Arne Neumann

Merging and validating heterogenous, multi-layered corpora with

discoursegraphs

Abstract

We present discoursegraphs, a library and command-line application for the conversion
and merging of linguistic annotations written in Python. The software reads and writes
numerous formats for syntactic and discourse-related annotations, but also supports
generic interchange formats. discoursegraphs models primary data and its annotations
as a graph and is therefore able to merge multiple independent, possibly conflicting
annotation layers into a unified representation. We show how this approach is beneficial
for the revision and validation of a corpus with multiple conflicting, independently
annotated layers.

1 Introduction

Linguistic annotations are produced using a plethora of tools. Most of these tools focus
on one type of annotation or were even developed with a specific corpus or research
project in mind and use their own file formats.

To ensure that the annotations are usable beyond the lifespan of the original anno-
tation tool or project, we might consider to convert the dataset into an interchange
format that is more suitable for long-term archival, such as FoLiA (van Gompel and
Reynaert, 2013), GrAF (Ide and Suderman, 2007) or PAULA (Dipper, 2005). We might
also want to transform annotations to make use of modern corpus visualisation and
query tools like brat (Stenetorp et al., 2012) or ANNIS (Krause and Zeldes, 2014). Both
tools can visualise several independent annotation layers at the same time, but rely on
custom file formats not supported by most annotation tools.*

While it is possible to write direct converters for all the formats we would like to
map, this is not only time consuming, but also leads to information loss, e.g. when
converting from a syntax representation that allows edge labels or secondary edges to
one that does not.

It is therefore more desirable to use an intermediate representation that is theory
neutral and capable of handling many different types of annotation.? This not only
drastically reduces the number of converters that need to be written but also enables us

LFor ANNIS, this problem is solved by SaltNPepper (Zipser and Romary, 2010), a conversion framework
provided by the same group of developers.

2This is not a new idea. Graph-based intermediate representations of linguistic annotations were
proposed at least as early as Ide et al. (2003).

JLCL 2016 — Band 31(1) - 101-103 101



Neumann

to serialise this intermediate model into an interchange format from which the original
annotation files could be recreated without losing information.

To achieve this we developed discoursegraphs, a converter and merging tool for
linguistically annotated corpora. Via its intermediate, graph-based object representation,
the software is able to transform data between a number of syntax and discourse-related
annotation formats.®> Furthermore, discoursegraphs allows the user to merge several
independently produced and potentially conflicting layers of annotation into a unified
graph representation. The tool is implemented in Python and available under the open
source BSD license from its repository website.*

The remainder of this paper is structured as follows. Section 2 introduces the graph-
based data structures used in discoursegraphs and their application in data conversion.
In Section 3, we describe how to merge data from different annotation formats and types
into a single graph. Section 4 shows how to use this merged representation to simplify
the process of validating and revising heterogeneous annotations of a multi-layered
corpus. Section 5 concludes the paper and suggests paths for further research.

2 Graph-based modeling of annotated corpora

Using graphs to represent linguistically annotated corpora goes back at least to Bird and
Liberman (1999), who showed that a wide range of existing linguistic annotation formats
and tools had a “common conceptual core” which could be represented as annotation
graphs. This way, it becomes possible to separate the model of an annotation from
its serialisation format. Such a model expresses the logical structure of an annotation
and may range from the very informal (e.g. a drawing on a blackboard) to the very
formal, e.g. a visualisation defined in a markup language like the ISO-standardised
UML (ISO/IEC 19501, 2005).

Over the years, a number of graph-based models and accompanying formats for the
representation of linguistic annotations have been proposed, i.a. PAULA (Dipper, 2005),
LAF/GrAF (Ide and Suderman, 2007; ISO 24612, 2012), TCF (Heid et al., 2010), Salt
(Zipser and Romary, 2010) and FoLiA (van Gompel and Reynaert, 2013).°

What all of these graph-based representations have in common is that they can model
multiple layers of (conflicting) annotations including phenomena like overlapping and
non-contiguous spans as well as multi-rooted trees — phenomena which are particularly
hard or even impossible to express with inline XML, e.g. TigerXML (Mengel and Lezius,
2000), or column-based formats such as CoNLL (Haji¢ et al., 2009).

