
Osama Hamed and Torsten Zesch

A Survey and Comparative Study of Arabic Diacritization Tools

Abstract

Modern Standard Arabic, as well as other languages based on the Arabic script, are usually
written without diacritics, which complicates many language processing tasks. Although many
different approaches for automatic diacritization of Arabic have been proposed, it is still unclear
what performance level can be expected in a practical setting. For that purpose, we first survey
the Arabic diacritization tools in the literature and group the results by the corpus used for
testing. We then conduct a comparative study between the available tools for diacritization
(Farasa and Madamira) as well as two baselines. We evaluate the error rates for these systems
using a set of publicly available, fully-diacritized corpora in two different evaluation modes.
With the help of human annotators, we conduct an additional experiment examining error
categories. We find that Farasa is outperforming Madamira and the baselines in both modes.

1 Introduction

Automatic diacritization is the task of restoring missing diacritics in languages that are
usually written without diacritics like Arabic; or in languages that have diacritically
marked characters in their orthography like Dutch, German, Hungarian, Lithuanian,
or Slovene (Acs and Halmi, 2016). The challenge is that many words have different
meanings depending on their diacritization, which can only be resolved by the context
and proper knowledge of the grammar (Rashwan et al., 2011).
Restoring diacritics is an important task, as diacritized texts are crucial for

many Natural Language Processing (NLP) applications, including automatic speech
recognition (Zitouni et al., 2006; Ananthakrishnan et al., 2005), statistical machine
translation (Diab et al., 2007a), text-to-speech (Shaalan et al., 2009), text analysis,
information retrieval (Azmi and Almajed, 2015), and the normalization and analysis of
social media texts (Čibej et al., 2016). Diacritized text is also important at the early
stages of language learning and for second language (L2) learners.
Although there is a large body of research on the topic, only very few tools are freely

available, and it is still unclear what performance level can be expected in a practical
setting. We aim at a fully reproducible comparison and will thus only include tools
that are freely available and can be integrated into our comparison pipeline. To the
best of our knowledge, there are currently only two tools that fulfill these requirements:

JLCL 2017 – Band 32 (1) – 27-47

Hamed and Zesch

Madamira (Pasha et al., 2014) and Farasa (Darwish and Mubarak, 2016). There exist
some additional tools like Mishkal1, which is only available as a web service, and
ArabicDiacritizer2, which only works in a Windows environment. Additionally, both
tools limit the size of the input text and cannot be easily integrated in our Java-based
comparison framework. For the same reasons of ensuring reproducibility, we only use
training and test data that is publicly available without license fees.
In this paper, we conduct a comparative study between the available tools for

diacritization using a reasonable amount and variety of test data in two evaluation
modes: strict and relaxed. While the strict mode expects the diacritics to be exactly
the same as in gold standard text, the relaxed mode normalizes the texts (output and
gold standard) to hold a specific (smaller) ratio of diacritics. Thus, the relaxed mode
does not punish a tool that only provides partial diacritization. In order to put the
results into perspective, we implement two strong baselines: a dictionary lookup system
and one based on character-based sequence labeling. The first baseline labels each word
using the diacritized form that appears most often in the training set. The second
baseline treats diacritization as a sequence classification problem using conditional
random fields (CRF). We report the error rates for the baselines and state-of-the-art
systems using diacritized text from Classical Arabic (Quran and Tashkeela corpora)
and contemporary writing (RDI corpus) in both evaluation modes.

2 Linguistic Background

Languages based on the Arabic script usually represent only consonants in their writing
and do not mark the short vowels (Belinkov and Glass, 2015). The Arabic script
(ú

G
.
QªË@ ¡

	
mÌ'@) is written from right to left and contains two classes of symbols for writing

words: letters and diacritics (Habash and Rambow, 2007; Habash, 2010). Figure 1
shows the non-diacritized and the diacritized versions of the sentence “The Arabic
script”.

without diacritics ú

G
.
QªË@ ¡

	
mÌ'@

with diacritics ��ú

G
.�

�Q
�
ª

�
Ë
�
@

�
¡

�	
m

�
Ì'

�
@

Figure 1: Example of an Arabic sentence without and with diacritics (eng: The Arabic script).

1http://tahadz.com/mishkal
2https://sourceforge.net/projects/arabicdiacritizer/

28 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Letters The Arabic alphabet has 29 letters, those include three long vowels (Alif (@),
Waw (ð) and Yeh (ø

)), 25 consonants, and the Hamza (glottal stop).

Diacritics The diacritics are optional. If present they appear as small strokes that are
placed above or below the letter, such as �� �� ��.
Diab et al. (2007a) group these diacritical marks into three categories: vowel, nunation,

and Shadda (gemination). The vowel diacritics refer to the three short vowels (Fatha
(��) /a/3, Damma (��) /u/, and Kasra (��) /i/) and a diacritic indicating the absence of
any vowel (Sukun) (Bouamor et al., 2015). Nunation diacritics indicate a short vowel
followed by a non-written sound of the Arabic letter (

à) /n/. The Nunation diacritics
look like a doubled version of their corresponding short vowels (Habash, 2010). They
are named in Arabic as such: Fathatan, Dammatan, Kasratan.4 For example, (�

X) is
pronounced /dun/ and transliterated as “duN”.5 The gemination mark (Shadda) is a
consonant-doubling diacritical (�

X) “d∼”. Shadda can be combined with diacritics from
the other two categories, which results in a total of thirteen diacritical marks. For
instance, (

��
X) “d∼u” and (

��
X) “d∼uN”.

