
JLCL 2014 – Band 29 (1) – 79-94 

 

 

 

Yuqiao Gu, Fabio Celli, Josef Steinberger, Andrew James Anderson,  
Massimo Poesio, Carlo Strapparava and Brian Murphy 
 

Using Brain Data for Sentiment Analysis 

  
 

Abstract 
We present the results of exploratory experiments using lexical valence extracted from brain 

using electroencephalography (EEG) for sentiment analysis. We selected 78 English words 

(36 for training and 42 for testing), presented as stimuli to 3 English native speakers. EEG 

signals were recorded from the subjects while they performed a mental imaging task for 

each word stimulus. Wavelet decomposition was employed to extract EEG features from the 

time-frequency domain. The extracted features were used as inputs to a sparse multinomial 

logistic regression (SMLR) classifier for valence classification, after univariate ANOVA 

feature selection. After mapping EEG signals to sentiment valences, we exploited the lexical 

polarity extracted from brain data for the prediction of the valence of 12 sentences taken 

from the SemEval-2007 shared task, and compared it against existing lexical resources.  

1 Introduction and related work 

Sentiment analysis—automatically recognizing the emotions conveyed by a text, and in 

particular distinguishing positive from negative valence—has become one of the most popu-

lar research areas in computational linguistics (Pang & Lee, 2008; Liu, 2012) both because 

of the interest of the field in the interplay between emotion and cognitive abilities, and be-

cause of its obvious applications (e.g., companies could analyze social networks to deter-

mine customer response to their products). Such research however requires collecting judg-

ments about the valence of sentences and possibly lexical items, and simply asking subjects 

often results in low inter-annotator agreement levels (Arnstein & Poesio 2008; Craggs & 

McGee Wood, 2004; Esuli & Sebastiani 2006). But this difference between subjective 

judgments may be caused by strategic effects rather than unconscious processes as measured 

with neuroimaging techniques. And indeed, Crosson et al. (1999, 2002) and Cato et al. 

(2004) demonstrated that it is possible to discriminate positive and negative words from 

neutral words on the basis of the blood-oxygen-level dependent (BOLD) signal collected 

through functional magnetic resonance imaging (fMRI) scans. Using magnetoencephalo-

graphy (MEG) recording techniques, Hirata et al., 2007 found that negative and positive 

words can be distinguished by event-related desynchronizations (ERDs). These results sug-

gest that valence information might be best collected without asking the subjects directly. In 

the future it may be possible to use neuroimaging to benefit sentiment analysis e.g. by tap-

ping into subconscious valence representations which could reduce annotator rating time; or 

provide us more nuanced ways to measure valence. The long-term aim of our project is to 

assess the feasibility of using for sentiment analysis valence information derived from the 

brain. 

   The focus of the preliminary investigation discussed in this paper was primarily practical: 

to address one of the issues that have to be faced in order to achieve the ultimate goal. The 

problem is that the cost of collecting valence information through fMRI or MEG would be 

prohibitive at present. On the other hand, EEG is a very inexpensive and widespread tech-

nology. Taking advantage of its high temporal resolution, in recent years EEG and event-
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related potentials (ERPs) was intensively used in psycholinguistics, e.g., for the investiga-

tion of processing mechanisms of semantic categories (Pulvermüller et al., 1999; Kiefer 

2001; Paz-Caballero et al., 2006; Proverbio et al., 2007; Hoenig, et al., 2008; Adorni & 

Proverbio, 2009; Fuggetta, et al., 2009; Renoult & Debruille, 2010; Renoult et al., 2012). 

Hagoort et al. (2004) studied the integration of word meaning and world knowledge with 

EEG, ERP and fMRI while subjects read sentences. In some sentences the critical words 

make the sentences a correct or false semantic interpretation and in other sentences the criti-

cal words make the sentence a correct or false world knowledge interpretation. Using EEG 

and ERP, Delong et al. (2005) found that individuals can use linguistic input to pre-activate 

representations of upcoming words in advance of their appearance. Using event-related EEG 

and multivariate pattern analysis, Simanova et al., 2010 studied the conceptual representa-

tion and classification of object categories in different modalities. In other work, we have 

used EEG and machine learning to decode the semantic categories of animals vs tools in 

younger and elderly subjects during a covert image naming task (Murphy et al., 2011; Gu et 

al., 2013). In this work, we apply this approach to the decoding of the emotional valence of 

written words, and propose a novel paradigm for using such decoding techniques for senti-

ment analysis. 

