
Chantal Amrhein, Simon Clematide

Supervised OCR Error Detection and Correction Using Statisti-
cal and Neural Machine Translation Methods

Abstract

For indexing the content of digitized historical texts, optical character recognition
(OCR) errors are a hampering problem. To explore the effectivity of new strategies
for OCR post-correction, this article focuses on methods of character-based machine
translation, specifically neural machine translation and statistical machine translation.

Using the ICDAR 2017 data set on OCR post-correction for English and French, we
experiment with different strategies for error detection and error correction. We analyze
how OCR post-correction with NMT can profit from using additional information and
show that SMT and NMT can benefit from each other for these tasks. An ensemble of
our models reached best performance in ICDAR’s 2017 error correction subtask and
performed competitively in error detection.

However, our experimental results also suggest that tuning supervised learning
for OCR post-correction of texts from different sources, text types (periodicals and
monographs), time periods and languages is a difficult task: the data on which the MT
systems are trained have a large influence on which methods and features work best.
Conclusive and generally applicable insights are hard to achieve.

1 Introduction

Optical character recognition (OCR) is an important processing step for text digitization,
especially with the growing interest in digital humanities. Unfortunately, the output
of OCR systems for historical documents is often faulty due to both orthographic
and typographic variation as well as due to poor condition of the source material
(especially for newspapers). Therefore, it is necessary to take measures to improve
the quality of existing OCR-generated text if re-OCRing of the image material is
not an option. Recently natural language processing (NLP) tasks have profited from
neural methods. Neural machine translation (NMT) outperformed statistical machine
translation (SMT), thus, NMT now supersedes SMT in research and practice. Since
string-to-string translation methods have been used to correct OCR errors for a long
time, it is interesting to explore how character-based NMT can be employed for this
task.

This paper focuses on two questions: How does character-based NMT perform
compared to character-based SMT in the case of OCR post-correction? How can these
approaches be improved by using more information during training and translation?

JLCL 2018 – Band 33 (1) – 49-76

Amrhein, Clematide

Note that our historical data we are working with represents the task of correcting
OCR output into the spelling found in the original documents and does not include any
modernization of the texts. The rest of this article is structured as follows: In the next
section, we discuss previous work relevant to OCR post-correction, neural modeling of
related NLP tasks and character-based MT. Section 3 describes the data used in our
experiments and Section 4 presents the methods. Section 5 gives details on the results
and discusses the major findings. In Section 6, we offer our ideas for future work and
finally, we conclude in Section 7.

2 Related Work

2.1 OCR Post-Correction

Volk et al. (2011) discuss three possible ways to tackle the problem of OCR errors:
Modifying the input images, altering the OCR system, or post-processing the output
text. Since it does not involve re-OCRing, a considerable number of approaches have
focused on the last option. Kukich (1992) discusses various automatic methods to find
and correct errors, such as n-gram or dictionary-based techniques. Eger et al. (2016)
compare traditional spelling error correction techniques with general string-to-string
translation methods, and evaluate on an OCR data set. They show that the latter
methods achieve significantly better results than (weighted) edit distance or the noisy
channel model (Brill and Moore, 2000).

Based on the idea that OCR post-correction can be cast as a translation task, Afli
et al. (2016) have successfully trained an SMT system to translate historical French
texts with OCR errors into corrected text. Their model outperforms language model
based techniques. However, they use a large training set of more than 60 million tokens.
This exceeds by far the size of the ICDAR training sets used in our experiments. In
previous experiments, Afli et al. concluded that word-level SMT systems perform
slightly better than character-level systems for OCR post-correction (Afli et al., 2015).
The size of the training set there was over 90 million tokens.

2.2 OCR Correction of Historical Texts

The introductory book by Piotrowski (2012) resumes the problems of OCR, historical
spelling and correction. The TICCL system by Reynaert (2016) is an unsupervised
corpus-based approach to OCR post-correction that has been developed over many
years and works for several languages. However, it requires high-quality lexicons in
order to be effective. Silfverberg et al. (2016) present an interesting supervised approach
for historical Finnish OCR correction of isolated words that formulates the problem as a
sequence labeling task and uses weighted finite-state transducer techniques to implement
it. The official ICDAR OCR post-correction paper (Chiron et al., 2017) contains concise
descriptions of the different approaches that the shared task participants used for their
solutions.

50 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

The recent paper of Schulz and Kuhn (2017) presents a complex architecture for OCR
post-correction of historical texts that includes token and character-level SMT as well
as specialized tools for merging and splitting of erroneous tokens. Their related work
section gives a good overview on older and newer approaches. Due to space restrictions
and our focus on experimenting and evaluation, we refer the interested reader to their
discussion.

2.3 Neural Networks for NLP Tasks

Recently, neural networks have been given much attention in the field of computational
linguistics. Especially the work of Sutskever et al. (2014) has prompted much research
which focused on employing sequence-to-sequence (seq2seq) neural networks in various
NLP tasks. Examples include effectively using neural networks for transliteration (Rosca
and Breuel, 2016), for grapheme-to-phoneme conversion (Yao and Zweig, 2015), for
historical spelling normalisation (Bollmann and Søgaard, 2016) and language correction
of second language learners (Xie et al., 2016).