There are general rules for diacritizating Arabic text. For example, Shaddah and
Sukun cannot follow a word-initial letter, whereas Tanween appears only at word-final
position (Elshafei et al., 2006). Table 1 exemplifies the shapes of diacritics in conjunction
with the Arabic letter (X) /d/.
Some of the diacritics vary depending on syntactic conditions (case-related), and some

vary to indicate semantic differences. Functionally, diacritics fall into two types: lexical
and inflectional diacritics (Diab et al., 2007a). The lexical diacritics distinguish between
two lexemes; for example, “kAtib” (I.

�
K� A

�
¿), meaning “writer,” and “kAtab” (I.

��
KA

�
¿),

meaning “to correspond”. The inflectional diacritics distinguish different inflected forms
of the same lexeme. For example, the final (last-letter) diacritic in “kitaAbu” (�

H. A
��
J»�),

meaning “book,” is Damma to indicate the nominative case (verb subject) and the final
diacritic in “kitaAba” (�

H. A
��
J»�) is Fatha to indicate the accusative case (verb object) of

the same word.
In unicode, the diacritics are presented as additional characters, so the diacritized word

is longer than the non-diacritized word. For example, the diacritized word “Eal∼ama”
(�Õ

��
Î

�
«) has seven unicode characters, whereas the bare form “Elm” (ÕÎ«) has only three.

3International Phonetic Alphabet (IPA)
4Dual feminine nouns that indicate two Fathas, two Dammas and two Kasras respectively.
5Buckwalter encoding (Buckwalter, 2004) is used exclusively in the paper.

JLCL 2017 – Band 32 (1) 29

Hamed and Zesch

Diacritic Word
Type Mark Name Transl. IPA Position

Short vowels

�
X Fatha a /a/ Any
�
X Damma u /u/ Any
X� Kasra i /i/ Any
�
X Sukun o Ø Any

Nunation
@
�
X Tanween Fath F /an/ End
�
X Tanween Damm N /un/ End
X
�

Tanween Kasr K /in/ End

Gemination �
X Shadda ∼ : Any

Table 1: Types of Arabic diacritics

2.1 Diacritization Levels

The level of diacritics refers to the number of diacritical marks presented on a word to
avoid text ambiguity for human readers. Even in non-diacritized newswire text, 1.6% of
all words have at least one diacritic indicated by their author to guide the reader with
disambiguation (Habash, 2010). Ahmed and Elaraby (2000) grouped the diacritization
levels into three levels (full, half, and partial):

Full All the letters are given appropriate diacritics. This applies to classical Arabic
(CA), as in religion-related books, and at early stages of language learning, such
as in children’s books.

Half Only the morphological-independent letters are diacritized. In other words, all the
letters of a word, except those that depend on the syntactic analysis of the word,
are diacritized. For example, the word “wldh” (èYËð), meaning “his son” consists of
two clitics “wld+h” = (è) + (YËð), i.e. the stem “wld” and the possessive pronoun

“h” as suffix. With the half diacritization, it would be written like (èY
�
Ë
�
ð) instead

of (�
è

�
Y

�
Ë
�
ð). This means that the diacritic was dropped from the pronoun “h” (è)

(morphology-dependent) and from the stem last letter “d” (X) (syntactic).

Partial Any other setting where one letter or a subset of letters is diacritized. While
studying the impact of diacritization on statistical machine translation, Diab et al.
(2007a) proposed to divide this level into four sub-levels for use with inflectional
and lexical diacritics. A special case of partial diacritization is to drop the short

30 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Type Bare Form Diacritized Gloss / Transliteration

POS ÕÎ«

ÕÎ«
� Science / Eilom

Õ
�
Î

�
« Flag / Ealam

�ÕÎ�

�
« He knew / Ealima

ÕÎ�

�
« It was known / Eulim

�Õ

��
Î

�
« He taught / Eal∼ama

Syntactic YK
Ym.
Ì'@ ½

	
JJ. Ë @ QK
YÓ

Y� K
Y
�
m.
Ì'@ ½�

	
J
�
J. Ë @

�QK
Y
�
Ó the manager of the new bank / mudyra Albanki Aljadydi

�
YK
Y

�
m.
Ì'@ ½�

	
J
�
J. Ë @

�QK
Y
�
Ó the new bank manager / mudyra Albanki Aljadyda

Structure ú

Íð

ú

Í
�

�
ð and for me / waliy

�ú

Í
�

�
ð a pious person favored by God / waliy∼

Table 2: Types of ambiguity caused by missing diacritics

vowels and Sukun. For example, the short vowel is dropped from the letter that
precedes a long vowel with similar sound like when Fatha is dropped from a letter
if followed by an Alef (@). Additionally, the Arabic definite article È@ has only two
diacritization possibilities depending on the preceding letter. The Alef is always
diacritized with Fatha, and the Lam (È) either has Sukun or has no diacritics.

2.2 Ambiguity

Writing Arabic without diacritics introduces three types of ambiguity (Azmi and
Almajed, 2015). The first is part-of-speech (POS) tagging ambiguity (Maamouri et al.,
2006). This is the case with the words that have the same spelling and POS tag but a
different lexical sense, or words that have the same spelling but different POS tags and
lexical senses (homograph ambiguity) (Farghaly and Shaalan, 2009). Second, there is
ambiguity on the grammatical level (syntactic ambiguity). Sentences and phrases can be
interpreted in more than one way, and diacritics are the only means to resolve ambiguity
(Maamouri et al., 2006). The third is internal word structure ambiguity, such as when
Arabic words are segmented in different ways. The agglutination property of Arabic
might produce a problem that can only be resolved using diacritics. Table 2 summarizes
the aforementioned types of ambiguity with excerpted examples from (Metwally et al.,
2016; Farghaly and Shaalan, 2009).