The structure of the paper is as follows. First of all we describe the paradigm in general 

terms. Next we discuss how we used a linguistically controlled data set of word stimuli to 

elicit EEG data about valence and to train a within-subjects valence classifier which was 

then used to assign valence to words in the test set. Finally, we discuss preliminary experi-

ments using this valence for sentiment analysis. 

2 Methodology 

A number of issues need to be tackled in order to use brain data to determine the valence of 

words. The first problem, already mentioned, is that fMRI as used by Cato et al is very ex-

pensive (the costs are in the order of €500 per hour) and requires substantial medical infra-

structure. As already mentioned, our solution to this problem was to use EEG, which costs 

substantially less and is becoming a standard facility also in Computer Science and Psychol-

ogy labs.  

But even using EEG, it is not possible to get the valence of each word directly from sub-

jects. Generally at least 5-6 presentations of a stimulus (word) to each subject are needed to 

get a stable representation of the signal for that stimulus and that subject. At a few seconds 

per stimulus, at most 80 stimuli can be presented to a subject in one hour—the duration of 

time after which the subject’s attention generally is lost. This makes it time-consuming to 

measure brain activity for even the relatively small number of words in a standard corpus. 

Creating an EEG-based sentiment dictionary would require multiple sessions for multiple 

participants. In these experiments we used a test subset of the corpus created for the Senti-

ment Analysis at SemEval-2007 (Strapparava & Mihalcea, 2007) as test data.  The corpus 

consists of about 250 examples of news titles in the trial set and about 1000 in the test set. 

News titles have been extracted from news web sites (such as Google news, CNN) and/or 

newspapers. Each example is labeled with emotions (anger, disgust, fear, joy, sadness, sur-

prise) and polarity (positive/negative). The test data was independently labeled by six anno-
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tators. Annotation was performed using a web-based interface that displayed one headline at 

a time, together with a slide bar for valence assignment. The interval for the valence annota-

tions was set from -100 to 100, where 0 represents a neutral headline, -100 represents a 

highly negative headline and 100 corresponds to a highly positive headline. We selected 

only positive or negative sentences, not neutral ones. The inter-annotator agreement for the 

sentiment polarity is 0.78 (Pearson's correlation). 

In order to address the problem mentioned above we proceeded as follows. First of all we 

specified a training dataset consisting of 36 stimuli—12 positive, 12 negative, and 12 neu-

tral—from behavioral norms (Vinson & Vigliocco 2008; Coltheart, 1981) on whose valence 

there is substantial agreement among a large number of subjects.  Every subject sees each 

stimuli 5 times. The signal collected from these stimuli is used to train a per-subject valence 

classifier that is then used to assign a predicted valence to 42 stimuli from the testing dataset 

(words occurring in a subset of the SemEval test set). The predicted word valences are then 

fed into a classifier for predicting the overall valence of 12 selected sentences. Our working 

hypothesis is that the positive, neutral and negative valence of words may be processed by 

different neural mechanisms and the valence information can be reflected by and extracted 

from the EEG data. The trained classifier maps the EEG feature space into the negative, 

neutral and positive valences. Therefore the trained classifier should be able to predict the 

valence of any test word. Figure 1 sketches out the working procedure described here.   

 

 
Figure 1: Schematic procedure using brain data for sentiment analysis. 
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Last but not least, there is the problem of achieving a good performance on determining 

predicted valence. The performance of EEG at lexical information (Murphy et al., 2011) is 

typically not comparable to that obtained using fMRI (Mitchell et al., 2008; Pereira et al., 

2009). In particular with EEG it is typically more difficult to achieve good inter-subject 

classification. This can be attributed to the following: 1) the poor spatial resolution of EEG 

signal; 2) differences in emotional experience between participants. For this reason at pre-

sent we collect both training and testing data from the same subject. 