All of these tasks can (at least partly) be viewed as string-to-string translation
problems and are, thus, closely related to OCR post-correction. The models were all
successful, performing at least equally but mostly better than traditional NLP methods
such as methods based on (weighted) edit distance (Xie et al., 2016).

However, Schnober et al. (2016) express their doubt whether neural networks are
already at the point where they can entirely replace traditional approaches. They
evaluated the performance of encoder-decoder neural networks against established
methods for spelling correction, OCR post-correction, grapheme-to-phoneme conversion
and lemmatisation. Some of the string-to-string translation systems they used as
baselines were also evaluated by Eger et al. (2016). It is particularly interesting to
see how neural network approaches performed compared to these models which were
previously shown to exceed (weighted) edit distance and other techniques.

In the experiments of Schnober et al. on OCR post-correction, the neural network
systems did not manage to outperform a system built with Pruned Conditional Random
Fields on a training set of 72,000 misrecognized words. Despite these negative results,
the work gives valuable insight into model selection for neural network approaches.
Attention-based models (Bahdanau et al., 2015) show significant improvements over
plain seq2seq models. On a smaller training set, the attention-based models also
performed better than the Pruned Conditional Random Fields. In contrast to the
experiments conducted by Schnober et al., our data does not only contain misrecognized
words. Therefore, the task becomes harder since the systems also need to detect
erroneous words before trying to correct them.

2.3.1 Character-based NMT

NMT (Koehn, 2017) needs a fixed vocabulary to generate fixed-size vectors as input
to the neural network. The larger this vocabulary is, the less unknown words occur,
but the longer it takes to train the model and to apply it. To address this drawback,

JLCL 2018 – Band 33 (1) 51

Amrhein, Clematide

Monograph Periodical
Language fr en fr en

Total # of Tokens in Ground Truth 597967 624678 255527 249483
Total # of Tokens in Original OCR Output 604444 649604 268742 274413

Erroneous Tokens 6.34% 6.22% 11.89% 12.11%

Table 1: Overview of the training set: Percentage of erroneous tokens (relative to the number of
tokens in the OCR output using whitespace tokenization).

many approaches have been proposed to design open vocabulary NMT systems. These
range from simple dictionary lookup techniques (Luong et al., 2015) over integrating
SMT features (He et al., 2016) to specific design choices for the NMT architecture itself.
Luong and Manning (2016) use a hybrid-system which translates primarily on word-level
and falls back to a character-based representation for OOV words. Similarly, Sennrich
et al. (2016) propose to translate on subword-level. They use byte pair encoding to
create a vocabulary that is built bottom up, starting with characters and then adding
larger subwords made from already known entries. The resulting vocabulary will contain
characters, subwords as well as whole words.

Chung et al. (2016) designed a character-based decoder without explicitly segmenting
the character sequences to match words. They motivate their approach with the following
arguments: There is always a risk of introducing artificial errors when sentences are
explicitly segmented into words. Furthermore, a character-based model will not suffer
as much from data sparsity since stem forms and affixes can be treated separately.
Finally, the system has a much better chance at generalization for unseen word forms.
Extending this idea, Lee et al. (2017) aimed to design a fully character-based NMT
system without explicit segmentation. They observe that their model is capable of
locating spelling errors and still producing the correct translation. This finding is shared
by Zhao and Zhang (2016).

Motivated by the mentioned approaches and their outcomes, we employ character-
based NMT for post-correcting OCR errors. Since character-based NMT proved to
handle spelling errors we assume that it will also perform well on OCR errors.

3 ICDAR 2017 OCR Post-correction Data

Our experimental data comes from the OCR post-correction Shared Task1 of the 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR 2017)
(see (Chiron et al., 2017) for more information). The data set is a subpart from a corpus

1https://sites.google.com/view/icdar2017-postcorrectionocr/home

52 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Monograph Periodical
Language fr en fr en

Total # of Chars in Ground Truth 3560500 3592543 1637087 1574796
Total # of Chars in Original OCR Output 3569285 3592763 1640237 1575613

Insertions 0.32% 0.51% 0.68% 0.63%
Deletions 0.57% 0.52% 0.87% 0.68%

Substitutions 0.75% 0.78% 1.88% 2.46%
Errors Total 1.64% 1.81% 3.43% 3.77%

Unrecognizable 0.42% 3.32% 5.27% 9.33%

Table 2: Edit operations needed to correct training set: Percentage of total characters (relative to
the characters in the OCR output) that need to be inserted, deleted, or substituted.

that was built in the AmeliOCR project2. The documents in the corpus originate from
different digital collections and vary in terms of their condition and date of origin as
well as the OCR engine and the post-correction initiative used to create the corpus (e.g.
project-internal correction or external projects such as Gutenberg or Wikisource).

The equally sized English and French data consists of 12M OCRed characters and
their alignments to a ground truth (GT)3. The training set has 10M characters (83%)
and the official test set 2M (17%). The data is distributed as raw text files (one
paragraph per file) where the first line contains the OCR output. On the second line,
the OCRed text is vertically aligned with the GT. Wherever a character has to be
inserted to match the length of the GT (which means there is no possible alignment)
an “@" is inserted. On the third line that contains the GT, an “@" is inserted for all
characters that appear in the OCR output but cannot be aligned with a GT character.
The following example from 1860 illustrates the format:

(1) ATRAVELLER STOPPED AT A WIDOW’S GATE. [OCR]
A@TRAVELLER STOPPED AT A WIDOW’S GATE. [OCR aligned]
A TRAVELLER STOPPED AT A WIDOW@S GATE. [GT aligned]

Additionally, “unrecognizable” character sequences that cannot be identified with
certainty in the original image are aligned with the “#" character in the GT. Probably
due to different processing of soft hyphens, the GT for hyphens is very inconsistent.
Following the decision of the shared task organizers, we ignore all hyphens in evaluations
and error analyses, however, we keep them in the training data.