JLCL 2017 – Band 32 (1) 31

Hamed and Zesch

Corpus Description Availability # of tokens

Quran Religious Free 78 000
RDI Religious/Modern Free 20 000 000
Tashkeela Religious Free 60 000 000
ATB News Commercial 1 000 000
WikiNews News Free 18 300

Table 3: Overview of diacritized corpora.

3 State-of-the-Art Arabic Diacritization

In this section, we present the diacritized datasets usually used for evaluation and then
give an overview of the results on different corpora that have so far been obtained using
the standard evaluation metrics.

3.1 Datasets

Generally, the currently available diacritized corpora are limited to classical texts
(usually religious or Arabic poetry), such as the Holy Quran, RDI, and Tashkeela on
the one side, and newswire corpora, such as the Arabic Penn Treebank (ATB) from the
Linguistic Data Consortium (LDC) on the other side, as shown in Table 3.

Quran The small diacritized Quranic corpus is part of Tanzil6 project. It contains
more than 78 thousand tokens that comes in a UTF-8 encoded text file. The file has
no Arabic punctuation marks, and every Quranic verse appears in a separate line.

RDI The corpus was collected by the RDI7 company for use in the field of automatic
diacritization. It is composed of diacritized texts, which are mainly gathered from
classical Arabic books with a small percentage from contemporary Arabic writing
(modern books). Overall, it contains 20 million tokens. Our experiments are based on
the subset of modern books, a collection of 12 books from the late 1990’s.

Tashkeela The corpus contains more than 60 million diacritized tokens (Zerrouki and
Balla, 2017). It is a collection of 84 Islamic religious heritage books. The books are
provided in HTML format, encoded in CP1256 Windows Arabic. It can be downloaded
under GPL license.8

6http://tanzil.net/download/
7http://www.rdi-eg.com/RDI/TrainingData/
8https://sourceforge.net/projects/tashkeela/

32 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

ATB Much of the previous work on diacritization relied on using the ATB. LDC’s
Arabic Penn Tree Bank (ATB) consists of distinct newswire stories collected from
different news agencies and newspapers, including the Agence France-Presse (AFP),
Al-Hayat, and An-Nahar newspapers (Maamouri et al., 2004, 2006, 2009). It contains
about 1 million tokens. Though ATB is invaluable for many tasks, such as POS tagging
and parsing, it is sub-optimal for diacritization (Darwish et al., 2017).

WikiNews Darwish et al. (2017) used a new test set composed of 70 WikiNews articles
(the majority are from 2013 and 2014) that cover a variety of themes, namely: politics,
economics, health, science and technology, sports, arts, and culture. The articles are
evenly distributed among the different themes (10 per theme). The corpus contains
18,300 words.

3.2 Evaluation Metrics

In the literature, two standard evaluation metrics are used almost exclusively to measure
systems performance (Rashwan et al., 2011; Said et al., 2013). It can either be expressed
in terms of error rates on the character or on the word level. The smaller the error rate,
the better the performance.

DER Diacritization Error Rate (DER) is the proportion of letters which are incorrectly
labeled with diacritics. The following assumptions are made: (i) each letter or
digit in a word is a potential host for a set of diacritics, and (ii) all diacritics on a
single letter are counted as a single binary choice. The DER can be calculated as
follows:

DER = (1− |TS |
|TG|

) · 100 (1)

where |TS | is the number of letters assigned correctly by the system, and TG is
the number of diacritized letters in the gold standard text.

WER Word Error Rate (WER) is the percentage of incorrectly diacritized white-space
delimited words. In order to be counted as incorrect, at least one letter in a word
must have a diacritization error. All words are counted, including numbers and
punctuation.

While the diacritization techniques work relatively well on lexical diacritics (located
on word stems), they are much less effective for inflectional diacritics (typically at

JLCL 2017 – Band 32 (1) 33

Hamed and Zesch

Diacritization Word Letters

Tool A l E r b y

Gold a o a a i ∼u
Tool 1 - o a a i ∼u
Tool 2 - o a a - ∼u
Tool 3 - - - a - ∼u
Tool 4 - - a a - ∼u

in relaxed evaluation? No No No Yes No Yes

Table 4: The normalization of diacritics for comparison in relaxed evaluation mode.

word-final position) (Habash et al., 2007). In most cases, the last letter indicates the
case ending. However, in some cases as with plural masculine nouns (ÕËA

�
�Ë@ Q»

	
YÖÏ @ ©Ôg

.
)

and dual masculine and feminine nouns (ú
�	
æ

�
JÖÏ @) the suffixes substitute the diacritics. The

suffixes are added to the word to indicate case and number. For example, the suffixes
(

àð) or (
à@) are added to the word to indicate plural masculines and dual masculine or

feminine nouns in accusative case respectively. However, the suffix (áK
) is added to the
word to indicate plural masculines and dual masculine or feminine nouns in nominative
and dative cases. Assigning the correct case can often only be decided using a wider
context, thus diacritization tools usually perform worse on the last letter compared to
the other positions in the word (Habash et al., 2007). It is thus usual to also report a
variant of the above two mentioned metrics that ignore the last letter (assumed to have
no syntactic diacritics), denoted as DER-1 and WER-1.

3.3 Evaluation Modes

When comparing multiple tools, we distinguish two different evaluation modes:

Strict Mode Whenever a letter has a set of diacritics in the gold standard text, a
diacritization tool is expected to predict this set exactly. This evaluation mode is most
often used and gives an advantage to tools providing full diacritization.