3 Using machine learning to decode and predict the valence of English 

words from EEG data 

In this Section we discuss how we used EEG to decode the emotional valence of English 

words. 

3.1 EEG experiment and data preprocessing 

Materials. Previous work (Kousta et al., 2009; Kousta et al., 2011) suggests that there are 

likely to be differences with regards to extracting valence between abstract and concrete 

words. We used therefore a dataset classified according to two dimensions: abstract vs. con-  

crete, or according to their emotional valence (negative, neutral and positive). 36 words 

were manually selected to vary appropriately in concreteness and valence ratings between 

the 6 experimental categories and to be otherwise matched in terms of a comprehensive list 

of linguistic parameters that could serve as confounds.  To validate the final set of words, 2-

way analysis of variance was undertaken to verify that the experimental groups did not sig-

nificantly differ in any undesirable way. Results are shown in table 1, where V denotes the 

main effect was valence category, C denotes the main effect was concreteness category and 

C×V is the interaction.  

 

Linguistic parameters 
V C C×V 

F(1,30) p F(2,30) p F(2,30) p 

Valence 0.02 0.88 201.26  0 0.89  0.42 

Concreteness 266.7 0 0.06 0.93 0.88 0.43 

Number of letters 0 1 0  1 0  1 

Imageability 84.18 0 0.24 0.79 0.45 0.64 

Arousal 0.16 0.7 2.9 0.07 1.35  0.27 

Age of acquisition 2.6 0.12 0.25  0.78 0.6  0.56 

Familiarity 0.41 0.53 0.58  0.56 1.12  0.34 

Log frequency 0 0.99 0.71  0.5 1.22   0.31 

Number of orthographic neighbours 0.52 0.47 0.06  0.94 0.15  0.86 

Bigram frequency 0.95 0.37  0.1  0.9  0.25  0.78  

Number of morphemes 1 0.33 1  0.38 1  0.38  

Table 1: Results of 2-way analysis of variance on the training set. 

 

    For the test set, we chose 12 sentences from the dataset provided in the SemEval-2007 

Sentiment Analysis Task 14 (Strapparava & Mihalcea, 2007) and chose the 42 most frequent 
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non-stopword nouns. The sentences were chosen in order to have a balance between posi-

tive, neutral and negative polarities, as well as between concrete and abstract words. The 

stimuli in the training set and test set are listed in Table 2. The 12 sentences are listed in 

Table 3.  

    Participants. One PhD student and two postdoctoral fellows at the University of Trento 

took part in the study, all native speakers of English. One participant was male and two fe-

male (age range 26–37, mean 33). One identified herself as left-handed, and two as right-

handed. All had normal or corrected-to-normal vision. Participants received compensation 

of €7 per hour. The studies were conducted under the approval of the ethics committee at the 

University of Trento, and participants gave informed consent. 

 

 

Training 
set 

Abstract 

 

Negative harm, hurt, gloom, deceit, terror, sorrow 

Neutral mood, guess, minute, motive,span, trance 

Positive cure, ease, peace, reward, warmth, virtue 

Concrete 

 

Negative jail, scar, blood, corpse, cancer, poison 

Neutral mule, cart, waist, marble, barrel, cement 

Positive silk, cash, heart, palace, cherry, silver 

Test set 

Abstract 

 

save , sick, switch, fetal, loss, swallow, technology, crash, plan, warn-
ing, copyright, reject, claim, health, university, offer, support, rabies,    
suspect, debate, miracle, hail, release, marathon    

Concrete 
Squirrel, boy, park, school, scientist, cocoa, suburb, riot, committee     
Vaccine, helicopter, river, dolphin, pill, parents, gene  

Table 2: Stimuli in the training and test set. 