2https://bit.ly/2BLsN7B
3We use terms “gold standard” and “ground truth” interchangeably.

JLCL 2018 – Band 33 (1) 53

Amrhein, Clematide

Monograph Periodical fr en both
fr en fr en form freq form freq form freq

1. f → s 1 → I t → l fi → fi f → s 2346 1 → I 2279 f → s 2653
2. u → v é → e , → . b → h é → e 870 b → h 1250 1 → I 2310
3. é → e U → ll e → é u → n e → é 790 fi → fi 993 é → e 1647
4. i → j e → é o → e - → - u → v 740 u → n 898 b → h 1338
5. v → u h → b . → , ff → Ď t → l 677 é → e 777 u → n 1320
6. e → é b → h é → e f → s , → . 639 - → - 720 . → , 1225
7. l → t d → ll i → l o → e l → t 562 ff → Ď 712 , → . 1214
8. c → e e → c a → e li → h . → , 535 c → e 701 e → é 1209
9. 1 → ! f → s u → n c → e o → e 521 . → , 690 c → e 1157
10. è → e ’ → e l → t . → , i → j 504 li → h 666 o → e 1110

Table 3: 10 most common substitutions of characters ngrams (excluding hyphens). x → y means x
was recognized instead of y.

The data set is difficult since the documents (a) origin from different collections (the
BnF and the British Library), (b) were published either in periodicals or monographs,
(c) cover a large time span (1654 to 2000). 92% of the documents with a known
publication date are from the 19th century.

Diachronic document collections pose several challenges for OCR post-correction.
OCR quality is generally lower for historical documents, typically worse for documents
typeset in black letter fonts than in antiqua fonts. Additionally, old and modern
spellings coexist, for instance, compleated (1744) vs completed (1894). Some characters
as long s “ s ” disappear over time.

Tables 1 and 2 summarize the size of our training data, the proportion of “unrecogniz-
able” characters, and the edit operations needed for error correction. Overall, periodical
texts need more correction operations, as OCR quality for these texts is worse than
for monographs. The better the OCR quality is, the harder it is to improve it with
post-correction. Consequently, it will be easier to correct the periodical texts than the
monographs. Note that English texts contain many more unrecognizable characters
than the French texts.

Statistics on character level Table 3 shows the ten most frequent substitutions over
character n-grams aggregated according to different text criteria. The substitutions
are derived from the precomputed alignments of the data, and most of them can be
explained due to the visual similarity of the glyphs. Note that the frequencies of the
substitutions are not only specific to language but also to text type. Additionally,

54 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Figure 1: Changes of frequencies of the most frequent error types over time in English monograph
data sampled in buckets of 30 years.

error frequencies also differ due to font type, paper quality and other document-related
characteristics. However, since the source images of the data set were not provided, the
influence of these factors on error frequencies cannot be assessed here. The confusion
pair “e/é” in English is related to code-switching.

How do error types develop over time? Figure 1 is a screenshot from an interactive
visualization of the frequency of the ten most frequent errors per 30 years in English
monographs. The y axis is logarithmic and shows the number of errors normalized
by the number of files for the specific time period. It is not essential to know which
error belongs to which line. Instead, it is interesting to see the error development, for
instance, the most frequent error from 1800 appears 1000 times less in 1830. Many
errors in early documents occur rarely in later periods. Even though not all data sets
show such extreme differences between the periods, similar observations can be made.
Thus, it can be concluded that the different time periods all offer distinct challenges for
OCR post-correction.

Statistics on word level 87.2% (en) and 90.2% (fr) of the wrong tokens only appear
once in the training set (see Table 4). These numbers are computed by excluding any
punctuation characters, e.g. a comma at the end of a word. The large percentage of

JLCL 2018 – Band 33 (1) 55

Amrhein, Clematide

fr en
OCR GT Freq OCR GT Freq

1. font sont 470 1 I 2245
2. a à 331 tbe the 513
3. 1 ! 286 thé the 510
4. d de 167 tlie the 303
5. !. !... 164 aud and 211
6. do de 145 1 ’I 195
7. ta la 139 tho the 188
8. ie je 129 he be 172
9. vn un 116 hut but 165
10. dé de 101 ail all 165

all 51699 47583
hapax legomena 46644 41487

Table 4: Distribution of most frequent word errors

hapax legomena suggests that supervised post-correction on character level will be more
beneficial than on word level due to data sparsity issues.

Table 4 also shows the ten most frequently misspelt words. Both datasets contain
frequently occurring real word errors that cannot be corrected in isolation. Considering
the Zipfian distribution of words, it is probably not surprising that four OCR error
types of “the” are among the most frequently misrecognized English words. The
mean of spelling versions per misrecognized GT type is 1.7 for English and 1.77 for
French. The English word “the” has the highest number of spelling variants (275 unique
types), for French it is the word “de” (214 types). Again, these findings suggest that a
character-based approach is suitable for our task.

