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Abstract

Many natural language processing systems rely on machine learning models that are
trained on large amounts of manually annotated text data. The lack of sufficient
amounts of annotated data is, however, a common obstacle for such systems, since
manual annotation of text is often expensive and time-consuming.
The aim of “PAL, a tool for Pre-annotation and Active Learning” is to provide a

ready-made package that can be used to simplify annotation and to reduce the amount
of annotated data required to train a machine learning classifier. The package provides
support for two techniques that have been shown to be successful in previous studies,
namely active learning and pre-annotation.
The output of the pre-annotation is provided in the annotation format of the an-

notation tool BRAT, but PAL is a stand-alone package that can be adapted to other
formats.

1 Introduction

Some artificial intelligence systems rely heavily on human intelligence in the form of
training data that is collected by manual annotation. Within the field of natural language
processing and computational linguistics, this data collection is typically performed
through different kinds of manual annotations of text. Manual text annotation is,
however, often an expensive and time-consuming task. The lack of sufficient amounts
of manually annotated data that can be used for training machine learning classifiers is
therefore a common obstacle.

There are a number of techniques that can be used to reduce the amount of annotated
data required for training a machine learning classifier and to simplify the annotation
process. Two examples of such techniques are i) the selection of training samples that
are informative to the classifier by the use of active learning, and ii) pre-annotation of
the data. These techniques are not included as a standard procedure in text annotation
projects, presumably because annotation tools typically do not include this functionality.
The aim of the development of the PAL package presented here is therefore to take
the first step towards changing this standard. The package uses active learning and
pre-annotation to facilitate annotation of text chunks. The package is tailored towards
the annotation format of text chunks in the annotation tool BRAT (Stenetorp et al.,
2012), but it is written as a stand-alone package that can be adapted to other formats.
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2 Background

There is a large amount of previous studies on active learning, as well as a number of
studies in which pre-annotation has been used, but to the best of our knowledge there
are no freely available code packages that can be directly used to apply both of these
techniques.

The objective of this paper is to present “PAL, a tool for Pre-annotation and Active
Learning”, which provides this functionality. Since the tool is built on established
techniques, an evaluation of the techniques incorporated in the tool is not within the
scope of this paper. Instead, references to previous studies are given.

The main inspiration for PAL was provided by Olsson (2008), who shows the usefulness
of active learning for annotation of text chunks and who recommends the use of pre-
annotation. The usefulness of active learning was however shown purely by simulation,
and no tools for performing active learning or pre-annotation were provided.

2.1 Other approaches for obtaining manually annotated data

Apart from the two techniques mentioned, there are also other possible approaches
for obtaining large resources of manually annotated data in a low-resource project.
Examples of such techniques are crowd sourcing, community annotation and gamification.
However, we argue that the use of these approaches is neither possible nor desirable in
all cases.
Manually annotated training data is often collected by the use of crowd sourcing

platforms such as Amazon Mechanical Turk. There are several problems associated
with this approach (Fort et al., 2011; Archambault et al., 2016). Most important is
the ethical issue, i.e., criticism against annotation projects that are carried out by very
low-paid annotators. Another concern is the skills required, as it might be difficult to
find crowd sourcing annotators with specialised skills, for instance in linguistics, the
domain of the text, or annotators that speak the specific language required. This means
that the use of crowd sourcing is not a universal solution to the problem of creating
enough annotated textual data in a low-resource project.
Another approach is to use community annotation (Uzuner et al., 2010), i.e., to

share the annotation task among many annotators by distributing it to a number of
researchers in a community. There are disadvantages associated with this approach as
well, for instance that it entails a large portion of administrative work and that it is
not efficient for difficult annotation tasks, for which initial training phases are required.
Another possibility is to gamify the annotation, i.e., to apply game design principles to
the task. By making the annotation more fun, there is a potential to gain voluntary
annotators (Hanbury et al., 2015). This approach has, for instance, been applied to
word sense labelling (Venhuizen et al., 2013) and to identify important expressions in
medical case reports (Dumitrache et al., 2013). Yet not all annotation tasks are possible
to gamify, at least not effortlessly.
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2.2 The type of annotations targeted

The PAL package is meant to be used for annotations of named entities or other types
of shorter chunks of text.