     
 

Number Sentence Polarity 

1 Squirrel jumps boy in park; rabies suspected -71 
2 University offers support to New Orleans school +60  
3 Beyonce copyright claim rejected -7 
4 Scientists tout cocoa's health benefits +72 
5 Riot warning for France suburbs -64 
6 Committee debates cancer vaccine plan +2 
7 Die As US Helicopter Crashes in Iraq -93 
8 Technology may save India's river dolphins +67 
9 Poison Pill to Swallow: Hawks Hurting After Loss to Vikes -35 
10 Rescued boys parents hail 'miracle' +71 
11 Sick hearts switch on a fetal gene -12 
12 Marathon winner released from hospital +70 

Table 3: Test sentences. The words extracted in the test set are highlighted by italic format 

 

Experimental paradigm. Participants saw written words on the screen, repeated 5 times 

in random order, and are asked to imagine situations exemplifying the words. Once the situ-

ation came to mind they responded with a button press. Words were presented until button 

press, or to a timeout of 5s. Fixations and blanks added 3s per trial. Participants sat in a re-
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laxed upright position 60 cm from a computer monitor in reduced lighting conditions. The 

task duration was split into five blocks and participants were given the choice to pause be-

tween each. Each trial began with the presentation of a fixation cross for 0.5 s, followed by 

the stimulus word, a further fixation cross for 0.5 s and a blank screen for 2 s. Participants 

were asked to keep still during the task, and to avoid eye-movements and facial muscle ac-

tivity in particular, except during the 2s blank period. 

EEG recording and data preprocessing. The experiment was conducted at the CI-

MeC/DiSCoF laboratories at University of Trento, using a 64-electrode Brain Vision Brain-

Amp system, recording at 500 Hz. A wide-coverage montage based on the 10–20 system 

was used, with a single right earlobe reference, and ground at location AFz. Electrode im-

pedances were generally kept below 10 kOhms. However, sessions including electrodes that 

exceeded this limit were still included in subsequent analysis, as the techniques used proved 

robust to such noise. Data preprocessing was conducted using the EEGLAB package (De-

lorme & Makeig, 2004). The data was band-pass filtered at 1–50 Hz to remove slow drifts in 

the signal and high-frequency noise, and then down-sampled to 125 Hz. An ICA analysis 

was next applied using the EEGLAB implementation of the Infomax algorithm (Makeig et 

al., 1996). Artefactual ICA components were then identified and removed by hand in each 

dataset. Eye-artefact components were removed –usually one component for vertical move-

ments including blinks, and another for horizontal movements. 

3.2 EEG data analysis and classification  

Wavelet Feature extraction and selection. To classify the EEG data, first of all we ex-

tracted data epochs from the preprocessed data in a time window after stimulus onset.  

1D multilevel discrete wavelet transform decomposition was employed to extract the de-

composition coefficients of the epoched EEG data in the time-frequency domain. Two 

wavelet functions: coif3 and db7, were used. For a given EEG epoch of a given channel, 

extracted features were ordered as a list of coefficients arrays in the form [cA_n, cD_n, 

cD_n-1, ..., cD2, cD1], where n denotes the level of decomposition. The first element 

(cA_n) of the list is an approximation coefficients array and the following elements (cD_n to 

cD_1) are details of coefficients arrays. Figure 2 illustrates one EEG epoch of Fpz channel 

and the extracted wavelet approximation coefficients array and details of coefficients arrays. 

For a given trial, the extracted EEG features are collected in a wavelet coefficients array 

whose number of elements equals to the number of channels × the number of coefficients of 

a single trial in a single channel.  

    Usually, the number of the extracted features is huge and the feature array contains many 

redundant or irrelevant features for valence classification. Taking the epoch from 0.1 to 1.4 

seconds as an example, the number of the extracted EEG features of each trial is 13568 (= 

64 × 212, where 64 is the number of channels and 212 the number of extracted wavelet co-

efficients). To shorten classifier training time, improve model interpretability and enhance 

model generalization, we employed univariate ANOVA to select the most promising 3000 

features with the highest F-scores.  

    Classification. A SMLR classifier (Krishnapuram et al., 2005) was used in 10, 20 and 30 

fold cross-validation analyses. The training dataset was constructed by the wavelet features  
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Figure 2: One EEG epoch of Fpz channel and its 5 level wavelet decomposition coefficients. 

