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1 Introduction

KorAP1 (Korpusanalyseplattform) is a corpus search and analysis platform for handling
very large corpora with multiple annotation layers, multiple query languages, and
complex licensing models (Bański et al., 2013a). It is intended to succeed the COSMAS II
system (Bodmer, 1996) in providing DEREKO, the German reference corpus (Kupietz
and Lüngen, 2014), hosted by the Institute for the German Language (IDS).2 The
corpus consists of a wide range of texts such as fiction, newspaper articles and scripted
speech, annotated on multiple linguistic levels, for instance part-of-speech and syntactic
dependency structures. It was reported to contain approximately 30 billion words in
September 2016 and still grows continually.
Krill3 (Corpus-data Retrieval Index using Lucene for Look-ups) is a corpus search

engine that serves as a search component in KorAP. It is based on Apache Lucene,4 a
popular and well-established information retrieval engine. Lucene’s lightweight memory
requirements and scalable indexing are suitable for handling large corpora whose size
increases rapidly. It supports full-text search for many query types including phrase and
wildcard queries, and allows custom implementations to cope with complex linguistic
queries.
In this paper, we describe Krill and how its index is designed to handle full-text

and complex annotation search combining different annotation layers and sources of
very large corpora. The paper is structured as follows. Section 2 describes how a
search works in KorAP (starting from receiving a search request until returning the
search results). Section 3 explains how corpus data are represented and indexed in
Krill. Section 4 describes various kinds of queries handled by Krill and how they are
processed for the actual search on the index. The Krill response format containing
search results is described in Section 5. We present related and further work in Section
6 and 7 respectively. The paper ends with a summary.

2 Search Flow

The KorAP architecture’s design is based on a microservice architecture comprising
small independent components that are easy to extend, to replace and to maintain
(Diewald et al., 2016). Figure 1 illustrates the KorAP architecture and the interactions

1https://korap.ids-mannheim.de/
2http://www.ids-mannheim.de/
3https://github.com/KorAP/Krill
4https://lucene.apache.org/
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Figure 1: The KorAP Architecture

among its components. In addition to the search engine Krill, the components include
a user interface (Kalamar), a query serializer (Koral), a user and resource policy
management system (Kustvakt) and a receptionist service (cf. Büttcher et al., 2010,
ch. 14.1.1) for the search engine to provide parallel search (Kanalito).
A KorAP search process starts by sending a query in a particular query language,

either using the Kalamar frontend or a direct API request to Kustvakt. Supported
query languages include COSMAS II (Bodmer, 1996), ANNIS (Rosenfeld, 2010), and
Poliqarp (a CQP variant; Przepiórkowski et al., 2004).
The query is then serialized by Koral resulting in a generic representation as Koral-

Query (Bingel and Diewald, 2015). Kustvakt may relay the KoralQuery to a single Krill
instance to conduct a search or to Kanalito for a parallel search of distributed Krill
instances. The actual search is performed in Krill, and query results are eventually
returned to the API endpoint and may be displayed in Kalamar.

Kustvakt is the API provider of KorAP managing the interaction of all components.
One of its primary tasks is to monitor user access to resources, and thus to guarantee the
retrieval of resources with respect to their intellectual property rights before commencing
a search (Bański et al., 2014). When a user request involves unauthorized resources,
Kustvakt may rewrite the corresponding KoralQuery in order to limit the query to
only those resources available to that user. Besides, it may inject values from user
preferences such as default annotation sources for each annotation layer. Because the
central user and license mechanism is done in Kustvakt and not in Krill, redundancy in
distributed search and re-implementation in different search component systems can be
avoided.

3 Index Representation

Krill, as it is based on Lucene, uses an inverted index5 to provide full-text search
capabilities in a corpus. In contrast to tools like grep, this approach does not treat
textual data as a sequence of characters, but as a sequence of tokens (most often
“words”). Thus, searching for these tokens provides direct access to the occurrence
of these tokens in a collection of documents. An inverted index consists of a term
dictionary (based on the tokens) with direct access to the associated information on the
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occurrence of a token in the corpus, so-called postings lists (see Fig. 4). While most of
the time the dictionary is kept in memory for fast access, postings lists are only loaded
(partially) in memory, everytime a term is retrieved as part of the query process.