The aim could be to create annotated corpora, which in turn can be used for training
a classifier to detect the types of text chunks annotated. That is, the machine learning
classifier should i) automatically detect interesting tokens (or chunks of interesting
tokens) in a text, and ii) automatically categorise these tokens into pre-defined classes.
Annotation and detection of named entities such as names of people and places (Nadeau
and Sekine, 2007), or of tokens that signal specific functions in a language such as
marker words for negation and speculation (Konstantinova et al., 2012) are examples
from previous studies.
Another aim could be to create annotated corpora, on which to perform corpus

linguistic studies of language phenomena that are expressed through shorter text
chunks. Examples of such annotation tasks from previous corpus linguistic studies
are annotations of spans of tokens that express attitude (Taboada and Carretero,
2012), evaluation (Fuoli and Hommerberg, 2015), or sensory perceptions (Paradis and
Eeg-Olofsson, 2013).
It should be noted that the use cases for annotating these two types of corpora are

different. When the aim is to create a corpus for training a machine learning classifier,
it is enough to annotate an actively selected subset of the corpus, whereas the entire
corpus must be annotated in a corpus study. Otherwise it will not be possible to draw
statistically valid conclusions from the annotations. As suggested by Olsson (2008), the
methodology when annotating the entire corpus is i) to annotate an actively selected
subset of the corpus to achieve a model that can perform pre-annotation with a high
accuracy, and ii) to use pre-annotation to annotate the remaining part of the corpus.
To create a corpus for training a classifier, only the first step has to be carried out.

2.3 Pre-annotation

Pre-annotation, or pre-tagging, refers to the procedure to automatically annotate a
text corpus by using an existing automatic system and to present these annotations
to the human annotator. The human annotator then typically corrects mistakes or
omissions made by the automatic system (Chou et al., 2006; Henriksson et al., 2015), or
alternatively makes a choice between different options given by the automatic system
(Brants and Plaehn, 2000).

The pre-annotation could be built on a rule-based system, such as a system that
performs rule-based matching against an existing lexicon (Albright et al., 2013). This
approach does not require annotated data. It could also use an existing machine learning
system, which may be trained on data from another text domain (Henriksson et al.,
2015). A third option is to use pre-annotation based on a machine learning model
and to iteratively improve the pre-annotation by retraining it on the new data that is
created in the annotation process (Tomanek et al., 2012).
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For the task of named entity annotations within the medical domain, lexicon-based
pre-annotation has led to an increase in annotation speed, ranging from 14% to 22%
per entity for different experiments (Lingren et al., 2014). The same study also included
an investigation of whether the pre-annotation functionality biased the annotators, but
no bias that stemmed from the pre-annotations could be detected.

2.4 Active learning

Active learning is a technique that is used to reduce the number of training samples
that are required to successfully train a machine learning model. The standard method
used for manual text annotation is to randomly select which data samples to annotate.
For active learning, the training data samples that are estimated to be most useful for
the machine learning classifier are instead actively selected from a pool of unlabelled
data (Tomanek, 2010).

The estimation of which data samples in the pool that are most useful can, for instance,
be based on the level of disagreement among a number of different classifiers (query
by committee). That is, the more different classifiers disagree, the more informative is
the sample likely to be (Olsson, 2008, pp. 25–29). The estimation can also be based
on properties specific to the type of model that is used. When using support vector
machines, the unlabelled sample closest to the separating hyperplane of the classifier
can be selected, which is the sample that is expected to result in the largest model
change when added to the training set (Tomanek, 2010; Tong and Koller, 2002).
Another frequently used method for active selection is uncertainty sampling. This

technique is built on active selection of the unlabelled training samples that the machine
learning model is least certain of how to classify. The approach for a binary classification
task is then to select samples for which the classifier has no clear classification preference.
One option for a multi-class classification task is to use the confidence for the most

probable class as the measure of uncertainty. However, this option only uses the
certainty level of the most probable classification. Thereby, some of the information
available is discarded, i.e., the information regarding the certainty levels of the less
probable classifications (Settles, 2009). An alternative approach is to base the sample
selection for a multi-class classifier on the difference in certainty level between the two
most probable classifications. Given cp1 as the most probable classification and cp2 as
the second most probable classification for the observation xn, the margin for measuring
the uncertainty of that sample would then be:

Mn = P (cp1|xn)− P (cp2|xn) (1)

Samples with a large margin (Mn) are easy to classify since the classifier is much
more certain of the most probable classification than of the second most probable.
Samples with a small margin, on the other hand, are difficult to classify. Therefore, in
the process of uncertainty-based active selection of training samples, samples with a
small margin are preferred (Schein and Ungar, 2007).
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This kind of uncertainty selection, based on the confidence difference between the
two most probable classifications, is the sampling method that is implemented in the
current version of the PAL package.

2.5 Functionality of previous annotation tools

Among 13 annotation tools included in an annotation tool survey from 2012 (Neves and
Leser, 2012), only two (JANE and WordFreak) provide functionality for active learning.
JANE does not provide a functionality for pre-annotations (Tomanek et al., 2007), and
WordFreak only provides pre-annotation performed by pre-defined NLP tools that are
independent of the annotation task, e.g., part-of-speech tagging (Morton and LaCivita,
2003).

Among the tools included in the survey, there are others that provide a pre-annotation
functionality, typically based on lexicon-matching. There are also more recent annotation
tools that either provide the functionality of lexicon-based pre-annotation (Campos
et al., 2013) or the functionality of active learning (Kucher et al., 2016).

A disadvantage with pre-annotation based on lexicon-matching is that this approach
relies on the existence of a lexicon in the domain of the annotation task. The approach
is therefore limited to domains in which such a lexicon exists. There are also tools that
pre-annotate without a lexicon, e.g., WebAnno (Yimam et al., 2014). For this tool,
the pre-annotations are performed by a machine learning model that is trained on the
labelled data provided by the annotator, and the model is iteratively re-trained with
more data as more text is manually annotated.
PAL combines the functionality of i) a tool such as WebAnno, in which the pre-

annotations are provided by models trained on data that is annotated when using the
tool, with ii) the functionality of tools such as JANE and WordFreak, in which data
selection through active learning is carried out. We are not aware of any previously
constructed, freely available, chunk annotation tools in which these two functionalities
are combined.

3 Method

The general functionality of the PAL package consists of training a classifier to select
suitable data to annotate from a pool of unlabelled data and to carry out pre-annotation
of this data. The pre-annotated data can then be loaded into the BRAT tool, to be
revised by the human annotator.

3.1 Active learning and pre-annotation

The PAL package is structured around three different data folders:

1. The labelled folder, which contains the data that has been manually labelled.

2. The unlabelled folder, which contains the pool of unlabelled data.
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Figure 1: Files and folders that are to be available when a project starts.

3. The tolabel folder, to which the pre-annotated, actively selected data is written.

When a project starts, it must contain the data and the folders that are shown in
Figure 1. In the labelled folder, there must be at least one file containing the seed set of
annotated data, which is required to start the active learning process. In the example
in Figure 1, the seed set is split into three different files of annotated data. The file
that contains the pool of unlabelled data must be called unlabelled.csv and must be
positioned in the unlabelled folder.
When the process of active learning and pre-annotation is run, all .csv-files located

in the labelled folder are used to train a machine learning model. This model is then
employed to perform the active selection of training samples and the pre-annotation.
Data samples to be labelled are selected from the file unlabelled.csv, pre-annotated and
written to the three files that are created in the tolabel folder, as shown in Figure 2.
These three new files receive a name containing their creation timestamp. The two
files named brat_tolabel_20160928_174414.ann and brat_tolabel_201609_28174414.txt
contain the pre-annotated data in BRAT format. That is, those two files are the ones
that can be directly imported into BRAT for manual annotation. The file unlabelled.csv
is also updated and does not any longer contain the data samples that have been
selected for annotation. That is, the selected data samples have been removed from the
pool of unlabelled data. A copy of the original version of the unlabelled data is also
created, the file unlabelled_20160928_174414.csv in the unlabelled folder.
The data in the .csv-files must be available in tab-separated format in which the

data has been tokenised with each token on a separate line. The data must also be
segmented into sentences with an empty line signalling a sentence break. See Figure 5
for an example of the data format. The tokens are expected to be labelled according to
the BIO-format (Jurafsky and Martin, 2008, pp. 763–764), i.e., a token could be the
Beginning of, Inside or Outside of a named entity (or of another type of text chunk).
The data samples in the active selection process consist of the sentences. This means
that text units in the form of a number of tokens that are separated by an empty line
are the units which are selected in the active sampling process.
In the current version of PAL, there are two types of machine learning classifiers to

be chosen from, one structured and one non-structured. The following is a step-by-step