 

corresponding to the trials with stimuli in the training set of the words in Table 2. For a giv-

en category, abstract (negative, neutral, positive) or concrete (negative, neutral, positive), in 

the training dataset the total number of samples was 90 (18 words × 5 replicates). 

 

Prediction. The test dataset was constructed by the wavelet features corresponding to 

the trials with stimuli in the test set of the words in Table 2. The test dataset contained 18× 

5=90 concrete words and 24×5=120 abstract words. The test dataset were used as input to 

the trained classifier to predict the valence of the test words by assigning a valence to each 

EEG trial with trigger number in the test set.  

3.3 Results 

In order to get better classification of the emotional valence of English words, we separately 

classified the valence of concrete and abstract words.  

Training the classifier. To train the classifier, for each subject, we tried different time 

epochs and two wavelet functions coif3 and db7. We found a time period from 0.1 to 1.6 

seconds after stimulation onset, in which the classification accuracy is higher. The classifi-

cation results of the training words are shown in Table 4. Here we show the best classifica-

tion accuracy for each subject within a time window in the period 0.1 to 1.6 seconds. The 
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chance to classify into three classes is 33.3%. Our classification accuracy is from 43% to 

63%, which is well above chance. 

For each concrete and abstract category of each dataset we have also calculated mean 

classification accuracy over 10 time windows (0.1 or 0.2 to 0.7 + 0.1×n seconds, where n = 

0, 1, 2, …, 9). For abstract category, the mean classification accuracy is (43.45±3.62)% for 

subject 1, (54.44±3.88)% for subject 2 and (40.00±4.67)% for subject 3. For concrete cate-

gory, the mean classification accuracy is (56.45±3.73)% for subject 1, (52.44±4.81)% for 

subject 2 and (51.63±6.09)% for subject 3. This result indicates the mean classification ac-

curacies are also well above chance. Especially the three mean classification accuracies of 

the concrete category are greater than 50%. To study the effect of number of selected fea-

tures on the classification accuracy, we reduce the number of selected EEG features. We 

found that for the concrete category, using 300 selected features to train the classifier one 

can get mean accuracy well above chance. However, for abstract category, in order to get 

mean accuracy well above chance we have to use 1000 selected features to train the classifi-

er. Therefore we used 1000 selected features for abstract category and from 300 for concrete 

category to train the classifier. Then we calculated mean classification accuracy over 10 

time windows. For abstract category, the mean classification accuracy is (41.20±5.71)% for 

subject 1, (51.44±4.94)% for subject 2 and (38.49±4.85)% for subject 3. For concrete cate-

gory, the mean classification accuracy is (42.32±4.67)% for subject 1, (42.17±3.41)% for 

subject 2 and (48.98±4.03)% for subject 3. This result suggests that the classification accu-

racy decreases with the number of selected features.  

We have randomized the trials of the feature array so that the relationship between the ex-

tracted features and the valence label of each trial is randomly matched. We used such ran-

dom features as input to train the classifier (3000 selected features, 20-fold). Then we calcu-

lated the mean classification accuracy over 20 such random EEG for concrete and abstract 

classes of each dataset in the same epoch as given in Table 4. For abstract category, the 

mean classification accuracy is (42.94±6.86) % for subject 1, (41.51±5.73)% for subject 2 

and (37.98±6.77)% for subject 3. For concrete category, the mean classification accuracy is 

(42.65±8.61)% for subject 1, (42.34±5.89)% for subject 2 and (41.61±4.88)% for subject 3. 

The mean accuracy is between (37.98±6.77)% and (42.94±6.86)%. Considering that this 

result is probably caused by the large number of EEG features, we reduce the number of 

selected EEG features from 3000 to 1000 for abstract category and from 3000 to 300 for 

concrete category to train the classifier by the permuted EEG data from 0.1 to 1.6 seconds 

after stimuli onset. Then we calculated the mean classification accuracy over 20 such per-

muted EEG for concrete and abstract classes of each dataset. For abstract category, the mean 

classification accuracy is (37.07±5.26)% for subject 1, (40.11±7.99)% for subject 2 and 

(36.74±7.08)% for subject 3. For concrete category, the mean classification accuracy is 

(33.52±9.36)% for subject 1, (36.5±5.77)% for subject 2 and (37.35±6.22)% for subject 3.  