Relaxed Mode This evaluation mode gives an advantage to tools that only output
diacritics when being confident about the results. This might be useful for half or
partial diacritization settings, e.g. the tools that drop the default diacritics. This is not
so useful for other settings, e.g. full diacritization in children books.
In order to provide a fair comparison between multiple tools, the relaxed evaluation

34 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

All Diacritics Ignore Last
Test Corpus Size Approach DER WER DER-1 WER-1

(103)

ATB (Parts 1–3)

144 (Nelken and Shieber, 2005) 12.8 23.6 6.5 7.3
52 (Zitouni et al., 2006) 5.5 18.0 2.5 7.9
52 (Habash and Rambow, 2007) 4.8 14.9 2.2 5.5

613 (Schlippe et al., 2008) 4.3 19.9 1.7 6.8
116 (Schlippe et al., 2008) 4.7 21.9 1.9 8.4
16 (Alghamdi et al., 2010) 13.8 46.8 9.3 26.0
52 (Rashwan et al., 2011) 3.8 12.5 1.2 3.1
37 (Abandah et al., 2015) 2.7 9.1 1.4 4.3
52 (Metwally et al., 2016) - 13.7 - -

Quran 1 (Elshafei et al., 2006) 4.1 - - -
76 (Abandah et al., 2015) 3.0 8.7 2.0 5.8

Tashkeela 1902 (Hifny, 2012) - 8.9 - 3.4
272 (Abandah et al., 2015) 2.1 5.8 1.3 3.5

Tashkeela+RDI 199 (Bebah et al., 2014) 7.4 21.1 3.8 7.4

WikiNews

18 (Pasha et al., 2014) 5.4 19.0 1.9 6.7
18 (Rashwan et al., 2015) 4.3 16.0 1.0 3.0
18 (Belinkov and Glass, 2015) 7.9 30.5 3.9 14.9
18 (Darwish et al., 2017) 3.5 12.8 1.1 3.3

Table 5: Performance of Arabic diacritization systems grouped by test corpus

mode only takes into account cases where all tools under consideration return a diacritic
for a given letter. Table 4 gives an example.

3.4 Overview of Diacritization Results

The work on Arabic diacritization goes back quite a long time (El-Sadany and Hashish,
1989) and many different approaches have been proposed including hidden Markov
model (Elshafei et al., 2006), n-gram language models (Hifny, 2012; Alghamdi et al.,
2010), statistical machine translation (Schlippe et al., 2008), finite state transducers
(Nelken and Shieber, 2005), maximum entropy (Zitouni et al., 2006), and deep learning
(Rashwan et al., 2015; Abandah et al., 2015; Belinkov and Glass, 2015).

Additionally, many researchers have proposed to improve classification with
morphological analysis (Habash and Rambow, 2005; Rashwan et al., 2011; Bebah
et al., 2014; Metwally et al., 2016) and the standard n-gram language model. A recent
approach by Darwish et al. (2017) employed a Viterbi decoder and SVM-rank to properly
guess words diacritization.

JLCL 2017 – Band 32 (1) 35

Hamed and Zesch

words ∅ chars Words /
ID Corpus (103) per word sentence

Q Quran 78 4.25 12.6
T Tashkeela 100 4.11 14.7
R RDI 100 4.47 34.1

Table 6: Statistics of corpora sub-datasets used in this study.

Comparison Table 5 gives an overview of the reported results from the literature. The
results are grouped by the corpus that was used for testing in order to allow for a
fair comparison. There is a major drawback with these reported results: they do not
follow a well-established framework for testing. For example, most numbers are still
not directly comparable because they were obtained using different test sets. Moreover,
some works used a fixed test set without performing any cross-validation, which further
limits the weight that should be put on those numbers. The only exception to this
is the last block of results, where Darwish et al. (2017) compared their system with
other systems using the WikiNews test set. Under this controlled setting, their system
outperforms all other systems regarding DER and WER. If we ignore the case-endings,
the Rashwan et al. (2015) system performs best.
As most of the systems from the literature are not freely available, we have no way

of directly comparing them. In this paper, we establish a comparative study that only
includes the systems and corpora that are freely available in a controlled settings.

4 Experimental Setup

In this section, we present our experimental setup: used data, baselines, diacritization
tools, and evaluation metrics.
The experiments were carried out using DKPro TC, the open-source UIMA-based

framework for supervised text classification (Daxenberger et al., 2014). The baseline
experiments were conducted as ten-fold cross-validation, reporting the average over the
ten folds.

4.1 Datasets

Table 6 shows the statistics for the experimental sub-datasets (punctuation marks are
not counted). All the experiments use a general setup for test sample-size: 78K, 100K,
and 100K drawn from the Quran, RDI, and Tashkeela respectively.

36 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Data Preprocessing The Quran text requires no special preprocessing. However, the
files from Tashkeela and RDI contain Quranic symbols like the Dagger Alif (a small
Alif quite common in Quranic Arabic (Dukes and Habash, 2010)) or English letters.
In order to prepare those corpora for training and testing purposes, the following
preprocessing steps are performed: (i) convert them from HTML to plain text files that
have one sentence per line, (ii) clean the files by removing the Quranic symbols and
words written in non-Arabic letters, and (iii) normalize the Arabic text by removing
extra white spaces and Tatweel symbols.9 For example, “qAl” (ÈA��

�
¯), meaning “he said”

has Tatweel, whereas ÈA
�
¯ has no Tatweel.

4.2 Baselines

We implemented two baselines: a simple dictionary lookup approach and a sequence
labeling approach.

Dictionary Lookup This baseline labels each word with the diacritized form that
appears most often in the training corpus. Words that are not found in the dictionary
are not diacritized.