3In other words, discoursegraphs is neither build upon an existing linguistic exchange format nor
does it offer any new intermediate format. Instead, the library reads documents in existing formats
into Python objects representing property graphs and manipulates those graphs to convert the
input documents into other existing formats.

4https://gi1:hub.corn/arne—cl/discoursegraphs. It can also be installed via Python’s pip package
manager and as a docker container.

5A comparison is beyond the scope of this paper. For a very thorough overview see Stiihrenberg
(2012).

102 JLCL


https://github.com/arne-cl/discoursegraphs

Merging and validating multi-layered corpora

The question which model or format one should choose given all these similarities is
not easy to answer. Good evaluation criteria might be:

Model specificity: TCF (an XML format for data exchange between linguistic web
services) is very specific in that it defines a number of annotation layers that
it supports (e.g. constituency parsing and discourse connectives) but it is not
intended to add custom layers, e.g. for handling Rhetorical Structure Theory
(Mann and Thompson, 1988) or Abstract Meaning Representation (Banarescu
et al., 2013). GrAF, on the other hand, is intentionally abstract. The format
allows you to encode any type of annotation that can be expressed using nodes,
directed edges and arbitrary labels (in the form of feature structures that can
be attached to both nodes and edges). This freedom comes with a price, as it
leaves the burden to interpret the meaning of annotations to tool developers, cf.
Neumann et al. (2013). Both SaltNPepper and discoursegraphs adopt a middle
position, allowing users to build custom annotation layers but at the same time
force them to type each edge (choosing only from a small predefined set of relation
types, cf. Section 2.1). This way, tools can visualise and query previously unseen
layers of annotation in a meaningful way.

Tool support: Formats like GrAF were conceived as abstract, broadly applicable stan-
dards, for which numerous converters, but no annotation, visualisation or query
tools exist. In contrast, formats like FoLiA and Salt were introduced with specific
corpora or projects in mind and are supported by a wider range of tools (built
primarily for those corpora or projects). In addition to the type and number of
tools available for a format, one might also consider the programming language
the tools are implemented in when looking for the most suitable annotation model
or format for one’s project. With interpreted languages like Python, it is generally
easier to manipulate, query and visualise the annotated data interactively® than
it is with compiled languages like C++ and Java.”

We will now introduce the specific graph model used in discoursegraphs and give an
overview over the formats it can currently read and write.
2.1 Data structures in discoursegraphs

The discoursegraphs toolkit is implemented on top of NetworkX (Hagberg et al., 2008),
which is a graph library implemented in pure Python.® discoursegraphs is based on

SThis is hugely facilitated by interactive computing environments like Jupyter (Pérez and Granger,
2007) that provide much of the ground work needed.

"Interactive computing in compiled languages is nevertheless possible, e.g. with Cling for C++
(https://root.cern.ch/cling) or JVM-based languages like Scala and Clojure which are interop-
erable with source code written in Java.

8Other graph libraries available for Python like igraph (Csardi and Nepusz, 2006) and graph-tool
(Peixoto, 2015) are implemented in C and C++, respectively. While this makes them compu-
tationally more efficient, it also makes them harder to install, extend and debug, at least from
the perspective of a software that is aimed at users with a background in linguistics rather than
software engineering.

JLCL 2016 — Band 31 (1) - 101-103 103


https://root.cern.ch/cling

Neumann

the property graph model (Rodriguez and Neubauer, 2010), which is also used in graph
databases like neo4j®.

A property graph is a directed, labeled and attributed multi-graph. More formally, it
can be represented as a tuple G = (V, E, R, S, 3, Av, Ag, 1) with

%4 a set of vertices (i.e. nodes)

EC(VxV) a set of directed edges

R a set of attribute keys

S a set of attribute values

b a finite alphabet of labels

Av V=X a mapping from a node to a node label

A E— % a mapping from an edge to an edge label

pw: (VUE)x R— S a mapping from nodes/edges and keys to values

While node labels (usually strings or integers) are used to uniquely identify a node
within a graph, edge labels (or edge types as they are called in discoursegraphs) enable
us to express different kinds of (linguistic) relationships between nodes (e.g. dominance
vs. coreference).