Predicting the valence of test words. For each dataset, the classifier trained by the train-

ing trials with inside 20-fold training/testing partitions of the data was employed to predict 

the valence of the words in the test trials. The prediction lists of the abstract and concrete 

words from the three subjects were employed for sentiment analysis in the following Sec-
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tion. Note that for each word there are five trials. Accordingly the classifier predicts five 

three-way neg-or-neu-or-pos valences for each word. 

 

 

Subject Concreteness Epoch(s) Wavelet 
Function 

ClassAccuracy (%) 
(chance = 33.3) 

s1 
abstract 0.1 to 0.7 db7 47.8 (10 folds); 50.7 (20 folds); 48.9 (30 folds) 

concrete 0.1 to 1.6 db7 46.7 (10 folds); 62.8 (20 folds); 53.3 (30 folds) 

s2 
abstract 0.1 to 1.4 coif3 54.0 (10 folds); 58.5 (20 folds); 57.8 (30 folds) 

concrete 0.1 to 1.3 coif3 50.0 (10 folds); 57.0 (20 folds); 51.1 (30 folds) 

s3 
abstract 0.1 to 0.8 coif3 43.3 (10 folds); 51.8 (20 folds); 46.7 (30 folds) 

concrete 0.2 to 1.1 coif3 58.9 (10 folds); 63.0 (20 folds); 57.8 (30 folds) 

Table 4: Classification results of the training words.  

4 Using EEG valence for sentiment analysis 

In this Section we discuss how the valences extracted from EEG were good predictors of the 

sentiment polarity of the 12 selected sentences, using machine learning techniques. 

4.1 Comparison with existing resources and supervised sentiment analysis 

After collecting brain data for 3 native English subjects, we had 5 trials for each word as 

integer numerical features, and we exploited them for machine learning. We wanted to pre-

dict sentence polarities and compare the results to the predictions derived using word polari-

ties from two different lexical resources: SentiWordNet1 (Baccianella et al., 2010; Esuli & 

Sebastiani, 2006) and SenticNet2 (Cambria et al., 2012). The classification task is binary, as 

the target class to predict is sentence polarity (positive/negative), given as features the posi-

tive, negative and neutral word polarities from the EEG signal in the first case and from the 

lexical resources in the second one.   

Subject performance comparison. As for the first experiment, we tested different algo-

rithms and compared the classification performance of the three subjects in order to identify 

the best one. We used as features the sum of the brain values and as target class the sentence 

polarity (positive/negative), using 3-fold cross validation as evaluation setting in Weka 

(Witten & Frank, 2005). Results, reported in Table 5, show that there is not a single algo-

rithm that works best. Among the subjects, Subject 3 achieved the best performance either 

on concrete and abstract words, using a Sequential Minimal Optimization (Platt, 1998) algo-

rithm. We used the best performing subject (subject 3) to select the best method to use the 5 

trial values for the classification task.  

                                                                 
1
  http://sentiwordnet.isti.cnr.it/ 

2  http://sentic.net/ 
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Feature selection: all trials vs. sum of values. We ran an experiment to test how the dif-

ferent brain outcomes in the 5 trials can be exploited to achieve the best results. In one test 

we used all the 5 trials as features, while in the second test we exploited the sum of the val-

ues —which can be +1, -1 and 0— as one feature. As before, we used a 3-fold cross valida-

tion in Weka. The result, computed using SMO and averaged over the three subjects and 

over abstact and concrete words, are f1=0.442 using all the values, and f1=0.407 using the 

sum of trials.  

Comparing brain data and lexical resources. Then we extracted from SentiWordNet 

and SenticNet all the values associated to the selected words, leaving a tie if no values were 

available. We had 14 ties with SenticNet and no ties with SentiWordNet. SenticNet provides 

one polarity value (positive or negative), while SentiWordNet provides one value for the 

positive pole and one for the negative one. Polarities from SentiWordNet have been extract-

ed from the first sense; if both positive and negative values were available, we used the dif-

ference between the two. 
 

