence-

and word-boundary detection, and word-boundaries were learned more quickly than
sentence boundaries in all cases. This should come as no surprise, since any non-
trivial corpus will contain more word boundaries than sentence boundaries, and thus
provide more training data for detection of the former. Sentence boundaries were
hardest to detect in the German corpus, which is assumedly due to the relatively high
frequency of punctuation-free sentence boundaries in the TIGER corpus, in which
over 10% of the sentence boundaries were not immediately preceded by a punctuation

11We ignore the Czech data for the analysis of dot-final word boundaries, since the source cor-
pus included token boundaries before every word-terminating dot character, even for “obvious”
abbreviations like “Ms.” and “Inc.” or initials such as in “[John] D. [Rockefeller]”.

12Training sizes for Italian varied between 7,000 and 70,000 due to the limited number of tokens
available in that corpus as a whole.
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Case Punct tp fp fn pr% rc% F% Err%
+ + 47,453 965 3,014 98.01 94.03 95.98 7.74
+ − 33,597 1,749 16,862 95.05 66.58 78.31 35.65
− + 44,205 1,185 6,262 97.39 87.59 92.23 14.42
− − 4,814 3,277 45,645 59.50 9.54 16.44 91.04

Table 8: Effect of typographical conventions on sentence detection for the TIGER corpus (de).

character,13 vs. only 1% on average for the other corpora (σ = 0.78%). English and
French were the most difficult corpora in terms of word boundary detection, most likely
due to apostrophe-related phenomena including the English genitive marker ’s and the
contracted French article l’ .

3.5 Experiment 3: Typographical Conventions

Despite the lack of typographical clues, the waste tokenizer was able to successfully
detect over 3300 of the unpunctuated sentence boundaries in the German TIGER
corpus (pr = 94.1%, rc = 60.8%). While there is certainly room for improvement,
the fact that such a simple model can perform so well in the absence of explicit
sentence boundary markers is encouraging, especially in light of our intent to detect
sentence boundaries in non-standard computer-mediated communication text, in which
typographical markers are also frequently omitted. In order to get a clearer idea of the
effect of typographical conventions on sentence boundary detection, we compared the
waste tokenizer’s performance on the German TIGER corpus with and without both
punctuation (±Punct) and letter-case (±Case), using cross-validation to train and test
on appropriate data, with the results given in Table 8.
As hypothesized, both letter-case and punctuation provide useful information for

sentence boundary detection: the model performed best for the original corpus retaining
all punctuation and letter-case distinctions. Also unsurprisingly, punctuation was a
more useful feature than letter-case for German sentence boundary detection,14 the
[−Case,+Punct] variant achieving a harmonic precision-recall average of F = 92.23%.
Even letter-case distinctions with no punctuation at all sufficed to identify about two
thirds of the sentence boundaries with over 95% precision, however: this modest success
is attributable primarily to the observations’ stop features, since upper-cased sentence-
initial stopwords are quite frequent and almost always indicate a preceding sentence
boundary.

13Most of these boundaries appear to have been placed between article headlines and body text for
the underlying newspaper data.

14In German, not only sentence-initial words and proper names, but also all common nouns are
capitalized, so letter-case is not as reliable a clue to sentence boundary placement as it might be
for English, which does not capitalize common nouns.
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Figure 2: Effect of training corpus size on sentence boundary detection (top) and word boundary
detection (bottom).
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Model tp fp fn pr% rc% F% Err%
chat 7,052 1,174 4,363 85.73 61.78 71.81 43.98
chat[+force] 11,088 1,992 327 84.77 97.14 90.53 17.30
chat[+feat] 10,524 784 891 93.07 92.19 92.63 13.73
tiger 2,537 312 8,878 89.05 22.23 35.57 78.37
tiger[+force] 10,396 1,229 1,019 89.43 91.07 90.24 17.78

Table 9: Effect of training source on sentence boundary detection for the chat corpus.