Allowing for multiple edges between nodes gives us the flexibility to model multiple
layers of annotations, say phrase structure and rhetorical structure, over the same
primary data. For example, there might be two nodes representing constituents in the
syntax layer, while the same nodes may represent the nucleus and satellite of a relation
in the rhetorical structure layer.*°

Key-value pairs (also known as attribute-value pairs) make it possible to attach
arbitrary information to nodes and edges, e.g. to add part-of-speech and lemma
annotations to a token node. To make the software as broadly applicable as possible,
we added optional namespaces for keys. This allows us, for example, to annotate tokens
with multiple part-of-speech annotations from different tag sets, e.g. penn:pos=vbz
vs. brown:pos=doz.!! Namespaces are also used to merge multiple possibly conflicting
annotations over the same nodes.

One particularly important attribute we use in discoursegraphs is the layer. Each
node and edge is assigned to at least one layer, usually named after the type of
annotation (e.g. syntax), the format (e.g. tiger) or tool the data was imported from
(e.g. mmax).

Layer attributes are particularly useful to limit the scope of a query. Like other
key-value pairs, layers can use namespaces for instance to distinguish multiple
layers of annotation imported from the same tool (e.g. mmax:coreference vs.
mmax:informationstatus).

9http://neodj.com/

OFor a different example, see Figure 3 where two nodes are connected by two different edges, one
dominance relation between the constituents NP and N, and another edge representing a span
relation between a named entity annotation node and the token node that it covers.

1 Here, penn:pos=vbz means that the token was annotated with the tag vbz and that this tag is used
in the penn namespace (i.e. the Penn Treebank tagset). brown:pos=doz refers to the tag doz in the
Brown Corpus tagset. Both tags represent a third person singular verb in the present tense.

104 JLCL


http://neo4j.com/

Merging and validating multi-layered corpora

The main data structure of the discoursegraphs library is the DiscourseDocumentGraph,
which represents a document (e.g. a newspaper article or any other contiguous passage
of written text) and all the annotations made to it.

A document can have any number of annotations (even if they are of the same
type, e.g. multiple, potentially conflicting syntax trees produced by different parsers
or human annotators), as long as they refer to the same tokenisation of the primary
text. While this limits the applicability of the framework for corpora that depend on
multiple tokenisations (e.g. diachronic and parallel corpora), it allows us to easily check
heterogeneous, multi-layered annotations for consistency (see Section 4).

A DiscourseDocumentGraph contains a set of nodes and a set of directed edges.
Nodes can represent tokens or any higher order structure built on top of them e.g.
spans of tokens or (interior) nodes in a phrase structure tree. The directed edges signal
relationships between those nodes. In discoursegraphs, we distinguish between four
types of edges (cf. Figure 1):

Spanning relation: A span groups adjacent tokens into a logical unit, e.g. when anno-
tating a phrase, named entity or other multi-word expression. A spanning relation
consists of a span node with outgoing edges to each of the token nodes belonging
to that span.

Dominance relation: While spans are used for ‘flat’ annotations applied to contiguous
tokens, the concept of dominance is used to express a broad range of hierarchical
relations between annotation nodes. For example, dominance relations hold i.a.
between categories and subcategories in a constituency parse tree, between the
head and its dependants in a dependency parse tree or between nucleus and
satellite in a rhetorical structure tree.

Pointing relation: Pointers express a non-hierarchical relation between two nodes. They
can e.g. be used to link an anaphor to its antecedent in a coreference relation or
to signal a secondary edge, i.e. a syntactic relationship between nodes that are
not in a direct dominance relation.

Precedence relation: In syntax trees and other tree-like annotations, the topological
order of all nodes can be inferred from the order of the tokens in the annotated
text. If the same annotations are represented as a directed graph, the ordering
information gets lost unless it is explicitly encoded. This is done by adding
precedence relations between each token and the token that succeeds it (as well
as one precedence relation from the document root node to the first token node,
thereby forming a directed path).