Data Concreteness Algorithm Precision Recall F1measure 

baseline 

 
abstract 

zeroRule 0.25 0.5 0.333  

s1 SMO 0.349 0.375 0.347 

s2 bayes 0.594 0.583 0.571 

s3 SMO 0.752 0.708 0.695 

senticNet SMO 0.757 0.75 0.748 

SentiWN logistic 0.853 0.792 0.782 

baseline 

 
concrete 

zeroRule 0.309 0.556 0.397 

s1 logistic 0.494 0.5 0.495 

s2 bayes 0.444 0.444 0.444 

s3 SMO 0.797 0.778 0.778 

SenticNet logistic 0.728 0.722 0.723 

SentiWN SMO 0.477 0.5 0.475 

Table 5: Comparison of supervised analysis results obtained by brain data and dictionaries.  

  

Like before, we ran the experiment using 3-fold cross validation in Weka to predict the 

polarity of sentences. Results, reported in Table 5, show that lexical resources yield better 

classification performances for abstract words, but also that subject 3 achieved the best per-

formance on concrete words. The correlation coefficients are r = 0.648 for subject 3 with 

concrete words and r = 0.345 with SentiWordNet on abstract words.   
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4.2 Integrating the valence in a state-of-the-art unsupervised sentiment 

analysis system 

For the unsupervised scenario we used the sentiment analyser (Steinberger et al., 2011) 

developed as part of the Europe Media Monitor (Atkinson & Van der Goot, 2009). The ob-

jective of the analyser is to detect positive or negative opinions expressed towards entities in 

the news across different languages and to follow trends over time.  

It attaches a sentiment score to all entity mentions, mainly persons and organizations. It 

uses a fixed window of 6 terms, which was found to be optimal in the analysis in Balahur et 

al., 2010, around the entity mention to look for sentiment terms. The approach also accounts 

for contextual valence shifting (negations, diminishers and intensifiers). In their case, the 

approach is rather defensive, as it looks for shifters only two terms around each sentiment 

term. This way it captures the most common shifters (very good, not good, less good) but 

modals or adverbs with larger scope may not be captured. For our purpose the tool was 

modified to analyze the whole sentence regardless an entity mention and regardless any 

fixed window for sentiment terms. 

The approach uses language-specific sentiment dictionaries. Inspired by the positive ef-

fect of introducing two levels of sentiment intensity in Balahur et al., 2010, it uses more 

classes. The score of positive terms is 2, negative -2, very positive 4, and very negative -4. If 

a polar expression is negated, its polarity score is simply inverted. In the case of term with 

higher intensity we lower the intensity. In a similar fashion, diminishers are taken into con-

sideration. The difference is, however, that the score is only reduced rather than shifted to 

the other polarity type. Special care has to be taken when shifters are combined: for example 

not very good – good carries the score (+2), it is intensified by very (+3) and inverted by 

not, however, if we take the same approach as in the case of optimal above, the result is (-2). 

The scores of the sentiment terms found in a sentence are summed up and the normalized 

score gives the final sentiment of the sentence. The score ranges from -100 to +100, where, 

for instance, 100 corresponds to a case with all the terms very positive. The score thus corre-

sponds to the range of SemEval-2007. 

Sentiment Dictionaries. We tested the following resources: 

 WordNet Affect (WNA) (Strapparava & Valitutti, 2004): categories of anger and 

disgust were grouped under high negative, fear and sadness were considered nega-

tive, joy was taken as containing positive words and surprise as highly positive. 

 SentiWordNet (SWN) (Esuli & Sebastiani, 2006): we used the difference between 

the positive and negative scores. We mapped the positive scores lower than 0.75 

to the positive category, the scores higher than 0.75 to the highly positive set, the 

negative scores lower than 0.75 to the negative category and the ones higher than 

0.75 to the highly negative set.  

 MicroWordNet (MWN) (Cerini et al., 2007): the mapping was similar to Senti-

WordNet. 