Figure 2: KorAP data model

As a search component of KorAP, Krill indexes and
provides search on primary data (i.e. corpus text),
various layers of annotation data (e.g. lemma, part-of-
speech, constituent annotations) and metadata of the
resources. The KorAP data model (see Bański et al.,
2013b) separates primary data and annotations (i.e. a
standoff architecture) to allow for multiple, potentially
concurring layers of annotations (see Fig. 2).6 This
model is the foundation of the KorAP input format
KorapXML as well as the foundation of the Krill index
design.
Metadata provides information on the document-

level (cf. Zobel and Moffat, 2006), such as author in-
formation of a text or the publication date. The data
structure of the term dictionary for metadata depends
on the stored data type and the expected matching
operations. For example, publication dates may need
to be stored as numerical data to provide support for range queries (e.g. “Search in all
documents published since 1786”), while titles may be stored as full-text searchable
data (e.g. “Search in all documents containing the word ‘Reise’ in the title”), and
organizing the term dictionary for string data using hashes may be efficient, but may
also prevent access using regular expressions.
Metadata fields in Krill can have the following types:7

date Date field (e.g. publication date)
int Numerical integer field (e.g. number of tokens)

keyword Multiple strings (e.g. keyword tags)
store Retrieve-only value (e.g. associated file reference)
string Fixed string (e.g. text identifier)
text Tokenized full-text field (e.g. text title)

Annotation data provides information on the word-level of the text and is subdivided
into foundries denoting the resource of a certain annotation (e.g. the annotation tool
used to generate the annotation) that may contain multiple annotation layers. In KorAP,
a user can search for an annotation in a specific foundry and layer, by adding a prefix
to the query term, specifying the requested annotation, for example [mate/l=sun] to

5For a brief introduction to inverted indices for full-text search, see Zobel and Moffat (2006).
6Although Krill supports overlapping annotations, at the moment it is limited to one stream of
tokens (i.e. a single tokenization for all layers).

7Currently, metadata fields are defined by DEREKO. In the future, Krill will support arbitrary
metadata fields of the given types.
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Figure 3: Term structures for annotations in the Krill index

search for the term “sun” in the lemma layer of the Mate-foundry using the Poliqarp+
query notation (KorAP’s extension to Poliqarp).
To distinguish between annotations in the index, all annotation terms in the term

dictionary have foundry and layer prefixes (see Fig. 3, left). Annotations in Krill can
have the following types, specified as optional additional type prefixes to the dictionary
terms (see Fig. 3, right):

Token Token-level information terms
(e.g. the surface form of a term or the lemma)

Span Span-level information terms
(e.g. sentences or nominal phrases)

Relation Relational information spanning between terms and/or spans
(e.g. dependency relations)

Attribute Annotations to tokens, spans, or relations
(e.g. the href-attribute of an HTML anchor element)

Further annotation types are being considered, for example to describe punctuations.8
The document identifier and the starting position of the annotation are stored in the

postings list, along with additional retrievable information encoded in byte streams
(so-called payloads),9 for example the length of a span or the annotation a relation
refers to.

Additional information supported by all annotation types includes a leading byte for
term type identification, a unique token identifier, and a byte value indicating the level
of confidence of the annotation source.
Character offsets of tokens (relevant for matching highlights, see Sec. 5) are stored

once per token position. Span terms may store additional character offset information
in payloads, to include surrounding non-token characters, for example punctuation and
quotation marks.

8Krill does not support punctuation search yet. In the future, punctuations will be indexed as
attachements to surrounding tokens in order to keep searching for sequences of words simple.

9The documentation of payload byte streams is available at https://github.com/KorAP/Krill/blob/
master/misc/payloads.md.
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Figure 4: Example index representation of two documents, showing the term dictionary and the
postings lists

Figure 4 exemplifies the structure of the Krill index for two documents. Both
documents have a sequence of tokens (token stream), a token-level annotation and a
span-level annotation. The term dictionary contains all annotations including prefixes.
The associated postings lists are illustrated as lists of tuples starting with the identifier
of the text in which the annotation occurs, followed by occurrence-specific information,
that vary according to the annotation type. The surface terms (e.g. i:moon) and the
token-level annotations (e.g. the part-of-speech annotation corenlp/p=DT) store their
token position in the token stream. The span-level annotations (e.g. the constituency
annotation <>:corenlp/c=S) store their start and end positions, and the level in the
tree hierarchy, partially encoded in payloads.
An annotation as in Figure 4 would be encoded in the following structure:

<>:corenlp/c=NP$<b>64<i>0<i>8<i>2<b>1

This structure is expected by Krill when processing token streams. The prefix <>
denotes the span type, corenlp/c denotes the foundry and the layer, and NP denotes
the annotation value. $ splits the term dictionary part and the postings list part whose
structure may differ depending on the information needed to be stored. Everything that
follows $ is stored per token as a byte stream. The information in the angular brackets
defines the data type to decode the following information (<b> for byte, <i> for integer
etc.). The first byte (<b>64) introduces the payload identifier for denoting a span-level
annotation, the following two integers encode the character offsets of the annotation
(<i>0 to <i>8), the next integer contains the token position after the end of the span
(<i>2), and the final byte represents the depth of the annotation in a hierarchy (<b>1
means the annotation is a direct child to the root).
In KorAP, a separate internal preprocessing pipeline is used to enrich corpus data

(based on the I5 format of DEREKO; see Lüngen and Sperberg-McQueen, 2012) by
adding standoff annotations from multiple foundries (including CoreNLP, Mate or Xerox
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Figure 5: KoralQuery translation into Lucene applicable queries

parsers) resulting in KorapXML (Bański et al., 2012). A base foundry provides the
minimum annotation necessary for Krill, including sentences, paragraphs, and text
boundaries. The KorapXML data can be transformed into a JSON document consisting
of a single token stream of the Krill term structure described above by using a conversion
tool.10 The resulting JSON document can be indexed by Krill.
A Krill index is not static and is updated every time a new document is added or

deleted. Deletion is done by maintaining a list of deleted documents that are excluded
from every virtual corpus requested (see Sec. 4.1). The documents will be purged from
the index regularly as a defragmentation of the index. Moreover, Krill uses unique text
identifiers in the metadata for updates: documents are updated by deleting the old
version of a document and adding a new one to the index. As a consequence, every
modification of the document, such as an addition of annotations, will result in a new
version of the whole document.

4 Query Processing

KorAP is designed to handle various kinds of queries from existing corpus query
languages. These queries of different syntaxes are represented in a common format
by the KoralQuery protocol (see Sec. 2 and Bingel and Diewald, 2015) serialized in
JSON-LD (Sporny et al., 2014). KoralQuery describes complex linguistic queries as
nested objects with various types and operations. Krill is the reference implementation
for KoralQuery consumption, aiming for completely supporting it.
On the root level, KoralQuery distinguishes between document queries and span

queries. Document queries allow to specify a virtual corpus (i.e. a defined subcollection
of documents) by means of document-level metadata constraints (see Bański et al.,
2013b), while span queries define a textual span to search in the virtual corpus on the
word-level.

Figure 6 shows a KoralQuery document. The query section is a serialization of
the query [orth=sun][][orth=moon]? (Poliqarp notation). The collection section
defines a virtual corpus to limit the search to all documents where the author metadata
field contains the term “Goethe”, the pubDate field contains a date since 1786, and
10https://github.com/KorAP/Korap-XML-Krill
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1 {
2 " @context " : "http:// korap .ids - mannheim .de/ns/ koral /0.3/ context . jsonld ",
3 " collection " : {
4 " @type ": " koral : docGroup ",
5 " operation ": " operation :and",
6 " operands ": [{
7 " @type ": " koral :doc",
8 "key": " author ",
9 " match ": " match : contains ",