4 Methods

4.1 Experimental Setup

In order to keep the official test data untouched while exploring many different exper-
imental settings, we randomly split the official training data in an internal training
(80%), development (10%) and test set (10%). Unrecognizable characters are excluded
from our data. Table 5 characterizes the resulting data sets.

Our baseline approach for character-level OCR correction preprocesses the data into a
verticalized text format as follows: Whenever two space characters are aligned between
the OCR output and the GT, a newline is inserted. After each actual text character

56 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Periodical Monograph Combined
fr en fr en fr en both

Train 1320728 1268194 2862351 2887538 4183079 4155732 8338811
Dev 165449 158748 360090 362068 525539 520816 1046355
Test 165032 158492 356580 360228 521612 518720 1040332

Table 5: Character counts of internal train, dev and test sets (including whitespace and hyphens)
for all four document types. The combined data sets contain periodicals and monographs.

(@ can be ignored), we add a space to force the MT systems to translate on character
level. Example 2 illustrates the conversion into the common line-based training format
of MT systems. Having one word per line makes the training of the MT model simple,
however, it results in a context-insensitive approach.

(2) This@couise@was agretd to, [. . .] Aligned OCR output
This course was agreed to, [. . .] Aligned GT

OCR (Source) GT (Target)
T h i s c o u i s e w a s T h i s ␣ c o u r s e ␣ w a s
a g r e t d a g r e e d
t o , t o ,

Character-based SMT We train a baseline character-based SMT model analogous
to (Pettersson et al., 2013) using the Moses toolkit (Koehn et al., 2007), GIZA++
character alignment (Och and Ney, 2003), and MERT optimization (Och, 2003). We
use a 10-gram language model in all experiments. For a more extensive introduction to
SMT, please refer to Koehn (2009).

Character-based NMT For a more in-depth and general introduction to NMT, we
refer to Koehn (2017).

We first tested the convolutional framework described in Lee et al. (2017), which is a
character-level NMT system by design. However, as early experiments did not show
satisfactory results we discarded this option.

Nematus4 is a high-performing NMT framework (Sennrich et al., 2017). Character-
level MT can be enforced by using the same whitespace insertion “trick” in the data
format as for Moses. Initial experiments showed positive results and we relied on this
framework for all subsequent experiments.

4https://github.com/EdinburghNLP/nematus

JLCL 2018 – Band 33 (1) 57

Amrhein, Clematide

Nematus – as most neural translation frameworks – has many hyperparameters that
influence its performance. Given training times of several hours even on fast GPUs, it
is not feasible to tune these parameters systematically for each data set. We decided to
explore them on the French periodical data for two reasons: First, as one of the smaller
data sets it is faster to train, and, second, prior SMT experiments had shown that this
set is harder to correct than others. In the following, we quickly introduce our base
hyperparameter settings that we determined by experiments on the French periodicals.

Input or output embeddings are low-dimensional dense continuous vector represen-
tations of one-hot encoded categorial data with typically much larger dimensionality.
The dimensionality of characters is orders of magnitude lower than that of words.
We choose an embedding size of 256, tested against 32 and 512. We configure them
as tied embeddings, meaning that the embedding of a character on the source side
is the same as on the target side. This seems reasonable given that both sides are
the same language apart from OCR errors. According to our experiments, not using
tied embeddings achieves better results in error detection but worse results in error
correction. Eventually, we decided to use tied embeddings as they speed up training.

Dropout is a useful regularization method for neural architectures. During training,
some units in the network are switched off. Consequently, the model does not have
access to all its information and is less prone to overfit. The dropout rate specifies how
many units are switched off at the same time. We set it to 0.2.

Batch size refers to the number of training examples which are used to compute the
gradient and update the weights in the network. A larger batch size leads to a speed-up
in training, but it can also have a negative impact on learning. We set it to 100, tested
against 50 and 200.

For a few hyperparameters, we use the default values from Nematus: hidden layer size
(1000), optimizer (adadelta), gradient clipping threshold (1) and learning rate (0.0001).
Furthermore, we set the maximum sequence length to 23 for all context-insensitive
experiments and to 53 for context-sensitive experiments. These limits cover 99.99% of
all training examples.

4.2 Using More Training Material

In MT, the most straightforward method to increase translation quality is by adding
more training material. Since OCR errors mostly occur due to the visual similarity
of characters, the same errors occur in periodicals as in monographs and also in both
languages. Therefore, it makes sense to combine the training sets of the individual text
types (henceforth, “medium” data set size), maybe also combining all the available
data across languages (henceforth, “large” data set). The latter especially because we
noticed code switching effects in Section 3.

4.3 Using More Context

Some OCR errors introduce wrong tokens that are valid words of the document language.
For example, in Table 4 the most frequent French OCR error on word-level is “sont”

58 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

wrongly recognized as “font” (probably because of the long s glyph). However,“font”
cannot be corrected in isolation since it is a frequent French word. We need some
context in order to change it appropriately. Our context-sensitive format with two
preceding and one succeeding words with respect to a focus word inbetween is shown in
Example 4.3.