Using only these four basic edge types, a wide range of linguistic phenomena can be

modeled in a single graph data structure. DiscourseDocumentGraphs allow parallel
edges, i.e., there can be more than one edge from node v to node v. Having typed

JLCL 2016 — Band 31 (1) - 101-103 105



Neumann

edges gives us a number of advantages over untyped linguistic annotation models such
as LAF'2:

Conversion without ambiguity: When converting between two annotation formats with
similar use cases (e.g. two treebank formats), it might not be necessary to type
the annotations, as both formats will have means to deal with both token order
and hierarchy. When converting data from a generic annotation format (used for
archival purposes) to a domain-specific format though, this understanding is lost.
Without typed edges, a converter cannot know what kind of relation two linked
nodes are in, cf. Zipser and Romary (2010); Neumann et al. (2013).

Generic visualisation: Although it is very common to draw graphs, they are, in essence,
abstract mathematical structures with many possible ways to visualise them (graph
isomorphisms). In order to visualise a large variety of linguistic annotations, we
could either implement many domain-specific visualisations or simply rely on the
edge types to implement just a few visualisations that are ‘good enough’ for most
purposes, cf. Krause and Zeldes (2014). Precedence relations tell us the order of
the leaf nodes (tokens) in our graph, which we will align horizontally. Dominance
relations express hierarchy and can therefore be used to align nodes vertically.
Pointing relations are non-hierarchical (i.e. they can link any two nodes of the
graph) and are therefore best drawn using curved lines to avoid collisons with
(straight) hierarchical edges.

Expressive queries: Without typed edges, we could only use very generic graph queries
on our annotation graphs (e.g. “Does node A have a path to node B of length
n?”). With types, we can instead ask questions that are linguistically motivated,
i.e. “Does node A directly or indirectly dominate node B?”.

discoursegraphs provides simple indexing structures for often needed data, such as
ordered lists of all tokens and root nodes of all sentences. This way, we avoid having to
traverse the whole graph for simple operations like calculating the frequency distribution
of the POS tags of all the tokens in a document. Here is an example of how to implement
such a function':

import discoursegraphs as dg

from collections import Counter

docl = dg.corpora.pcc.get_random_document ()

freqdist = Counter()

for token_id in docl.tokens:
freqdist[docl.node[token_id] [’tiger:pos’]] += 1
freqdist.most_common()

12LAF does allow typed nodes and edges, but does neither specify nor recommend any types. MASC
(Ide et al., 2010) — the de facto reference corpus for the GrAF format — does not use edge types.
30f course, this is already implemented in the library.

106 JLCL



Merging and validating multi-layered corpora

document root

Figure 1: Example document annotated with phrase structure and coreference using all types of
relations (directed edges) available in discoursegraphs. Dominance relations (black)
hold between the document root node and the root nodes of the sentences it contains,
as well as between constituents and subconstituents of a phrase structure. Spanning
relations (orange) hold between preterminal nodes (constitutents) and their children
(tokens). A pointing relation (purple) is used to signal coreference. Precedence relations
(green) make the order of tokens in the text explicit.

Here, docl is a document graph representing all the annotation layers of a single
document from the PCC corpus and docl.tokens is an ordered list of node IDs of all
token nodes. The node IDs are then used to retrieve and count the POS tags of the
tokens (i.e. values of the attribute key tiger:pos).

2.2 Converting between annotation formats

The data structures in discoursegraphs are capable of modeling many different types
of annotations and are therefore well suited to act as an intermediate representation
between two formats. This not only allows the library to merge multiple layers into
a single graph for joint analysis, it also drastically reduces the amount of converters
needed. While we would need to implement up to n? —n converters for mapping directly
to and from n formats, we only need 2n converters (one importer to and one exporter
from the intermediate representation for each format).'* So far, discoursegraphs can

4 As one reviewer correctly pointed out, n? — n is a purely theoretical upper limit. In practice,
one would rather chain several converters than implement a direct converter for every possible
combination of formats. This way, fewer converters would need to be implemented but each
additional conversion step increases the risk of losing data.

JLCL 2016 — Band 31(1) - 101-103 107



Neumann

import corpora from the following tools and formats:

(i.) constituent and dependency structures: Tiger-XML (Mengel and Lezius, 2000),
Penn Treebank (Prasad et al., 2008) and CoNLL 2009/2010 (Haji¢ et al., 2009;
Farkas et al., 2010)

(ii.) rhetorical structure: RSTTool’s (O’Donnell, 2000) rs3 and rst/dis formats

(iii.) pointing relations (e.g. coreference, connectives): formats from the MMAX2 (Miiller
and Strube, 2006) and ConAno (Stede and Heintze, 2004) annotation tools

(iv.) annotations of spans of text: EXMARaLDA (Schmidt, 2004).