 General Inquirer (GI) (Stone et al., 1966): besides other annotations, each English 

word is labeled as “positive outlook” or “negative outlook” in GI. Terms taken 

from these categories formed one of the first sentiment dictionaries.  
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 JRC dictionaries (JRC) (Steinberger et al., 2012): semi-automatically collected 

subjective terms in 15 languages. Pivot language dictionaries (English and Span-

ish) were first manually created and then projected to other languages. The 3rd 

language dictionaries were formed by the overlap of the translations (triangula-

tion). The lists were then manually filtered and expanded, either by other relevant 

terms or by their morphological variants, to gain a wider coverage. 

We run the analyser on the 12 sentences selected from the SemEval-2007 corpus. We 

used the above mentioned dictionaries, including the brain data. The results are shown in 

Table 6. 
 

Data Precision Recall F1 measure 

s1-abs 0.556 0.238 0.333 

s1-conc 0.833 0.238 0.37 

s2-abs 0.444 0.19 0.267 

s2-con 0.714 0.238 0.357 

s3-abs 0.333 0.143 0.2 

s3-con 0.778 0.333 0.467 

JRC 1 0.619 0.765 

GI 0.923 0.571 0.706 

SWN 0.706 0.571 0.632 

WNA 0.524 0.524 0.524 

MWN 0.625 0.238 0.345 

Table 6: Comparison of unsupervised analysis results obtained  
by brain data and various dictionaries. 

    

    In the case of using the JRC dictionary, all system judgments were correct or the system 

did not find any sentiment term resulting in a recall error. This corresponds to the fact that 

the system was developed to be precision-oriented. The correlation coefficient was r=0.688. 

Precision values achieved by subjects on concrete words outperform precision of WordNet-

Affect, sentiWordNet and Micro-WordNet. With the s3-con dictionary the correlation coef-

ficient was r=0.254. 

However, the performance of recall of human subjects is worse than the lexical resources, 

and this influences the final f1-measure. In general, the supervised approaches perform bet-

ter, as they can work with more information than the simple presence/absence of a word and 

there is the learning phase.  
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5 Conclusions 

In this paper we report exploratory experiments testing whether text valence can be reliably 

extracted from brain signals using EEG—at present, the only technology that can be ex-

pected to be usable to elicit brain information on a large scale, in particular when the new 

generation of low-cost headsets will appear. Our results demonstrated that the emotional 

valence information of words can indeed be extracted by wavelet decomposition coefficients 

and classified by machine learning with accuracy well above chance.  

We also carried out very preliminary experiments using lexical valence extracted from 

EEG for sentiment analysis of a small set of sentences from a standard dataset, using both 

supervised and unsupervised machine learning techniques. For those sentences at least, the 

precision achieved using lexical valence extracted from EEG is close to the one obtained 

using standard sentiment dictionaries such as WordNet Affect, senticNet or SentiWordNet. 

EEG-based sentiment analysis results are even better when using supervised learning. We 

conclude that the paradigm we propose might indeed develop into an alternative technique 

for collecting valence.  

Our next step will be to test these methods on a larger scale, in three respects. First of all, 

we started to use larger datasets of sentences from the sentiment analysis shared task at 

SemEval-2013; and to test our methods on Italian as well as English. Second, we started to 

also use adjectives, adverbs and verbs as stimuli. Last but not least, we started to investigate 

the effect of context on the valence of words such as rude that have a negative valence in 

sentences such as You’re being rude but a positive one in sentences such as I found him in 

rude health. We intend to study how the valences of emotional words are modified by dif-

ferent contexts and how their emotional categories change with contexts. We are also inter-

ested in investigating how the emotional words and emotional mood exert influence on sen-

tence processing and on the polarity of sentences, as it has been recently found that emo-

tional valence in a word and emotional mood of the participants inducted by film clips im-

pact the syntactic and semantic processing (Chwilla et al., 2011; Martín-Loeches, et al., 

2012). From a methodological perspective, we aim to improve the classification accuracy by 

selecting most informative channels and extracting other EEG features such as event-related 

potential and the reconstructed wavelet approximation and details of the EEG data. 
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