6 JLCL86 JLCL



PAL, a tool for Pre-annotation and Active Learning

Figure 2: Files and folders created by running active learning and pre-annotation.

description of how the active learning and pre-annotation process is carried out for the
non-structured classifier:

1. A machine learning model is trained using the data in the .csv-files that are
located in the labelled folder.

2. The data located in the unlabelled folder is classified with this model. For each of
the N tokens in the unlabelled data (tn)N

n=1, there will be an observation in the
form of the features for this token, i.e., (xn)N

n=1. For each of these observations,
the model provides a probability score for every category in the data.

3. The sentences in the unlabelled data are then ranked according to the uncertainty
sampling criterion described in Equation 1, i.e., Mn = P (cp1|xn) − P (cp2|xn).
This is carried out by measuring the difference in probability score between the
most likely classification and the second most likely classification for a token. A
sentence is represented by the lowest M-value among the tokens it includes, and
the sentences are ranked according to this M-value.

4. The k sentences with the k lowest M -values are selected. The value of k (the
number of sentences to select in each iteration) is determined by the user in a
settings file (see Section 3.2).

5. To achieve a variation among the k samples selected, the same word predicted as
belonging to another class than the Outside class is only allowed to occur once
among the sentences selected. If such a re-occurring word is present among the
sentences selected, the lowest ranked sentence containing this word is removed
from the selected set. The sentence that is removed is replaced by the sentence
next in rank, i.e., the sentence ranked at position k + 1.

6. The k selected sentences are pre-annotated according to the classification made
by the machine learning model.
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Figure 3: An example of pre-annotated text for the two entity categories consisting of marker words
signalling speculation and contrast, which is imported and displayed in BRAT.

7. The pre-annotated sentences are written to the tolabel folder, in a tab separated
format and in the BRAT-format.

The same selection procedure is carried out for the structured model, except that the
classifications are not made on token level, but on sentence level. M is thereby not
computed for the difference in probability score between different token classifications,
but between different sentence level classifications. In addition, to reduce the processing-
time of the system, only a subset of the alternative sentence classifications are taken
into account when computing M .
The pre-annotated sentences can then be opened in BRAT, as shown in Figure 3.

This allows the human annotator to carry out the annotation, which then consists of
correcting and supplementing the pre-annotations. Figure 4 shows how an incorrect
pre-annotation is deleted.1

3.2 Configuring and running PAL

To run the package, a directory for the project needs to be created. This directory needs
to contain the directories with labelled and unlabelled data (as shown above), as well

1In the BRAT options menu, different annotation modes can be selected. The recommendation is
to not use the Careful mode, since this mode prompts the user for a confirmation every time an
annotation is removed.
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Figure 4: The annotator uses BRAT to delete the incorrect pre-annotations.

as a settings.py file with configuration information. The most important configuration
parameters are described here.2

# Classes to include with their prefix (B or I).
# Classes, apart from "O" the outside-class, not in this list, will be ignored
minority_classes = ["B-speculation", "I-speculation", "B-contrast", "I-contrast"]

# Number of sentences to be actively selected and pre-annotated in each round
# (referred to as k above)
nr_of_samples = 20

# Type of model to use
model_type = NonStructuredLogisticRegression

# The context around the current word to
# include when training the classifiers
number_of_previous_words = 2
number_of_following_words = 1

# A cut-off for the number of occurrences of a token in
# the data for it to be included as a feature (current and context-token)
min_df_current = 2
min_df_context = 2

2See the readme-file of the package, for a full description of additional configuration parameters.
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The settings.py file needs to include at least 1) the classes that represent named entities
or other types of relevant text chunks that are to be included in the active learning
and pre-annotation process, 2) the number of samples to select in each iteration of
the active learning process (referred to as k above), 3) the type of model (structured
or non-structured), 4) the number of context tokens to include when constructing the
feature vector for a token, and 5) the minimum number of occurrences of a token (and
a context token) for it to be included in the vector model constructed for the tokens
occurring in the data (see Section 3.3).