Sequence Labeling We treat diacritization as a sequence labeling problem and propose
a baseline solution using conditional random fields (Lafferty et al., 2001). Given a
sentence (set of non-diacritized words) separated using white-space delimiters, each
word in the sentence is a sequence of characters, and we want to label each letter with
its corresponding labels from the diacritics set D = (d1, ..., dN). We represent each
word as an input sequence X = (x1, ..., xN) where we need to label each consonant
in X with the diacritics that follow this consonant. Note that an Arabic letter has
a maximum of two diacritics, and if it has two, then one of them is always Shadda.
Shadda might accompany all diacritics except Sukun, so in total we have 14 labeling
possibilities (including the ‘no diacritic’ option). Thus, in order to diacritize sequence
X, we must find its labeling sequence Y (usually of word length) derived from D.
A word might have more than one valid labeling. The word “ktAb” (H. A

�
J») represented

as (k, t, A, b), can be labeled with Y1 = (i, a, o, u) or Y2 = (i, a, o, a) resulting in the
diacritized words “kitaAobu” and “kitaAoba” respectively.
Our features are character n-grams language models (LMs) in sequence labeling

approach. The features extractor selects the character-level features relevant to diacritics
9Tatweel are used to stretch words to indicate prominence or simply to force vertical justification

(Habash, 2010).

JLCL 2017 – Band 32 (1) 37

Hamed and Zesch

from annotated corpora. It collects the diacritics on previous, current and following
character and up to the 6th character.

Note that the out-of-vocabulary (OoV) rate of this approach is zero as it is able to
provide a sequence of diacritics for arbitrary unknown words.

4.3 Diacritization Tools

To the best of our knowledge, the only tools that can be tested on large corpora and
are easily integrated with Java frameworks are Madamira and Farasa.

Madamira Madamira (Pasha et al., 2014) improves upon its two ancestors MADA
(Habash et al., 2009) and AMIRA (Diab et al., 2007b) with a Java implementation that is
more robust, portable, extensible, and faster. Arabic processing with Madamira includes
automatic diacritization, lemmatization, morphological analysis and disambiguation,
part-of-speech tagging, stemming, glossing, tokenization, base-phrase chunking, and
named-entity recognition. Madamira makes use of fast, linear SVMs implemented using
Liblinear (Fan et al., 2008).

Madamira was trained on the training portion of ATB (parts 1, 2 and 3). There are two
varieties of Madamira. The first integrates the public version of Arabic morphological
analyzer (AraMorph).10 The second integrates the Standard Arabic Morphological
Analyzer (SAMA) and its recommended database (Graff et al., 2009).11

Our experiments are carried out using the SAMA enabled version of Madamira v2.1.
Madamira was used to diacritize the test sequences from the three corpora. As the
resulting diacritized text is encoded using Buckwalter transliteration, it is necessary to
decode it into Arabic text. We compare the mapped Arabic text with a gold standard
sequence and then calculate the different metrics.

Farasa Farasa (Darwish and Mubarak, 2016) is an open-source tool, written entirely
in native Java. Farasa consists of a segmentation/tokenization module, POS-tagger,
Arabic text diacritizer, and dependency parser. Its approach is based on SVM-ranking
using linear kernels. Farasa matches or outperforms state-of-the-art Arabic segmenters
(Darwish and Mubarak, 2016) and diacritizers.

38 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Corpus Approach OoV All Diacritics Ignore Last

rate DER WER DER-1 WER-1

Quran
Dict. Lookup 11.8 19.7 27.5 16.1 16.8
Sequence Labeling 0.0 21.4 28.3 9.0 19.9
Madamira 3.4 21.1 36.7 15.4 20.9
Farasa 0.3 12.2 19.0 8.9 9.5

RDI
Dict. Lookup 13.3 26.6 31.8 19.7 22.5
Sequence Labeling 0.0 24.9 37.0 15.4 22.4
Madamira 2.1 17.8 28.4 13.1 14.2
Farasa 0.1 10.5 15.7 6.7 7.6

Tashkeela
Dict. Lookup 13.4 26.9 32.2 19.9 22.7
Sequence Labeling 0.0 24.9 37.0 15.7 22.3
Madamira 2.2 17.9 28.6 13.1 14.2
Farasa 0.1 10.6 15.9 6.8 7.7

Table 7: Error rates in strict evaluation mode. The “OoV” rate refers to the ratio of tokens that
were not diacritized by the system.

5 Results

We now report the results of our diacritization experiments using first ‘strict’ and then
‘relaxed’ evaluation.

5.1 Strict Evaluation

Table 7 gives an overview of our evaluation results in strict mode. The results are
grouped by the corpus that was used for testing. Note that the OoV column refers to
the ratio of tokens that got “No Analysis” and thus no diacritization by the system.
In general, the error rates are rather high. With keeping in mind that the reported

results are non-comparable, none of the methods (including the two well-known state-
of-the-art systems) comes even close to the numbers in Table 5. It is likely that many
approaches do not use strict evaluation mode when reporting results, even if it is the
most comparable setup. When indirectly competing with other published results, the
numbers obtained in that way are just not competitive.
Looking at individual results, Farasa outperforms all other methods under all metrics.

For the remaining three approaches, there is no clear trend, but it should be noted that
the baselines perform surprisingly well even if they make no real attempt at resolving
ambiguity. Sequence labeling doesn’t take context into account and the dictionary

10http://www.nongnu.org/aramorph/
11Catalog number LDC2009E73

JLCL 2017 – Band 32 (1) 39

Hamed and Zesch

Diacritics per letter Diacritized letters per word
Approach Quran RDI Tashkeela Quran RDI Tashkeela
Gold .84 .83 .83 .78 .77 .77
Dict. Lookup BL .84 .84 .82 .78 .77 .77
Seq. Labeling .82 .78 .78 .77 .74 .74
Madamira .55 .59 .61 .51 .54 .56
Farasa .58 .58 .61 .55 .54 .58

Table 8: Average number of diacritics per letter and average number of diacritized letters per word

lookup makes a majority class decision for each ambiguous token. We suspect that
many tokens within a domain are not ambiguous and the repetitious nature of the
religious texts increases the effect.
Table 7 also shows the out-of-vocabulary rate for each approach. As expected, the

dictionary lookup baseline has a rather high rate and sequence labeling has no out-of-
vocabulary tokens at all, because it always returns one of the possible diacritization
patterns. For all corpora, Farasa has a lower OoV rate than Madamira.
When looking into individual OoV examples, we find that in some cases the tools do

not return any analysis. However, in some cases they change the input token instead
of just adding diacritics. For example in one case in Madamira, the verb “rawaAhu”
(è @ðP), meaning “narrated by” is changed into “ruwaAp” (�

è @ðP), meaning “narrators”.