10 " value ": " Goethe "
11 },{
12 " @type ": " koral : docGroup ",
13 " operation ": " operation :and"
14 " operands ": [{
15 " @type ": " koral :doc",
16 "key": " pubDate ",
17 " match ": " match :geq",
18 "type": "type:date",
19 " value ": "1786"
20 },{
21 " @type ": " koral : docGroup ",
22 " operation ": " operation :or"
23 " operands ": [{
24 " @type ": " koral :doc",
25 "key": " title ",
26 " match ": " match : contains ",
27 " value ": " Reise "
28 },{
29 " @type ": " koral :doc",
30 "key": " title ",
31 " match ": " match : contains ",
32 " value ": " Wahlverwandtschaften "
33 }],
34 }]
35 }]
36 },
37 " query ": {
38 " @type ": " koral : group ",
39 " inOrder ": true,
40 " operation ": " operation : sequence ",
41 " operands ": [{
42 " @type ": " koral : token ",
43 "wrap": {
44 " @type ": " koral :term",
45 "key": "sun",
46 " layer ": "orth",
47 " match ": " match :eq"
48 }
49 },{
50 " @type ": " koral : token "
51 },{
52 " @type ": " koral : group ",
53 " operation ": " operation : repetition ",
54 " boundary ": {
55 " @type ": " koral : boundary ",
56 "max": 1,
57 "min": 0
58 },
59 " operands ": [{
60 " @type ": " koral : token ",
61 "wrap": {
62 " @type ": " koral :term",
63 "key": "moon",
64 " layer ": "orth",
65 " match ": " match :eq"
66 }
67 }]
68 }]
69 }
70 }

Figure 6: A KoralQuery document
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Figure 7: Bit vector calculation of the virtual corpus as defined in Figure 6 based on five documents

a title field that contains either the term “Reise” or “Wahlverwandschaften” (see
Diewald and Bingel, 2015, for the KoralQuery specification).
To process a query, Krill parses and validates the KoralQuery and transforms the

virtual corpus into applicable Lucene Filters and span queries into applicable Lucene
SpanQueries (see Fig. 5). The span query may need to be rewritten into an intermediate
query tree according to a query plan to be applicable. The following sections describe
these steps.

4.1 Document Queries

In Krill, every search is limited to a virtual corpus, therefore the virtual corpus is
prepared first based on the nested constraints in KoralQuery. Each constraint is
described by a key (e.g. “author” for the name of the author of a document), potentially
a value (e.g. “Goethe” as the author’s name), a matching operator, expressing how the
requested value has to match with the document’s value (e.g. as a prefix or a postfix)
and the type of the constraint (e.g. if the constraint represents a string match, a date
range, a regular expression; cf. Figure 6, line 7–10). These constraints can be nested in
groups of boolean operations. If no constraint is defined, the virtual corpus contains all
available documents.
For each metadata term in the term dictionary, a postings list of the documents is

stored in which the term occurs (see Sec. 3). As metadata information is stored on the
document level, postings lists for metadata information can simply be treated as bit
vectors with one bit per document in the corpus. In case a metadata term exists for one
document, the associated bit is set. Using bitwise boolean operations, arbitrary complex
virtual corpora can be constructed. Figure 7 shows the calculation of the virtual corpus
for the nested document query in Figure 6 based on five documents, using bitwise or
(|) and bitwise and (&). The resulting virtual corpus can be represented as a bit vector
itself, allowing for space-efficient caching.
The actual implementation of document level postings lists varies depending on

several factors (e.g. the density of documents or if a postings list is stored on disk or
cached in memory). For sparse cached postings lists (e.g. only a fraction of the corpus’
documents contain the word “Wahlverwandtschaften” in the title field) Lucene, starting
with version 5, implements bit sets as so-called Roaring bitmaps focusing on efficient
compression and fast bit operations (Chambi et al., 2016). Range queries as mentioned
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in the example above are precompiled as a disjunction of the postings lists of all terms
in the given range optimized using indexed postings lists of sub ranges (see Schindler
and Diepenbroek, 2008, pp. 1957f).

Operations on the virtual corpus include counting the number of texts in the virtual
corpus (equivalent to the cardinality of the bit vector), aggregating stored numerical
data (e.g. number of tokens, sentences, paragraphs in the virtual corpus), and grouping
of statistical data by certain metadata fields (e.g. the distribution of sentences per
genre in the virtual corpus). Document queries restrict span queries to documents that
are elements of the virtual corpus (see next section).