The functionality for selecting and pre-annotating samples can then be run with the
following command, in which the location of the data and the settings file is specified:

python active_learning_preannotation.py --project=data.example_project

The data files that are created by this command (the .txt and the .ann files) can then
be moved to the BRAT data folder to make it available for the annotator to select for
annotation.3

When the annotator has finished the annotation/correction of the pre-annotated files,
they can be transformed back to a tab separated format and positioned in the folder
with annotated data with the following command (on one line, without line breaks):

python transform_from_brat_format.py
--project=data.example_project
--annotated=my_brat_path/data/example_project/brat_tolabel_20160928_174414

The name brat_tolabel_20160928_174414 is the path to the .txt-file and to the human-
annotated version of the .ann-file, but without the suffices. The two files must be
positioned in the same folder.

3.3 Models and feature representations

The PAL package is written in Python 3. It is developed to be used in a Unix
environment, and it has been tested on Ubuntu 12.04.5.

There are currently two types of machine learning models that are supported by PAL,
a logistic regression model (Bishop, 2006) and a conditional random fields model (Sutton
and McCallum, 2006). The logistic regression model is built on the LogisticRegression
class of the Scikit-learn library. This library includes, among many other components,
Python classes for performing non-structured prediction (Pedregosa et al., 2011). The
conditional random fields model is built on the ChainCRF class that is available in
the PyStruct library, which is a library that contains a number of Python classes for
performing structured prediction. A structured prediction model takes the structure of
the output labels into account for training the classifiers and performing the predictions
(Müller, 2013). The ChainCRF model is an implementation of a linear-chain conditional
random fields model, in which an output variable is only directly dependent on its
immediate neighbours (Sutton and McCallum, 2006, p. 9).

3See the BRAT user documentation for more information about this.
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n (Token Word Label
number)
.. .. ..
21 it O
22 ’ O
23 s O ← previous context token
24 not B-speculation ← previous context token
25 completely I-speculation ← current token
26 sure I-speculation ← following context token
27 . O

28 Another O
29 sentence O
.. .. ..

Current token Context -2 Context -1 Context +1
x25 = [ 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 ]

Figure 5: An example that shows how the feature vector for token number 25 is constructed, i.e.,
x25. In this example, the user has configured PAL to include a context in the form of two
preceding tokens and one following token. That is, number_of_previous_words=2 and
number_of_following_words=1. The words used for constructing the feature vector are
marked with bold and colours. The vector representations of these words are concatenated
to form the feature vector x25. See Figure 6 for an example of how vector representations
for words are constructed.

What features to use for training and predicting the label of a token, i.e., the ob-
servation vector xn, is decided by the parameters number_of_previous_words, num-
ber_of_following_words, min_df_current, and min_df_context in the settings-file.
Two different matrices that represent the words in the labelled data are created, using
the CountVectorizer class of the Scikit-learn library. One of the matrices contains the
vector representation of the tokens for which a label is to be predicted and the other
matrix contains the vector representation of the context tokens (Figure 5). Each word
that occurs at least min_df_current times in the labelled corpus receives its unique
vector representation in the matrix for the current tokens and each word that occurs at
least min_df_context times in the labelled data receives a unique vector representation
in the matrix for context tokens. Such a vector representation is exemplified in Figure 6.
The feature vector to use for training and prediction (the observation vector xn)

is constructed by concatenating the vector representation of the current token with
the vector representations of the tokens surrounding it. How many surrounding to-
kens to include is decided by the setting parameters number_of_previous_words and
number_of_following_words (See Figure 5).
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Word From labelled corpus
be [ 1 0 0 0 0 ]
completely [ 0 1 0 0 0 ]
not [ 0 0 1 0 0 ]
s [ 0 0 0 1 0 ]
sure [ 0 0 0 0 1 ]

Figure 6: Matrix of vector representations of words in a very small, hypothetical corpus. In this
corpus, only five words occur frequent enough to be included in the matrix. The value of
“frequent enough” is decided by the user configuration, i.e., by the variables min_df_current
(if the matrix is a representation of words when they occur as the current token) and
min_df_context (if the matrix is a representation of words when they occur as the context
tokens).