The library also comes with a number of exporters that can be used to convert the data
into formats used by other visualisation and (linguistic) analysis tools:

(i.) general purpose graph formats like dot (Ellson et al., 2002), GEFX'®, GML'
and GraphML (Brandes et al., 2013)

(ii.) linguistic interchange formats CoNLL 2009 and PAULA XML 1.1 (Zeldes et al.,
2013),

(iil.) the geoff format of the neo4j graph database

(iv.) EXMARaLDA’s exb format.

3 Merging annotation layers

In discoursegraphs, it is possible to work with different annotation layers of the same
text (e.g. a constituent parse tree and coreference information) individually, such that
each layer or file is parsed into its own DiscourseDocumentGraph. This is useful for
exploring a specific annotation layer, e.g. if the user needs to find out how certain
attributes are named. The library tries to normalise attributes names (e.g. part-of-
speech annotations are always called pos and never P0S, tokens are referred to as token
and not tok), but in case of doubt one can simply run the info() function on any
DiscourseDocumentGraph. It will show how many nodes and edges are present in a
graph, as well as the attributes they have and the (sub)layers they belong to.

If, on the other hand, the user wants to explore interactions between independent
layers or files, she will need to merge them into a single graph. In Figure 2 the graph
representations of two different annotation layers of the same sentence are shown. Each
node has an ID, and contains a number of attributes (begin and end signal the character
offsets of a token node or of the token nodes that this node dominates or spans).

1Phttp://gexf .net/format/
10nttp: //www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html

108 JLCL


http://gexf.net/format/
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html

Merging and validating multi-layered corpora

N1
name=ROOT
begin=0
end=18

N2
ner=PERSON
begin=0
end=4

C5

tok=hated

POsS=VBD
begin=5

N4 ->C5
tok=hated
begin=5
end=10

N3->C3
tok=John
begin=0
end=4

N5->C7
tok=himself
begin=11
end=18

(b)

Figure 2: Two simplified document graphs representing the constituent parse tree (a), as well as
the named entity and coreference annotation (b) of the sentence “John hates himself".
The coreference is signaled by a pointing relation (purple).

Generally speaking, when merging two graphs, discoursegraphs will keep the first
one (Figure 2a) mostly unchanged, while the nodes and edges of the second one (Figure
2b) are renamed and moved to match the first one.

As the first step, the token nodes of the second graph will be renamed to match
the tokens of the first one. Since discoursegraphs requires annotation layers to use
the same tokenisation for merging, we can simply iterate over all token nodes in both
graphs simultaneously to do so. Figure 2b shows the node IDs before and after this
step, e.g. the token himself has the ID N5 before renaming and C7 afterwards.

In the second step, all nodes and edges from the second graph will be added to the

first one (Figure 3a, new elements are highlighted in blue). Nodes with the same ID
will be merged, i.e. additional attributes from the second graph’s node will be added to
the first one.
Finally, non-token nodes that cover the same span of tokens are merged. Merged
nodes are drawn with a double circle, with attributes added from the second graph
highlighted in bold. Note that edges are not merged, as they can carry different
meanings. For example, in Figure 3b we can see two edges between the nodes C2 and
C3, one representing a dominance relation between a noun phrase and a proper noun
John and the other representing a spanning relation between a PERSON named entity
annotation and the token that it covers (also John).

JLCL 2016 — Band 31 (1) - 101-103 109



Neumann

Cc1/N1
cat=s
name=ROOT
begin=0
end=18

N1
name=ROOT
begin=0

end=18

Cc2/N2
cat=NP
ner=PERSON
begin=0
end=4

N2
ner=PERSON
begin=0
end=4

c5

tok=hated
pos=VBD
begin=5

end=10

C5
tok=hated
pos=VBD
begin=5
end=10

(a) A graph containing the constituent parse tree, as (b) A merged graph containing the con-
well as the named entity and coreference annotation stituent parse tree, as well as the named
of the example sentence. entity and coreference annotation of the

example sentence.