(3) Si ces principes font fondés sur le goût Aligned OCR
Si ces principes sont fondés sur le goût Aligned GT

OCR (Source)
S i # c e s # p r i n c i p e s # f o n t
c e s # p r i n c i p e s # f o n t # f o n d é s
p r i n c i p e s # f o n t # f o n d é s # s u r
GT (Target)
S i # c e s # p r i n c i p e s # f o n t
c e s # p r i n c i p e s # s o n t # f o n d é s
p r i n c i p e s # s o n t # f o n d é s # s u r

An artificial word boundary marker which otherwise does not occur in the training
data needs to be chosen.5 Alternatively, we could have chosen to translate only the
focus word, however, forcing the MT system to produce the context on the target side
as well, produced better results. This representation increases the training material,
which is good, but unfortunately also extends training time.

4.4 Factored Character-based NMT

Nematus supports “factored” NMT models (Sennrich and Haddow, 2016) where struc-
tured information can be included on the source side: for instance, the time span from
which the text originates, or its text type, or even its language if we want to merge
both languages in order to have more training material.6 In Nematus, factors are
implemented as embedding vectors that are concatenated with the input character
embeddings.7

Factors can be conveniently expressed in the input format. Example 4 with a text
snippet from English periodicals between 1800 and 1849 shows the context-insensitive
input format with factors. The symbol | marks the beginning of a factor. The first
factor refers to the text type, and the second stands for the time span8 when the text
was written. This “feature” can be helpful to model time-dependent OCR errors which
occur due to orthographic or typographical changes as illustrated in Figure 1.

(4) who may wish Aligned OCR
who may wish Aligned GT

5If the boundary marker does not appear 3 times on the translated target side, we select the word
with the smallest edit distance to the input focus word as its translation.

6OCR errors for French and English can be similar due to their common Latin script system.
7Due to a problem in Nematus, we could not use tied embeddings in combination with factors.
8Split in bins of 50 years and represented by YYYY//50 (integer division).

JLCL 2018 – Band 33 (1) 59

Amrhein, Clematide

OCR (Source) GT (Target)
w|peri|36 h|peri|36 o|peri|36 w h o
m|peri|36 a|peri|36 y|peri|36 m a y
w|peri|36 i|peri|36 s|peri|36 h|peri|36 w i s h

4.5 Glyph Embeddings

State-of-the-art NMT often uses pre-trained distributional word embeddings, which
mainly put words closer together in the vector space if they share the same contexts.
For OCR post-correction, characters do not necessarily need to be substituted with
characters that often share the same context, but rather share similar character shapes.
Therefore, we generate pre-trained embeddings that express some visual similarity
between characters. As no source images are available for our data, we simply use 16
by 16 grey-scale pixel values of every character from the Helvetica font as a proxy.9

Of course, there are better ways how visual information can be included in an NMT
system. However, this is a straightforward and time-saving technique and is therefore
used in this experiment.

4.6 Error-focused Models

Most of the OCR output is simple to process for an MT system since it is already
correct and does not need to be translated. This means that for the most part the
NMT system just learns how to copy characters from the source to the target side.
If the system is trained on a data set which contains a larger proportion of errors, it
will become better at detecting errors and will do this more aggressively at the cost of
over-correction. However, these systems might over-correct. Therefore, it is essential to
determine a reasonable amount of non-error tokens in the training data to boost the
error detection recall but not affecting precision too much. For our experiments, we
first tried a split of 75% error and 25% non-error tokens. Since there are fewer errors
in the monographs, we adjust to 50% errors for French monograph and 37.5% for the
English. We randomly filter out examples without errors in this subsampling process.

4.7 Ensemble Decoding

Ensemble decoding is a common technique in NMT where the individual probability
distributions of different models are averaged. The rationale is that the biases of single
models’ outputs even out by the combination of several models. With Nematus it is
possible to do ensemble decoding by using either models from the same training run at
different time steps or multiple models. For our experiments, we try both. In order
to distinguish them, the former will be called “single ensemble” (using different time
stamp models of the same system) and the latter “multi ensemble” (using the best
model of different systems). All experiments with ensemble decoding are conducted on

9The values are normalized into a range between -1 and 1 and then scaled by 0.01 as done in
Nematus for randomly initialized values.

60 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

the context-sensitive input formats. Single ensembles are tested for the base context-
sensitive NMT system and the error-focused NMT system. For single ensembles,
we combine the best model with the models from two previous time stamps. Multi
ensembles use the base context-sensitive NMT system, the one with glyph embeddings
and the error-focused system.

4.8 System Combinations

The final method explored in our experiments is combining the outputs of multiple MT
systems. The output from such post-translation combination of systems was submitted
to the ICDAR shared task.

Different strategies are used for error detection and error correction. Keep in mind
that for the error correction test set, the shared task organizers published the positions
of erroneous tokens. Therefore, we translate all data for error detection, however, for
the error correction we only translate the erroneous tokens.

A flow diagram of our decision procedure is shown in Figure 2. The error detection
algorithm uses the output of five MT systems for a specific data set which worked best
in combination as tested on the dev set. We have four conditions which trigger the
error detection. First, if the model with the smallest Levenshtein distance proposes a
change, we assume there is an error. Second, we check the five best systems, and if the
most frequently proposed token is different from the OCR output, we also assume an
error. Third, if the original OCR token does not occur in the GT training and dev sets
for both text types, we assume an error. Finally, if the current token and one of its
neighbors (both can be translated or untranslated) do not occur in the training set, but
their concatenation does, we assume that the tokens have to be merged.