4.2 Span Queries

In addition to the document-level term index for metadata information, the word-level
term index for tokenized textual data requires more information than the existence in a
document, for example, the position of a certain token in a text (cf. Sec. 3). To find, for
example, a sequence of two words like “the sun” in a corpus, both terms are searched
in the term dictionary and their associated postings lists are analyzed in parallel, to
find matching documents and consecutive token positions that indicate a sequence of
these two tokens.
Krill supports various query constructs as specified in KoralQuery. Analogously to

document queries, these query constructs can be nested and become arbitrarily complex.
The resulting query tree consists of leaf nodes with term look-ups, returning the span
information of a term, and inner nodes of operations that can be applied on the nested
spans.
The result of a span query is always a span, meaning that it always contains infor-

mation on the start position, the end position, and additional optional information
in collected payloads. Operations may use this information to compare nested spans,
for example, if two tokens are consecutive in an operation requiring a sequence of two
tokens. Payloads may also be passed further to nested operations. Moreover, operations
are capable of adding new information to the span’s payloads.
If some spans satisfy the requirements of a span query, new spans are created and

returned, for example in the case of the consecutive tokens, a span starting at the first
token and ending at the last one is created as the resulting span.

Lucene implements such operations as so-called SpanQueries. While document queries
may use fast bit operations for matching, SpanQueries always iterate sequentially over
the postings lists of every term that is part of the query as well as every temporary
postings list, that is the result of a span operation.11

11Lucene uses deterministic SkipLists (Pugh, 1990; Munro et al., 1992) to improve performance of
moving forward to specific documents in postings lists, for example to skip documents that are
not part of the virtual corpus.
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Figure 8: A nested span query with its query tree visualization

To be able to fully support KoralQuery, the set of Lucene SpanQueries was largely
extended and new concepts (like classes) were introduced.12 Supported query constructs
in Krill can be categorized as follows:

Term queries index look-up of tokens, spans, relations, and at-
tributes (see p. 4), including regular expressions

Comparison queries include logical operations (and, or, not), distance
(matching two spans with a defined number of tokens
or spans in between), position (matching one span
in a positional relation to another, e.g. embedding
or overlapping), repetition (matching one span with
a defined sequential repetition), etc.

Span modification queries include extensions to left or right, etc.
Class queries include class setting and focus

Figure 8 shows a query in Poliqarp+ notation, searching for a sequence of the word
“the” (case-insensitive), followed either by the word “sun” or “moon”, and ending with
a coordinating conjunction (CC) annotated by the corenlp foundry. As a wrapping
constraint, the sequence needs to be at the beginning of a nominal phrase (NP) as
annotated by the corenlp foundry. In addition, a fragment of the query – the or-
relation of “sun” and “moon” – is marked as a class (using curly brackets) and at the
root of the query tree, this class is focused, meaning a match would return the span of
“sun” or “moon” without their contexts.

After the query is serialized as KoralQuery and transformed into Lucene SpanQueries,
the resulting query tree has the structure as illustrated on the right side of Figure 8.
Term look-ups are pictured as leaf nodes in white boxes.

12Recent versions of Lucene support a wider variety of query constructs, that were already introduced
to Krill, such as SpanWithinQuery.

72 JLCL



Krill

4.3 Query Planning

Because the constructs of the KoralQuery protocol have their origins in the various
corpus query languages covered by Koral that were developed for various corpus search
technologies (including concepts coming from regular expressions, relational databases,
XML processing and others), not all of these constructs can be directly translated into
a term based search. Therefore Krill has a planning phase to rewrite queries before
they get translated into actual Lucene SpanQueries.

[orth=sun] [] [orth=moon]?

The example query above13 requests a sequence of tokens, with the first having the
surface form sun, the second matching any token, and the last optionally matching the
surface form moon. The any token of CQP-based corpus query languages matches all
tokens in a token sequence (see [] in Evert and the OCWB Development Team, 2010,
p. 11). In a linear search, this query can recognize the context of the token sequence
and would accept any token as a match. An inverted index, however, has no knowledge
of linear contexts of token sequences, meaning this token is not directly retrievable from
the index or it would need to aggregate the postings lists of all surface terms in the
term dictionary.

The query planner translates any tokens in sequences into either distance operations
between the surrounding parts or, in case an any token is at the end or at the beginning
of a sequence, into extension operations, that simply extend the resulting span by a
certain number of tokens. For the example above, a distance of one token between
[orth=sun] and [orth=moon]? is added.

distance(+1, [orth=sun], [orth=moon]?)14

This query is however insufficient. Although the optional token [orth=moon]? at the
end of the example query is retrievable in case it occurs, it needs to be reformulated
to an or-relation operation to be processable in case it does not occur. For the case
[orth=moon] occurs, [][orth=moon]? could be redefined as an extension of one token
to the left of [orth=moon] and for the case it doesn’t occur, as an any token.