Figure 3: A simplified document graph of the sentence “John hates himself" containing multiple
layers of annotation, before and after merging annotation nodes that cover the same span.
Elements added from the second graph are drawn in blue.

With this merged graph, we could now analyse interactions between syntax and
coreference, between syntax and named entities or between coreference and named
entities, respectively.

4 Validating heterogeneous annotation layers against each other

The graph merging facilities of discoursegraphs can be used for corpus maintenance,
i.e. for finding errors in existing annotations and ensuring the consistency of the data
across independently annotated layers.

We successfully employed the software to revise the multi-layered Potsdam Commen-
tary Corpus (PCC, Stede (2004); Stede and Neumann (2014)). In its current version, it
contains syntax, coreference, connectives and rhetorical structure annotations of 176
German newspaper commentaries. The corpus was not created as the result of a funded
project and has seen many (small) contributions over the course of more than a decade.
Annotators often worked on their own computers and were even allowed to edit files
manually (i.e. with a text editor instead of a dedicated annotation tool). Access to
version control systems could not be taken for granted and annotation guidelines were

110 JLCL



Merging and validating multi-layered corpora

updated over the years. Inevitably, this has lead to some problems which had to be
addressed during the revision.

First, we had to rename all files from all annotation layers according to the same
naming scheme and ensure that they use the same encoding and line endings. Afterwards,
we were able to automatically parse the different annotation files for a given newspaper
commentary to check whether they used identical tokenisations.!”

This way, we found several types of tokenisation inconsistencies:

Intentionally altered tokens: Spelling mistakes were manually corrected (at times with
comments) by some annotators, but not on all layers.

Unintentionally altered tokens: Some tokens contained soft-hyphens instead of regular
hyphens or featured diacritics where there should be none.

Missing or added tokens: These were mostly caused by manually corrected grammatical
errors that were not present in all layers.

After fixing the tokenisation in the original source files, we leveraged the graph data
structure to find errors in the annotations with respect to their connectivity:

Unreachable nodes: We found a number of tokens in the syntax annotation that were
not connected to the constituency parse tree.

Superfluous edges: Coreference is usually annotated in chains, but we found numerous
entities that were part of several coreference chains. In the case depicted in Figure
4, this can be either explained as an annotation error (i.e. the annotator wanted
to build a chain but overlooked the nearest preceding coreferent entity) or tell us
that not all entities of this “coreference cluster” are strictly coreferent. In Figure
4, this is the case for “Chancellor and Foreign Minister”, who are members of
“the government” but do not represent it as a whole.

Errors in manually edited, XML-based annotation files could often be found by forcing
the XML parser to be strict, hereby finding elements that were never closed or closed
too early.!® Additionally, misspelled attribute names can be discovered by looking for
infrequently occurring ones.

While revising a corpus becomes easier with discoursegraphs, it is still a laborious
task that cannot be fully automated. With the knowledge that we gained and the tools
that are available today, many of the issues we faced could have been avoided with a
few precaution steps:

Primary data: Always keep the original data, so it never becomes necessary to guess
which changes might have happened along the way.

7 The original HTML files from which the corpus was sourced were no longer available, so our best
guess was to compare against the files that contained the tokenised but otherwise unannotated
commentaries.

8 This is the default in discoursegraphs for all XML-based formats.

JLCL 2016 — Band 31(1) - 101-103 111



Neumann

sie
they
ihre der Regierenden von Kanzler und Auenminister
their the rulers of Chancellor and Foreign Minister
beide der Regierung
both the government

N/

auf Schroder und Fischer
on Schroder and Fischer

Figure 4: A graph representing three (wrongly) annotated coreference chains which share some
nodes. If we accept that “Chancellor and Foreign Minister” and “the government” are
coreferent, all the entities in this graph should be merged into one coreference chain.

Version control: This will help to clarify who made which changes and which annotation
guidelines were used at that time.

Web-based annotation tools: With modern annotation tools like brat, WebAnno (Yi-
mam et al., 2013) and rstWeb (Zeldes, 2016), annotators don’t have access to the
source files, so they cannot manipulate them.