3.6 Experiment 4: Chat Tokenization

We now turn our attention to the task of segmenting a corpus of computer-mediated
communication, namely the chat corpus subset described in Sec. 3.1. Unlike the
newspaper corpora used in the previous experiments, chat data is characterized by
non-standard use of letter-case and punctuation: almost 37% of the sentences in the
chat corpus were not terminated by a punctuation character, and almost 70% were
not introduced by an upper-case letter. The chat data were subdivided into 10, 289
distinct observable utterance-like units we refer to as posts; of these, 9479 (92.1%)
coincided with sentence boundaries, accounting for 83% of the sentence boundaries
in the whole chat corpus. We measured the performance of the following five distinct
waste tokenizer models on sentence- and word-boundary detection for the chat corpus:

• chat: the standard model as described in Section 2, trained on a disjoint subset
of the chat corpus and evaluated by cross-validation;

• chat[+force]: the standard model with a supplemental heuristic forcing insertion
of a sentence boundary at every post boundary;

• chat[+feat]: an extended model using all features described in Section 2.2.1
together with additional binary contextual surface features bou and eou encoding
whether or not the corresponding segment occurs at the beginning or end of an
individual post, respectively;

• tiger: the standard model trained on the entire TIGER newspaper corpus; and

• tiger[+force]: the standard tiger model with the supplemental [+force] heuristic
for sentence boundary insertion at every post boundary.

Results for chat corpus sentence boundary detection are given in Table 9 and for
word boundaries in Table 10. From these data, it is immediately clear that the standard
model trained on conventional newspaper text (tiger) does not provide a satisfactory
segmentation of the chat data on its own, incurring almost twice as many errors as
the standard model trained by cross-validation on chat data (chat). This supports
our claim that chat data represent unconventional and non-standard uses of model-
relevant features, in particular punctuation and capitalization. Otherwise, differences
between the various cross-validation conditions chat, chat[+force], and chat[+feat]
with respect to word-boundary placement were minimal.
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Model tp fp fn pr% rc% F% Err%
chat 93,167 1,656 1,934 98.25 97.97 98.11 3.71
chat[+force] 93,216 1,612 1,885 98.30 98.02 98.16 3.62
chat[+feat] 93,235 1,595 1,866 98.32 98.04 98.18 3.58
tiger 91,603 5,889 3,499 93.96 96.32 95.13 9.30
tiger[+force] 91,611 5,971 3,491 93.88 96.33 95.09 9.36

Table 10: Effect of training source on word boundary detection for the chat corpus.

Sentence-boundary detection performance for the standard model (chat) was similar
to that observed in Section 3.5 for newspaper text with letter-case but without punc-
tuation, EOS recall in particular remaining unsatisfactory at under 62%. Use of the
supplemental [+force] heuristic to predict sentence boundaries at all post boundaries
raised recall for the newspaper model (tiger[+force]) to over 91%, and for the cross-
validation model (chat[+force]) to over 97%. The most balanced performance however
was displayed by the extended model chat[+feat] using surface features to represent
the presence of post boundaries: although its error rate was still quite high at almost
14%, the small size of the training subset compared to those used for the newspaper
corpora in Section 3.3 leaves some hope for improvement as more training data become
available, given the typical learning curves from Figure 2.

4 Conclusion

We have presented a new method for estimating sentence and word token boundaries in
running text by coupling a prolix rule-based scanner stage with a Hidden Markov Model
over scan-segment feature bundles using hidden binary features bow,bos, and eos to
represent the presence or absence of the corresponding boundaries. Language-specific
features were limited to an optional set of user-specified stopwords, while the remaining
observable surface features were used to represent basic typographical class, letter-case,
word length, and leading whitespace.

We compared our “waste” approach to the high-quality sentence boundary detector
Punkt described by Kiss and Strunk (2006) on newspaper corpora from five different
European languages, and found that the waste system not only substantially out-
performed Punkt for all languages in detection of both sentence- and word-boundaries,
but even outdid Punkt on its “home ground” of dot-terminated words and sentences,
providing average relative error reduction rates of 62% and 33%, respectively. Our
technique exhibited a typical logarithmic learning curve, and was shown to adapt fairly
well to varying typographical conventions given appropriate training data.

A small corpus of computer-mediated communication extracted from the Dortmund
Chat Corpus (Beißwenger and Storrer, 2008) and manually segmented was introduced
and shown to violate some typographical conventions commonly used for sentence
boundary detection. Although the unmodified waste boundary detector did not
perform as well as hoped on these data, the inclusion of additional surface features
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sensitive to observable post boundaries sufficed to achieve a harmonic precision-recall
average F of over 92%, representing a relative error reduction rate of over 82% with
respect to the standard model trained on newspaper text, and a relative error reduction
rate of over 38% with respect to a naïve domain-specific splitting strategy.
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