[orth=sun] (extend(-1, [orth=moon]) | [])

As described above, an independent any token is unretrievable. Thus, the or-relation
scope needs to be expanded to the whole query. The first case is reformulated as a
distance query of one token between [orth=sun] and [orth=moon], and the second as
an extension of one token to the right of [orth=sun].

distance(+1, [orth=sun], [orth=moon]) | extend(+1, [orth=sun])

13See the query section of Figure 6, line 37–69, for a KoralQuery serialization of the query.
14The illustration of the query plan is written as CQP based pseudo queries.
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Figure 9: Rewritten span query tree for the Poliqarp query [orth=sun][][orth=moon]?

The right extension (extend(+1, [orth=sun])) may exceed the length of a matching
text (imagine a text ending with the word “sun”). To prevent mismatches regarding
right extensions, the query planner introduces a new constraint requiring the result
being inside the text boundary as annotated by the base foundry. The final query tree
transformed into a Lucene SpanQuery is shown in Figure 9.

Not all valid KoralQuery requests can be successfully rewritten in the way described
above. In other words, not all valid queries can be answered by Krill. For example, Krill
will respond with an error to a query containing just a single any token ([]), and it will
respond with a warning to a query with a single optional token (e.g. [orth=moon]?),
saying the process will ignore the optionality of the query.
The query planning phase is also used for query optimization, whenever the reor-

ganization of the query tree can be beneficial to performance. In the example above,
retrieving the postings list for [orth=sun] twice may result in slower performance and
therefore could be rewritten to a different query plan.

5 Search Results

Although the search response format of Krill is based on JSON-LD,15 the text snippets
of each match are embedded as HTML fragments. In case of KWIC (Keyword in
Context) results, these fragments only contain the textual content and the match
marker. When retrieving further information about a match reconstructed from the
inverted index, the snippet can be enriched with multiple layers of annotations inline.16

Figure 10 shows a match of “die Sonne” containing information about the constituency
(c) layer of the corenlp foundry. API clients (like Kalamar) can easily parse this
information and process it in various ways, for example to show table views for token-
level information, or tree views for hierarchical spans and relations (see Fig. 11).

Classes (as introduced in the previous section) may also be used as partial highlights
of a match, to map sections of the query directly to parts of the match. Figure 11 shows
15The search response format of KorAP is not fully specified as part of KoralQuery yet.
16Krill makes a distinction between token-, span- and relation-based annotations. Only concurrent

retrieval of multiple token-based annotations is supported. Span- and relation-based annotations
can only be retrieved separately to avoid overlapping.
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1 <span class :"context -left"></span>
2 <mark>
3 <span title :" corenlp /c:CS">
4 <span title :" corenlp /c:ROOT">
5 <span title :" corenlp /c:S">
6 <span title :" corenlp /c:NP">die Sonne </span>
7 war
8 <span title :" corenlp /c:CAP">hoch und hei ß </span>
9 </span>,

10 <span title :" corenlp /c:S">
11 ich mu ß te
12 <span title :" corenlp /c:S">
13 <span title :" corenlp /c:NP"> meine Kleidung </span>
14 erleichtern ,
15 <span title :" corenlp /c:S">
16 die ich
17 <span title :" corenlp /c:PP">
18 bei der verä nderlichen Atmosph äre
19 <span title :" corenlp /c:NP">des Tages </span>
20 </span>
21 oft wechsele
22 </span>
23 </span>
24 </span>
25 </span>
26 </span>
27 </mark>
28 <span class :"context - right "></span>

Figure 10: Match snippet with enriched annotation from corenlp/c

a search result in the frontend component Kalamar for the query [corenlp/p=ART]
({1:Sonne} | {2:Mond}) [] (Poliqarp+ notation), which has two numbered classes (in
curly brackets). Depending on the matching term, “Sonne” and “Mond” are underlined
using different colors.