Another example is the passive verb “yusotavonaY” (ú
	

æ
�
J
�
J

�
��
), meaning “to be excluded”

that is changed into the present tense verb “yasotavoniy” (ú

	
æ
�
J
�
J

�
��
), meaning “excludes”.

In both examples, the last letter is changed into a very similar, but different form.
We see a similar behavior in Farasa, where in some examples a word containing two
adjacent Lam (È) letters (with Shadda on the second Lam), where the first Lam is a
preposition. In this case, there is an additional Alif letter introduced between the two
Lam letters. For example, the word (é

�
ÊË) “lil∼ah” (l + Allah) is transformed into (éËB)

“liAlhi” – i.e. (l + Alh).
In Table 8, we show the average number of diacritics per letter as well for the gold

standard and all systems used in our experiments. It shows that Madamira and Farasa
both assign about the same amount of diacritics on average, but substantially fewer
than the gold standard. This means that both tools are especially punished by the
strict evaluation. These findings motivate us to repeat the evaluation using the relaxed
mode.

40 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Corpus Approach All Diacritics Ignore Last
DER WER DER-1 WER-1

Quran
Dict. Lookup 7.3 24.0 3.2 15.6
Seq. Labeling 15.1 22.0 7.6 13.5
Madamira 14.5 26.4 10.2 15.6
Farasa 7.8 14.0 5.0 6.8

RDI
Dict. Lookup 10.1 27.9 3.4 16.7
Seq. Labeling 16.7 28.0 12.0 13.6
Madamira 12.5 20.4 8.6 10.2
Farasa 8.3 13.8 5.0 5.1

Tashkeela
Dict. Lookup 10.1 28.1 3.3 16.7
Seq. Labeling 24.0 35.4 15.0 22.0
Madamira 12.4 20.3 8.5 10.1
Farasa 8.3 13.9 5.0 5.1

Table 9: Error rates in relaxed evaluation mode

5.2 Relaxed Evaluation

Table 9 shows the results in relaxed mode, where we only take into account cases where
all tools under consideration return a diacritic for a given letter. As expected, the
error rates drop substantially, but not evenly for all approaches. In order to better
show the improvement (decrease in error rates) obtained by switching from strict to
relaxed evaluation mode, we report the relative change between both modes in Table 10.
It can be clearly seen that this switching improves the tools performance in general.
Sometimes, a tool is making a dramatical change, such as the dictionary lookup baseline
under the DER and DER-1 metrics.

Looking again at the error rates in Table 9, relaxed evaluation mode reveals that
Farasa is still performing better than Madamira in all cases, but for the DER and
DER-1 metrics the dictionary lookup baseline is close or even better. The big difference
between DER and WER performance for the dictionary lookup approach is most likely
explained by errors in the inflectional diacritics that are impossible to resolve without
looking at the context. However, that such a simple approach performs so well is
surprising and shows that there is still a lot room for improvement in the area of
automatic diacritization.

JLCL 2017 – Band 32 (1) 41

Hamed and Zesch

Corpus Approach All Diacritics Ignore Last
DER WER DER-1 WER-1

Quran
Dict. Lookup 63 13 80 7
Seq. Labeling 29 22 16 32
Madamira 31 28 34 25
Farasa 36 26 44 28

RDI
Dict. Lookup 62 12 83 26
Seq. Labeling 33 24 22 39
Madamira 30 28 34 28
Farasa 21 12 25 33

Tashkeela
Dict. Lookup 62 13 83 26
Seq. Labeling 4 4 4 1
Madamira 31 29 35 29
Farasa 22 13 26 34

Table 10: The relative change (in %) between the strict and relaxed evaluation modes

6 Qualitative Analysis

As most of the systems from the literature are not freely available, we have no way
of directly comparing our results with those approaches unless they have the same
settings. There is still a gap between our experimental results in relaxed mode and
some of the reported published results in Table 5. Part of the gap can certainly be
attributed to differences in the corpora. To see how the systems are performing, we
also conducted a small diacritization experiment that only involves the best baseline
(dictionary lookup), Madamira, and Farasa. We conduct a simple experiment using a
blind MSA test set, a sample with 94 non-diacritized words (crawled from the internet).
It was then diacritized using dictionary lookup (which was trained with RDI), Madamira
(SAMA-enabled), and Farasa. We gave the resulting diacritized text to two Arabic
teachers with appropriate experience to conduct the evaluation.
To look at the kinds of errors we were getting, the annotators were asked to identify

the incorrectly diacritized words using word error rates (WERs) metrics because it
is easy to manage for the volunteer teachers. Additionally, they were asked to state
the reason if a diacritization produced by Madamira or Farasa was incorrect. For that
purpose, we are using a error classification scheme developed for Arabic learner corpora
(Abuhakema et al., 2008).