3.4 Incorporation of unsupervised approaches

Information harvested in an unsupervised fashion from unlabelled corpora has for a long
time (Miller et al., 2004; Freitag, 2004) been used as classifier features for improving
the performance of named entity recognition and other types of chunk classification
tasks. For instance, information from Brown clustering has been used for biomedical
entity recognition (de Bruijn et al., 2011), predictive class bigram model clustering for
general named entity recognition in several languages (Täckström et al., 2012), Random
Indexing for named entity recognition in clinical text (Henriksson, 2015), and different
kinds of word embeddings have been used for recognising opinion targets (Liu et al.,
2015).

The PAL package has support for adding unsupervised features through the Gensim
library (Řehůřek and Sojka, 2010). PAL can be configured to append external vector
representations from Gensim to the feature vectors. This functionality has so far only
been tested with vectors from an out-of-the-box word2vec model for English, which has
been trained on Google news (Mikolov, 2013; Mikolov et al., 2013).

3.5 Availability
The tool is freely available to clone or download from GitHub at:
https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning

PAL makes use of three external libraries, which all are freely available:4

1. For training the machine learning models for performing structured prediction,
the PyStruct library is used (Müller and Behnke, 2014).

2. For performing non-structured prediction and for vectorising the data, the Logis-
ticRegression and the CountVectorizer classes of the Scikit-learn library are used
(Pedregosa et al., 2011).

4See the readme-file of PAL for a description of how to install them.
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3. For incorporating unsupervised features, the Gensim library is used (Řehůřek and
Sojka, 2010).

These libraries are in turn dependent on cvxopt, numpy and scipy.

4 Discussion and future work

Although PAL incorporates a number of functions to facilitate annotation, the tool can
still be improved and extended. There are, for instance, possible limitations of the design
decisions applied and potential problems with the general approach of pre-annotation.

4.1 Design decisions

One potential issue is the level of technical knowledge that is required to use PAL. No
programming skills are required to configure and run PAL, but knowledge of how to
use a Unix command line and how to modify a settings file is required. These two skills
are, however, also required for configuring the BRAT annotation tool. Therefore, since
the target users of PAL are those that typically would configure BRAT, or a similar
annotation tool, the technical skills required for using PAL should not be a problem
for its target users. There are other annotation tools that incorporate active learning,
which provide a graphical user interface by which settings can be altered and by which
actively selected annotation batches can be generated (Kucher et al., 2016). To add
such a functionality to PAL would extend its group of target users.
Another design decision is that PAL is constructed as a stand-alone tool for pre-

annotation and active learning and that it is not fully integrated with an annotation
tool. This design decision has the advantage of making the package more flexible to
adapt to other annotation tools. The only modification that has to be carried out is
the transformation of the output files that are generated by PAL to the format of the
other annotation tool.

4.2 Potential problems with the use of pre-annotation

As stated above, there are studies in which pre-annotation has been shown to increase
the speed of annotation without introducing a bias (Lingren et al., 2014) and annotation
studies in which pre-annotation has been applied successfully (Albright et al., 2013). In
contrast, other studies have shown that pre-annotation has had no effect on the time
taken (South et al., 2014) or that pre-annotation has slowed down the annotators due
to the low quality of the pre-annotations provided (Ogren et al., 2008). There are also
cases where high-quality pre-annotations have been shown to be successful in general,
with an increase in annotation speed and general annotation quality, but where the
pre-annotations have reduced the annotator attention and resulted in a bias (Fort and
Sagot, 2010).
The first of these two potential problems, i.e., that low quality pre-annotations are

slowing down the annotator, is not a limitation for the functionality provided by PAL. If

JLCL – Band () 13JLCL 2016 – Band 31 (1) – 81-100 93



Skeppstedt, Paradis, Kerren

the annotator does not consider the pre-annotations to be beneficial, the pre-annotation
functionality can be switched off by removing the content of the .ann-file created by
PAL. The quality of the pre-annotations might, for instance, be too low in the early
stages of the annotation process when there is only a limited amount of annotated
data available for training the machine learning model. The methodology proposed by
Olsson (2008) is to start the process of annotating for active learning without providing
pre-annotation and to introduce the functionality of pre-annotation when the model
has reached a certain level of performance. The risk of providing pre-annotations that
are not useful would then be minimised.