The algorithm for error correction works slightly different. The five models with
the smallest Levenshtein distance on the dev set are used to generate correction
candidates. Since the evaluation script for the shared task evaluates two scenarios,
a “fully-automated” one where only one correction candidate is given and a “semi-
automated” one where a ranked list of candidates with confidence scores is given, we
pay special attention to our choice of candidates. If the system with the smallest
Levenshtein distance on the dev set suggests a correction, we take this as an exclusive
correction candidate. Otherwise, we look at the candidates of all five systems and
model the weights according to the frequency distribution of their suggestions which
are different from the OCR output.

5 Results and Discussion

5.1 Evaluation Setup

All configurations are evaluated on our internal test set by macro-averaging the scores
of three individual models using the same configuration. This reduces effects caused
by system variance. Error detection is measured on word level using the following
measures:

JLCL 2018 – Band 33 (1) 61

Amrhein, Clematide

Figure 2: Algorithms for error detection and correction explained with an example.

62 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Error Detection Error Correction
P ↑ R ↑ F1 ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

English Periodicals
OCR baseline Char/Tok ER: 3.47% / 11.28% 0.1898 0% -

SMT baseline * 83.82 61.84 71.17 0.1347 40.96 53.42
SMT medium 91.33 46.87 61.94 0.1461 29.96 57.28

SMT large 93.26 40.51 56.47 0.1510 25.71 56.78
NMT baseline 87.33 59.27 70.61 0.1472 28.95 49.00
NMT medium 90.60 46.60 61.53 0.1584 19.85 47.52

NMT large 91.47 42.51 58.04 0.1593 19.13 47.42
SMT context * 85.19 58.87 69.62 0.1339 41.83 58.98
NMT context * 89.31 59.56 71.46 0.1406 34.95 51.34

NMT time factor no context 87.38 60.27 71.33 0.1475 28.68 48.24
NMT time factor context 89.99 57.77 70.37 0.1420 33.65 51.38

NMT factor medium 88.82 58.94 70.85 0.1448 31.12 49.94
NMT factor large 89.32 57.28 69.79 0.1415 34.10 50.95

NMT glyph embeddings * 89.62 59.16 71.27 0.1422 33.44 51.17
NMT error-focused 76.95 68.01 72.20 0.1591 19.28 41.09

NMT single ensemble * 89.92 59.54 71.64 0.1388 36.73 52.22
NMT single ensemble error 78.41 68.28 72.99 0.1533 23.80 43.35

NMT multi ensemble * 89.20 60.79 72.30 0.1369 38.68 52.37
English Monographs

OCR baseline Char/Tok ER: 1.79% / 6.38% 0.0830 0% -
SMT baseline * 92.84 33.92 49.68 0.0631 31.50 72.03
SMT medium 86.32 36.58 51.37 0.0649 27.84 64.52

SMT large 89.41 32.84 48.03 0.0652 27.30 68.56
NMT baseline * 91.77 35.50 51.19 0.0652 27.33 65.94
NMT medium 87.56 36.74 51.76 0.0668 24.18 61.54

NMT large 87.82 33.92 48.93 0.0678 22.45 62.52
SMT context * 88.85 39.07 54.27 0.0628 32.25 70.34
NMT context * 87.97 39.93 54.92 0.0632 31.27 65.38

NMT time factor no context 90.19 40.64 56.03 0.0668 24.26 58.39
NMT time factor context * 85.31 45.04 58.94 0.0644 28.77 61.06

NMT factor medium 92.33 39.66 55.48 0.0652 27.27 61.22
NMT factor large 91.62 39.24 54.95 0.0654 26.83 61.91

NMT glyph embeddings * 87.75 40.27 55.20 0.0631 31.46 65.73
NMT error-focused 50.51 50.81 50.60 0.0884 -6.01 35.80

NMT single ensemble 89.95 39.51 54.90 0.0625 32.87 67.39
NMT single ensemble error 49.38 51.70 50.43 0.0888 -6.31 35.58

NMT multi ensemble * 86.85 41.14 55.82 0.0627 32.38 65.78

Table 6: English macro-averaged experiments results. Best results are marked in blue, worst results
in red. Asterisks mark indicates systems used for ICDAR submission. (ER = error rate)

JLCL 2018 – Band 33 (1) 63

Amrhein, Clematide

Error Detection Error Correction
P ↑ R ↑ F1 ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

French Periodicals
OCR baseline Char/Tok ER: 3.41% / 11.85% 0.1930 0% -

SMT baseline * 83.48 35.31 49.62 0.1656 16.54 47.39
SMT medium 86.93 38.00 52.87 0.1663 16.06 46.97

SMT large 87.18 35.37 50.31 0.1675 15.22 44.43
NMT baseline * 87.87 43.52 58.21 0.1700 13.53 39.25
NMT medium 88.49 41.75 56.72 0.1695 13.88 38.93

NMT large 88.01 40.07 55.06 0.1735 11.21 35.84
SMT context 81.75 40.00 53.71 0.1614 19.64 53.66
NMT context 88.53 44.26 59.01 0.1645 17.32 42.53

NMT time factor no context 85.81 44.58 58.66 0.1755 10.02 37.77
NMT time factor context * 87.78 46.74 61.00 0.1655 16.68 40.88

NMT factor medium 87.51 44.20 58.72 0.1699 13.64 39.09
NMT factor large 86.28 43.83 58.11 0.1704 13.30 39.24