42 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Error Error Annotator 1 Annotator 2

Category Subcategoy Madamira Farasa Madamira Farasa

Form/Spelling Shadda 2 3 2 3
Tanween 6 6 6 6

Morphology Partial-Inflection 1 1 0 1
Full-Inflection 2 0 2 0

Grammar Active-Passive Voice 2 2 2 2

Diacritization Missing Short Vowel 6 0 5 0
Confused Short Vowel 1 5 1 4

Overall 20 17 18 16

Table 11: The annotated WERs subcategories.

Form/Spelling Errors caused by Shadda (consonant doubling), or Tanween (nunation).

Morphology Correct lexical item, but wrong case ending, e.g. Kasra instead of Fatha.

Grammar Errors caused by changes in grammatical role, e.g. active or passive voice
(Èñêj. ÖÏ @ ð ÐñÊªÒÊË ú

	
æJ. ÖÏ @).

Diacritization Errors caused by incorrect, missing or redundant short vowels (i.e. lexical
diacritics).

Table 11 shows the distribution of error categories as reported by the annotators.
The inter-evaluator agreement for the annotated WER (using Cohen’s kappa) is almost
perfect with values of .93 and .96 for Madamira and Farasa respectively. The majority
of the mistakes are due to form/spelling and diacritization errors. In the form/spelling
category, both tools make a lot of Tanween errors. This is to be expected, as it has
been reported that the diacritization tools work relatively well on lexical diacritics,
but that they are much less effective for case-ending diacritics (Habash et al., 2007).
In the ‘Diacritization’ category, we observe a quite different behavior. Madamira has
more missing vowels, i.e. it seems to rather not return a diacritic than to get it wrong.
Farasa is on the opposite side of the trade-off with no missing short vowels, but almost
as many confused short vowels.

7 Conclusion

The performance numbers reported in the literature on automatic diacritization are
inconclusive, as the experimental settings are not comparable in most cases. In this

JLCL 2017 – Band 32 (1) 43

Hamed and Zesch

paper we establish a framework to compare the state-of-the-art publicly available Arabic
diacritizers. The test data was drawn from the Quran, Tashkeela, and RDI corpora.
Under controlled settings, we compared two strong baselines and two well-known
systems: Madamira and Farasa. The error rates are reported in strict and relaxed
evaluation modes to ensure fair comparison. We find that Farasa is outperforming
Madamira in both evaluation modes, but that in relaxed mode the simple dictionary
lookup baseline is surprisingly strong. In general, our error rates are much higher than
the ones reported in the literature and we currently have no satisfying explanation for
the difference. We are making our evaluation framework publicly available in order to
foster additional research in this area and to allow for more approaches to be tested
under reproducible conditions.

References

Abandah, G., Graves, A., Al-Shagoor, B., Arabiyat, A., Jamour, F., and Al-Taee, M. (2015).
Automatic diacritization of arabic text using recurrent neural networks. International
Journal on Document Analysis and Recognition (IJDAR), 18(2):183–197.

Abuhakema, G., Faraj, R., Feldman, A., and Fitzpatrick, E. (2008). Annotating an arabic
learner corpus for error. In LREC.

Acs, J. and Halmi, J. (2016). Hunaccent: Small footprint diacritic restoration for social media.
In Normalisation and Analysis of Social Media Texts (NormSoMe) Workshop Programme,
page 1.

Ahmed, A. and Elaraby, M. (2000). A large-scale computational processor of the arabic
morphology, and applications. PhD thesis, Faculty of Engineering, Cairo University Giza,
Egypt.

Alghamdi, M., Muzaffar, Z., and Alhakami, H. (2010). Automatic restoration of arabic diacritics:
a simple, purely statistical approach. Arabian Journal for Science and Engineering, 35(2):125.

Ananthakrishnan, S., Narayanan, S., and Bangalore, S. (2005). Automatic diacritization of
arabic transcripts for automatic speech recognition. In Proceedings of the 4th International
Conference on Natural Language Processing, pages 47–54.

Azmi, A. and Almajed, R. (2015). A survey of automatic arabic diacritization techniques.
Natural Language Engineering, 21(03):477–495.

Bebah, M., Amine, C., Azzeddine, M., and Abdelhak, L. (2014). Hybrid approaches for
automatic vowelization of arabic texts. arXiv preprint arXiv:1410.2646.

44 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Belinkov, Y. and Glass, J. (2015). Arabic diacritization with recurrent neural networks. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 2281–2285.

Bouamor, H., Zaghouani, W., Diab, M., Obeid, O., Oflazer, K., Ghoneim, M., and Hawwari,
A. (2015). A pilot study on arabic multi-genre corpus diacritization annotation. In ANLP
Workshop 2015, page 80.

Buckwalter, T. (2004). Buckwalter arabic morphological analyzer version 2.0. linguistic data
consortium, university of pennsylvania, 2002. ldc cat alog no.: Ldc2004l02. Technical report,
ISBN 1-58563-324-0.

Čibej, J., Fišer, D., and Erjavec, T. (2016). Normalisation, tokenisation and sentence
segmentation of slovene tweets. In Normalisation and Analysis of Social Media Texts
(NormSoMe) Workshop Programme, page 5.

Darwish, K. and Mubarak, H. (2016). Farasa: A new fast and accurate arabic word segmenter.
In Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC 2016), Paris, France. European Language Resources Association (ELRA).

Darwish, K., Mubarak, H., and Abdelali, A. (2017). Arabic diacritization: Stats, rules, and
hacks. In Proceedings of the Third Arabic Natural Language Processing Workshop, pages
9–17.

Daxenberger, J., Ferschke, O., Gurevych, I., Zesch, T., et al. (2014). DKPro TC: A Java-
based Framework for Supervised Learning Experiments on Textual Data. In ACL (System
Demonstrations), pages 61–66.