The usefulness of the pre-annotation functionality provided by PAL has so far been
tested in an initial annotation project. A corpus of 6,000 sentences was annotated for
text chunks signalling topic-independent expressions of agreement and disagreement,
according to a previously defined annotation scheme (Skeppstedt et al., 2016). A seed
set that contained 1,500 sentences was first annotated with BRAT without the use of
the pre-annotation functionality. The remaining sentences were then annotated with
the help of pre-annotation. The quality of the pre-annotation was in this case assessed
by the annotator as high enough to be useful.

The issue that pre-annotation might introduce a bias is a more serious problem. This
problem is, however, not unique to PAL, but is a problem shared by all tools that
provide pre-annotations. We have previously published an outline for an annotation
interface for text chunk annotation that would alleviate this problem (Skeppstedt,
2013). The idea is to always provide two alternative pre-annotations to the annotator,
i.e., the two pre-annotations that are assessed as most probable by the pre-annotation
functionality. No information will however be given to the annotator regarding which
of these two possible pre-annotation choices is considered the most probable one. The
annotator will thereby always be forced to make an active choice, and will not be biased
towards an annotation decision made by the pre-annotation functionality.

The next step for the PAL tool will be to implement and evaluate this functionality.

4.3 Additional future work

Future work also includes the addition of functionality for creating the initial seed set
that is required for starting the active learning process. In the current version of PAL,
it is assumed that random selection of training data is applied to create this initial seed
set. While this procedure is the standard technique used when applying active learning,
it should be mentioned that there is research on other methods for creating a seed set.
Knowledge of existing vocabularies can be leveraged, for example, by selecting seed
set samples that contain instances of these vocabulary terms (Tomanek et al., 2007).
There are also techniques that use unsupervised machine learning approaches to create
the seed set. For instance, by clustering the unlabelled data and constructing the seed
set by selecting data samples from different clusters, a more diverse seed set can be
achieved (Debarr and Wechsler, 2009). These types of techniques can also be used in
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the process of active selection of data samples (Symons et al., 2006; Settles and Craven,
2008)

Another branch of active learning research is concerned with techniques for estimating
when the addition of more training data samples no longer contributes to an increase
in classifier performance. There are a number of techniques for performing such an
estimation (Olsson, 2008), but none of them are included in the functionality currently
provided by PAL.

Apart from uncertainty sampling, there are also many other methods for performing
active learning, as mentioned in the background. Although these methods are not
included in the current version of PAL, its code structure makes it easy to add other
PyStruct and Scikit-learn classifiers, as well as other methods for performing active
learning. We hope that this will inspire others to further develop the package with
classifiers and active learning methods that suit their annotation and classification
tasks.
Yet another topic for possible future work includes a practical evaluation of the

benefit for the user of the functionality provided by the PAL package. As previously
mentioned, the package has been used for annotating text chunks signalling agreement
and disagreement in a corpus of 6,000 sentences. The functionality provided by PAL was
found useful in this context, but the annotation was performed by the developer of PAL,
which makes the assessment of PAL’s usefulness likely to be biased (Munzner, 2008).
Instead, usability studies of PAL should be performed with independent annotators
and for different types of annotation tasks.

5 Conclusion

Although there are a number of techniques for simplifying text annotation and for
reducing the amount of data required for training a machine learning classifier, these
techniques are not included as a standard procedure in text annotation projects. The
reason may be that they are typically not included by default in annotation tools.
The aim of “PAL, a tool for Pre-annotation and Active Learning” is to take the

first step towards changing this standard. The package provides a functionality that
includes pre-annotation and active selection of training data.

The output of the pre-annotation is provided in the annotation format of the annota-
tion tool BRAT, but it is a stand-alone package that can be adapted to other formats.
The tool is freely available to clone or download from GitHub at:
https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning.
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