Automatic validation: It is vital to provide means to validate the data automatically,
e.g. via Document Type Definitions (DTDs) or XML Schema Definitions (XSDs).
Such definitions can also be learned post-hoc from existing XMLs with tools like
the XML-Schema-learner'? (Nordmann, 2011), which allow researchers to correct
existing inconsistencies.

i

Error guidelines: It needs to be clearly stated how annotators should deal with “errors’
in the collected primary texts. In historic corpora, for example, there is a clear
distinction between diplomatic and normalised transcription of the primary data.

5 Conclusion and future work

We have presented discoursegraphs, a library for the conversion and merging of
linguistic annotations and have shown how this software facilitates the merging, revision
and validation of multi-layered corpora.

In the future, we would like to add performance-oriented graph backends (e.g. igraph
or graph-tool), so that a user of the library can profit from the easy debugability of
NetworkX during the implementation of an importer or exporter, but use faster backends

19https://github. com/kore/XML-Schema-learner

112 JLCL


https://github.com/kore/XML-Schema-learner

Merging and validating multi-layered corpora

later on in production. We will also try to provide a web interface for the most common
functions of the library, as users without (Python) programming experience can so far
only access the format conversion capabilities via the current command-line interface.

References

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K.,
Palmer, M., and Schneider, N. (2013). Abstract meaning representation for sembanking.
In In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse. ACL.

Bird, S. and Liberman, M. (1999). A formal framework for linguistic annotation. technical report
ms-cis-99-01. Technical report, Linguistic Data Consortium, University of Pennsylvania.

Brandes, U., Eiglsperger, M., Lerner, J., and Pich, C. (2013). Graph markup language
(GraphML). In Tamassia, R., editor, Handbook of Graph Drawing and Visualization. CRC
Press.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1-9.

Dipper, S. (2005). XML-based Stand-off Representation and Exploitation of Multi-Level
Linguistic Annotation. In Berliner XML Tage, pages 39-50.

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. (2002). Graphviz—open
source graph drawing tools. In Graph Drawing, pages 483-484. Springer.

Farkas, R., Vincze, V., Méra, G., Csirik, J., and Szarvas, G. (2010). The CoNLL-2010 shared
task: learning to detect hedges and their scope in natural language text. In Proceedings
of the Fourteenth Conference on Computational Natural Language Learning—Shared Task,
pages 1-12. Association for Computational Linguistics.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In Varoquaux, G., Vaught, T., and Millman, J., editors,
Proceedings of the Tth Python in Science Conference (SciPy2008), pages 11-15, Pasadena,
CA USA.

Hajic, J., Ciaramita, M., Johansson, R., Kawahara, D., Marti, M. A., Marquez, L., Meyers, A.,
Nivre, J., Padé, S., Stépéanek, J., et al. (2009). The CoNLL-2009 shared task: Syntactic and
semantic dependencies in multiple languages. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared Task, pages 1-18. Association for
Computational Linguistics.

Heid, U., Schmid, H., Eckart, K., and Hinrichs, E. W. (2010). A corpus representation format
for linguistic web services: The d-spin text corpus format and its relationship with iso
standards. In LREC.

Ide, N., Fellbaum, C., Baker, C., and Passonneau, R. (2010). The manually annotated sub-
corpus: A community resource for and by the people. In Proceedings of the ACL 2010
conference short papers, pages 68-73. Association for Computational Linguistics.

JLCL 2016 — Band 31(1) - 101-103 113



Neumann

Ide, N., Romary, L., and de la Clergerie, E. (2003). International standard for a linguistic
annotation framework. In Proceedings of the HLT-NAACL 2003 workshop on Software engi-
neering and architecture of language technology systems-Volume 8, pages 25—-30. Association
for Computational Linguistics.

Ide, N. and Suderman, K. (2007). GrAF: A graph-based format for linguistic annotations. In
Proceedings of the Linguistic Annotation Workshop, pages 1-8. Association for Computational
Linguistics.

ISO 24612 (2012). Language Resource Management — Linguistic Annotation Framework.
International Standards Organization, Geneva, Switzerland.

ISO/IEC 19501 (2005). Information technology — Open Distributed Processing — Unified
Modeling Language (UML). International Standards Organization, Geneva, Switzerland.

Krause, T. and Zeldes, A. (2014). ANNIS3: A new architecture for generic corpus query and
visualization. Literary and Linguistic Computing.