6 Related Work

Corpus search differs from typical information retrieval (e.g. web search) in terms of
relevance and ranking. Whilst information retrieval aims to obtain relevant resources
and ranks its results by the degree of relevance, there is typically no variation in the
degree of relevance of corpus search results. Corpus search focuses on accuracy and
only correct matches with 100% accuracy are regarded as results.

Many corpus search engines such as the IMS Corpus Workbench (CWB) and Poliqarp
are based on a tabular data model whose rows represent token sequences and columns
various annotations. CWB4 or Ziggurat attempts to overcome the limitations of CWB3
that can only handle up to 2.1 billion tokens and to meet all the CQLF metamodel levels
by extending the CWB3 data model extensively (Evert and Hardie, 2015). However,
to simplify the data model representation, access, and implementation, it would be
limited to work only with static corpora where the tokenization and annotation values
cannot be modified and the documents cannot be added to or deleted from the indexed
corpora. Moreover, corpora cannot be combined into a single virtual corpus.
Relational databases are deemed to have problems to scale up to large corpora,

particularly with billions of words (Evert and Hardie, 2015). Ghodke and Bird (2008)
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Figure 11: Screenshot of the Kalamar Frontend

76 JLCL



Krill

illustrate this problem by comparing query execution time between a native XML DB
(eXist) and a relational database (Oracle). Their experiments show that the query
execution times of both approaches increase greatly as the dataset size increases. Recent
evaluations have shown however, that parallelization can be a reasonable approach in
dealing with these issues (Schneider, 2012). Besides, Davies (2005) suggests that his
n-gram table approach has no limitations on the corpus size and the number of annota-
tion tables and works very fast on pattern matching and synonym queries. However,
Evert and Hardie (2015) argue about its redundancy issue and capability to handle
more complex linguistic data structures. ANNIS (Zeldes et al., 2009) supports complex
linguistic annotations, but it has only been tested with relatively small annotated
corpora.17

XML database technologies such as BaseX and eXist rely heavily on XQuery and
XPath to navigate and extract data from XML documents. Using XPath to query data
with multiple stand-off annotation files is rather ineffective due to the need to resolve
pointers between the files repeatedly (Mayo et al., 2006). The re-implementation of
NXT’s query language using XQuery (NQL, Mayo et al., 2006) is shown to be able to
load about four times more data than the former NXT Search with Java implementation
(Carletta et al., 2005) while utilizing the same memory size. However, using XQuery
with stand-off data format decreases the speed performance in executing queries (Mayo
et al., 2006).

Krill is based on prior research on the applicability of Lucene for complex linguistic
corpus search tasks (Schnober, 2012). During the development of Krill, similar Lucene-
based search engines emerged, like BlackLab18 and MTAS.19 BlackLab also supports
multiple query languages (e.g. CQL, Lucene QL), but only basic features have been
supported yet.20 MTAS is a new corpus search engine in its early stages with support
for distributed search using Apache Solr.21

7 Further Work

To support horizontal scalability in KorAP, multiple Krill instances can be utilized in
a document-partitioned cluster for distributed search managed by Kanalito, that is
still under development (see Sec. 2). With the introduction of this receptionist service,
more features will be available, like facet search and methods for sorting, that have
been already supported by COSMAS II. In addition, statistical analysis of query results
through frequency and co-occurrence are in preparation.
We plan on evaluating Krill performance, for instance in terms of searching and

indexing with regard to corpus size and in comparison to other corpus search systems,

17https://corpling.uis.georgetown.edu/annis-corpora/
18http://inl.github.io/BlackLab/
19https://meertensinstituut.github.io/mtas/
20https://github.com/INL/BlackLab/wiki/Blacklab-query-tool
21http://lucene.apache.org/solr/
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such as COSMAS II. We also plan an evaluation of the scope of supported query
constructs, especially with respect to the work on CQLF (Bański et al., 2016).

8 Summary

We have described Krill, a search component in KorAP, and its interaction with other
components in the KorAP architecture. Krill is based on Lucene and uses an inverted
index to perform full-text search. We have extended Lucene to support a wide range of
corpus query operations on multiple annotations, and the flexible creation of virtual
corpora. Krill is open source, available on GitHub22 and published under the BSD-2
License. Despite being developed in the context of KorAP, Krill can be used as a
stand-alone application.
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