NMT glyph embeddings * 88.30 43.22 58.03 0.1657 16.45 41.81
NMT error-focused * 67.47 60.72 63.91 0.1956 -1.32 28.99
NMT single ensemble 88.30 44.26 58.96 0.1631 18.34 43.45

NMT single ensemble error 69.54 61.55 65.30 0.1903 1.40 30.99
NMT multi ensemble * 86.79 47.84 61.68 0.1621 19.08 42.17

French Monographs
OCR baseline Char/Tok ER: 1.61% / 6.18% 0.0692 0% -

SMT baseline * 82.69 38.55 52.52 0.0558 24.00 55.04
SMT medium 80.81 36.30 50.10 0.0574 20.59 51.95

SMT large 82.44 36.24 50.18 0.0587 18.07 48.84
NMT baseline 84.22 40.10 54.38 0.0602 15.00 44.13
NMT medium 83.59 38.23 52.37 0.0593 16.71 43.89

NMT large 82.81 37.15 51.05 0.0610 13.66 40.66
SMT context * 82.49 40.51 54.18 0.0568 22.15 58.47
NMT context * 84.17 42.95 56.85 0.0586 18.26 46.10

NMT time factor no context 84.37 41.53 55.75 0.0591 17.28 45.38
NMT time factor context 81.60 43.04 56.45 0.0583 18.85 45.68

NMT factor medium 85.94 40.97 55.46 0.0580 19.31 47.32
NMT factor large 85.63 39.36 53.86 0.0577 20.11 47.48

NMT glyph embeddings * 83.55 43.30 57.00 0.0583 18.73 45.43
NMT error-focused 58.53 54.56 56.48 0.0756 -8.28 30.23

NMT single ensemble * 85.72 42.98 57.29 0.0575 20.43 48.10
NMT single ensemble error 59.71 55.15 57.37 0.0744 -6.99 31.87

NMT multi ensemble * 82.27 45.73 58.91 0.0581 19.09 46.30

Table 7: French macro-averaged experiments results. Best results are marked in blue, worst results
in red. Asterisks mark indicates systems used for ICDAR submission. (ER = error rate)

64 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Precision P How many of the tokens predicted as incorrect actually needed a correction?

Recall R How many of the incorrect tokens were actually predicted as incorrect?

F1-Measure Harmonic mean of precision and recall: F 1 = 2∗P ∗R
P +R

Error correction is measured on character level using Damerau-Levenshtein distance
averaged over all tokens.10 Levenshtein distance between tokens t1 and t2 measures the
minimal amount character substitutions, deletions or inserts needed to turn t1 into t2
(Levenshtein, 1966). Damerau distance (Damerau, 1964) additionally allows to swap
two adjacent characters.11 Note that for the official submissions in task 2, a list of
candidate corrections combined with their probability was evaluated. In this setup, the
evaluation reports the weighted sum of edit distances for all candidates (weight equals
probability). For the results shown on our internal test set, we always sticked to only
one correction candidate.

For task 2, i.e. the error correction, the positions of erroneous tokens were given and
only those were evaluated. Of course, evaluating error correction only on erroneous
tokens is an artificial scenario. In practice, it is not known if a token is correct or
not. Any potential corrections may also introduce new errors to correct tokens. This
evaluation is therefore not ideal but the evaluation setup was given by the competition.
Note that we used the same training data for both tasks.

In the following, we present and discuss the results for different experimental settings
in the same order as they were introduced in the preceding section. Table 6 summarizes
all results on English data sets, Table 7 on French. In addition to the F1-score and
the relative Levenshtein distance improvement, these tables also report character- and
token-level error rates as well as the Levenshtein distance for the original OCR output,
precision and recall scores for all experiments as well as the percentage of translated
words that are correct.

5.2 More Training Material

What is the effect of combining the different data sets for training? Against our
expectations, error detection and correction performance mostly decreases with medium
training sets, especially in the case of English periodicals (see Tables 6 and 7). Only
SMT can sometimes profit from more data. This suggests that OCR errors are particular
to a text type and that NMT approaches specifically adapt to the specific OCR error
distribution (frequency and types) of a training set. This trend is even stronger when
cross-linguistically combining larger training sets. There, performance drops even more.

More general observations about context-insensitive correction can be made: First,
SMT models perform better than NMT in error correction and worse in error detection.
10The official evaluation script was released via https://git.univ-lr.fr/gchiro01/icdar2017. Al-

though the official ICDAR report refers to Levenshtein distance, the implementation actually uses
Damerau-Levenshtein distance.

11Damerau-Levenshtein actually is more useful for measuring human spelling distance than OCR
spelling distance.

JLCL 2018 – Band 33 (1) 65

Amrhein, Clematide

Figure 3: Effect of the inclusion of context (two preceding and one succeeding token) on performance

Second, error correction works better on English than on French. Third, error detection
works better on the periodical data, probably due to the higher a priori error rate of
this text type.

5.3 Using More Context

The results of the experiments described in Section 4.3 are shown in Figure 3. As
expected, more context for translation effectively improves results in all but one data
set. The transparent columns with black borders show the context-sensitive baseline
trained separately on language-specific text types. The colored columns show the results
using the context-insensitive sets. The scatter plots above the bar plots give the relative
improvement (scales are not comparable between figures).