Diab, M., Ghoneim, M., and Habash, N. (2007a). Arabic diacritization in the context of
statistical machine translation. In Proceedings of MT-Summit.

Diab, M., Hacioglu, K., and Jurafsky, D. (2007b). Automated methods for processing arabic
text: From tokenization to base phrase chunking. Arabic Computational Morphology:
Knowledge-based and Empirical Methods. Kluwer/Springer.

Dukes, K. and Habash, N. (2010). Morphological annotation of quranic arabic. In LREC.

El-Sadany, T. and Hashish, M. (1989). An arabic morphological system. IBM Systems Journal,
28(4):600–612.

Elshafei, M., Al-Muhtaseb, H., and Alghamdi, M. (2006). Statistical methods for automatic
diacritization of arabic text. In The Saudi 18th National Computer Conference. Riyadh,
volume 18, pages 301–306.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A library
for large linear classification. Journal of machine learning research, 9(Aug):1871–1874.

JLCL 2017 – Band 32 (1) 45

Hamed and Zesch

Farghaly, A. and Shaalan, K. (2009). Arabic natural language processing: Challenges and
solutions. ACM Transactions on Asian Language Information Processing (TALIP), 8(4):14.

Graff, D., Maamouri, M., Bouziri, B., Krouna, S., Kulick, S., and Buckwalter, T. (2009).
Standard arabic morphological analyzer (sama) version 3.1. Linguistic Data Consortium
LDC2009E73.

Habash, N. (2010). Introduction to arabic natural language processing. Synthesis Lectures on
Human Language Technologies, 3(1):1–187.

Habash, N., Gabbard, R., Rambow, O., Kulick, S., and Marcus, M. P. (2007). Determining
case in arabic: Learning complex linguistic behavior requires complex linguistic features. In
EMNLP-CoNLL, pages 1084–1092.

Habash, N. and Rambow, O. (2005). Arabic tokenization, part-of-speech tagging and
morphological disambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages 573–580. Association for Computational
Linguistics.

Habash, N. and Rambow, O. (2007). Arabic diacritization through full morphological tagging.
In Human Language Technologies 2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Companion Volume, Short Papers, pages
53–56. Association for Computational Linguistics.

Habash, N., Rambow, O., and Roth, R. (2009). MADA + TOKAN: A toolkit for Arabic
tokenization, diacritization, morphological disambiguation, POS tagging, stemming and
lemmatization. In Proceedings of the 2nd international conference on Arabic language
resources and tools (MEDAR), Cairo, Egypt, pages 102–109.

Hifny, Y. (2012). Smoothing techniques for arabic diacritics restoration. In 12th Conference on
Language Engineering, pages 6–12.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

Maamouri, M., Bies, A., Buckwalter, T., and Mekki, W. (2004). The penn arabic treebank:
Building a large-scale annotated arabic corpus. In NEMLAR conference on Arabic language
resources and tools, volume 27, pages 466–467.

Maamouri, M., Bies, A., and Kulick, S. (2006). Diacritization: A challenge to arabic treebank
annotation and parsing. In Proceedings of the Conference of the Machine Translation SIG
of the British Computer Society. Citeseer.

Maamouri, M., Bies, A., and Kulick, S. (2009). Creating a methodology for large-scale
correction of treebank annotation: The case of the arabic treebank. In Proceedings of
MEDAR International Conference on Arabic Language Resources and Tools, Cairo, Egypt.

46 JLCL

A Survey and Comparative Study of Arabic Diacritization Tools

Metwally, A. S., Rashwan, M. A., and Atiya, A. F. (2016). A multi-layered approach for arabic
text diacritization. In Cloud Computing and Big Data Analysis (ICCCBDA), 2016 IEEE
International Conference on, pages 389–393. IEEE.

Nelken, R. and Shieber, S. (2005). Arabic diacritization using weighted finite-state transducers.
In Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages,
pages 79–86. Association for Computational Linguistics.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N., Pooleery, M.,
Rambow, O., and Roth, R. (2014). Madamira: A fast, comprehensive tool for morphological
analysis and disambiguation of arabic. In LREC, pages 1094–1101.

Rashwan, M., Al-Badrashiny, M., Attia, M., Abdou, S., and Rafea, A. (2011). A stochastic
arabic diacritizer based on a hybrid of factorized and unfactorized textual features. Audio,
Speech, and Language Processing, IEEE Transactions on, 19(1):166–175.

Rashwan, M. A., Al Sallab, A. A., Raafat, H. M., and Rafea, A. (2015). Deep learning
framework with confused sub-set resolution architecture for automatic arabic diacritization.
IEEE Transactions on Audio, Speech, and Language Processing, 23(3):505–516.

Said, A., El-Sharqwi, M., Chalabi, A., and Kamal, E. (2013). A hybrid approach for
arabic diacritization. In International Conference on Application of Natural Language
to Information Systems, pages 53–64. Springer.

Schlippe, T., Nguyen, T., and Vogel, S. (2008). Diacritization as a machine translation problem
and as a sequence labeling problem. In 8th AMTA conference, Hawaii, pages 21–25.

Shaalan, K., Abo Bakr, H., and Ziedan, I. (2009). A hybrid approach for building arabic
diacritizer. In Proceedings of the EACL 2009 workshop on computational approaches to
semitic languages, pages 27–35. Association for Computational Linguistics.

Zerrouki, T. and Balla, A. (2017). Tashkeela: Novel corpus of Arabic vocalized texts, data for
auto-diacritization systems. Data in Brief, 11:147–151.

Zitouni, I., Sorensen, J., and Sarikaya, R. (2006). Maximum entropy based restoration of
arabic diacritics. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics,
pages 577–584. Association for Computational Linguistics.

JLCL 2017 – Band 32 (1) 47