Mann, W. C. and Thompson, S. A. (1988). Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243—-281.

Mengel, A. and Lezius, W. (2000). An XML-based Representation Format for Syntactically
Annotated Corpora. In Proceedings of the 2nd International Conference on Language
Resources and Evaluation (LREC 2000).

Miiller, C. and Strube, M. (2006). Multi-level annotation of linguistic data with MMAX2. In
Braun, S., Kohn, K., and Mukherjee, J., editors, Corpus technology and language pedagogy:
New resources, new tools, new methods, pages 197-214. Peter Lang.

Neumann, A., Ide, N., and Stede, M. (2013). Importing MASC into the ANNIS linguistic
database: A case study of mapping GrAF. In Proceedings of the Seventh Linguistic
Annotation Workshop (LAW), pages 98-102. Association for Computational Linguistics.

Nordmann, K. (2011). Algorithmic learning of XML Schema definitions from XML data.
Diploma thesis, Technische Universitdt Dortmund, Dortmund, Germany.

O’Donnell, M. (2000). RSTTool 2.4: a markup tool for Rhetorical Structure Theory. In
Proceedings of the 1st International Conference on Natural Language Generation (INLG
2000), pages 253-256. Association for Computational Linguistics.

Peixoto, T. P. (2015). The graph-tool python library.
hitps://figshare.com/articles/graphiool /1164194.

Pérez, F. and Granger, B. E. (2007). IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21-29.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A. K., and Webber, B. L.
(2008). The Penn Discourse TreeBank 2.0. In Proceedings of LREC 2008.

Rodriguez, M. A. and Neubauer, P. (2010). Constructions from dots and lines. Bulletin of the
American Society for Information Science and Technology, 36(6):35-41.

Schmidt, T. (2004). Transcribing and annotating spoken language with EXMARaLDA. In
Proceedings of the LREC-Workshop on XML based richly annotated corpora, Lisbon, pages
69-74.

114 JLCL



Merging and validating multi-layered corpora

Stede, M. (2004). The Potsdam Commentary Corpus. In Proceedings of the 2004 ACL Workshop
on Discourse Annotation, pages 96-102. Association for Computational Linguistics.

Stede, M. and Heintze, S. (2004). Machine-assisted Rhetorical Structure Annotation. In
Proceedings of the 20th International Conference on Computational Linguistics (COLING
2004 ), pages 425-431. Association for Computational Linguistics.

Stede, M. and Neumann, A. (2014). Potsdam Commentary Corpus 2.0: Annotation for Discourse
Research. In Ninth International Conference on Language Resources and FEvaluation,
Reykjavik, Iceland. European Language Resources Association (ELRA).

Stenetorp, P., Pyysalo, S., Topi¢, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012). brat: a
‘Web-based Tool for NLP-Assisted Text Annotation. In Proceedings of the Demonstrations
Session at EACL 2012, Avignon, France. Association for Computational Linguistics.

Stithrenberg, M. (2012). Auszeichnungssprachen fir linguistische Korpora: theroretische
Grundlagen, De-facto-Standards, Normen. PhD thesis, Bielefeld University.

van Gompel, M. and Reynaert, M. (2013). FoLiA: A practical XML Format for Linguis-
tic Annotation-a descriptive and comparative study. Computational Linguistics in the
Netherlands Journal, 3:63-81.

Yimam, S. M., Gurevych, I., de Castilho, R. E., and Biemann, C. (2013). WebAnno: A Flexible,
Web-based and Visually Supported System for Distributed Annotations. In ACL (Conference
System Demonstrations), pages 1-6.

Zeldes, A. (2016). rstWeb—A Browser-based Annotation Interface for Rhetorical Structure
Theory and Discourse Relations. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstrations, pages
1-5.

Zeldes, A., Zipser, F., and Neumann, A. (2013). PAULA XML Documentation: Format Version
1.1. Research Report, hal-00783716, https://hal.inria.fr/hal-00783716.

Zipser, F. and Romary, L. (2010). A model oriented approach to the mapping of annotation

formats using standards. In Workshop on Language Resource and Language Technology
Standards, LREC 2010.

JLCL 2016 — Band 31(1) - 101-103 115