The overall performance pattern as discussed before still applies to the individual data
sets, and SMT still performs better for error correction and NMT for error detection.

66 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Figure 4: Effect of time-factored training material

5.4 Factored Character-based NMT

Using factors as described in Section 4.4 is another strategy to include more information
when training an NMT system. Figure 4 shows the influence of the factor on the
publication time. Overall, time factors result in a better performance in error detection
for most data sets, especially for English monographs. This phenomenon can be
explained with a quick look at Figure 1. Most English monograph texts do not need
many corrections. However, this is problematic for the earlier files (around 1800), which
contain many more errors than the later ones. Time factors allow the model to detect
errors more aggressively on texts that were published around 1800. Therefore, time
factors control the aggressiveness of an NMT model’s error detection. In contrast to
error detection, there is a decrease in the relative Levenshtein distance improvement in
error correction for all but two data sets. This development could be simply because
there is an improvement in error detection. Detecting more errors does not automatically

JLCL 2018 – Band 33 (1) 67

Amrhein, Clematide

mean providing accurate corrections. Trying to correct more tokens can lead to an
overall higher distance to the GT. Another explanation could be that, especially, with
smaller data sets there might be data sparsity issues.

Unfortunately, also adding factors for languages and combining all data folds into a
large data set still does not generally improve the performance (results not shown).

5.5 Glyph Embeddings

The use of glyph images as pre-trained embeddings only shows a small improvement
for monographs in both F1-score and relative Levenshtein distance (results not shown).
For periodicals, the results are even slightly worse than with randomized embeddings.
Adding the intuitively promising information about glyph similarity therefore needs
another modeling approach than ours for more general applicability. Maybe using glyph
images with closer resemblance to the actual fonts helps, maybe we should concatenate
the glyph vector representation with the character embeddings instead of using them
as initialization weights.

5.6 Error-Focused Models

We have seen in Table 2 that periodicals contain many more errors in need of correction
than monographs. Therefore, we subsample error-focused training sets as described
in Section 4.6. As expected, error correction suffers a lot from such unrepresentative
training material and over-corrects the texts. As intended, error detection F1 score
improves for periodicals as recall and precision get more balanced. Without subsampling
precision is typically 20 to 40 percentage points higher than recall. Unfortunately,
F1 decreases for monographs (especially for English). Maybe an improved tuning of
the optimal error proportion for subsampling can remedy these rather unexpected
differences.

5.7 Ensemble Decoding

The results confirm that in almost all cases error detection and correction improve when
single model ensembles are used. Relative improvement for error correction is much
higher than for error detection. This suggests that at different training moments the
models provide different correction candidates which in combination converge to better
suggestions.

Context-sensitive neural multi ensembling as described in Section 4.7 is strong for
error detection and competitive for NMT error correction. However, SMT generally
outperforms neural multi ensembles on error correction by a large margin. The perfor-
mance pattern of multi ensembles across languages and text types is still similar to the
patterns seen for the context-insensitive baseline, suggesting that these patterns are
not due to specific idiosyncrasies of one of our models.

68 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Data Set Error Detection (Task 1) Error Correction (Task 2)
en Periodical 73.0 NMT single ensemble error 41.8 SMT context

en Monograph 58.9 NMT time factor context 32.8 SMT baseline
fr Periodical 65.3 NMT single ensemble error 19.6 SMT context

fr Monograph 58.9 NMT multi ensemble 24.0 SMT context

Table 8: The best systems for each data set. For error detection, macro-averaged F1 score is consid-
ered and for error correction macro-averaged relative Levenshtein distance improvement.

5.8 Summary on Systems

Generally, the performances across data sets vary a lot, except for error detection on
monographs. Table 8 collects all best-performing systems for error detection (macro-
averaged F1-measure) and error correction (macro-averaged relative Levenshtein distance
improvement). All best systems for error detection use NMT, while all best systems
for error correction use SMT. Context-sensitive SMT consistently works best in all
but one case. For error detection, all but one system are ensembles. We explain the
exception of English monographs by its high error variation over time, something that
time-factored models capture effectively. Our results indicate that the optimal choice
of an MT systems for OCR post-correction strongly depends on the task (detection or
correction), language, text type, time span and error distribution. Ensemble decoding
in NMT models almost always boosts performance. Ensembling of SMT output could
also help, but we did not conduct such experiments.

5.9 Our ICDAR 2017 OCR Post-Correction Competition Submission and Results

As described in Section 4.8, our submission combines the outputs from different systems.
Unfortunately not all system types presented in this article were available at submission
time of the shared task, for instance, the well-performing ensembles of the error-focused
models. The systems for submission were selected such that their combination performs
best on an internal tuning set (see Table 9 for a complete listing for each data set).
Note that the selected systems are not necessarily the top five systems on that data set
as their combined performance is considered.

Table 10 summarizes the results of the best 6 teams (out of 11) from the official
paper on the ICDAR 2017 OCR post-correction shared task (Chiron et al., 2017).12

Our approach (Char-SMT/NMT) achieved the best results of all submitted methods
in error correction (task 2). The relative improvement columns report the relative

12Probably due to the rather complex output format defined by the shared task organizers, many
teams seem to have produced inconsistent data.

JLCL 2018 – Band 33 (1) 69

Amrhein, Clematide

Error Detection (Task 1) Error Correction (Task 2)
en Periodical en Monograph en Periodical en Monograph

NMT multi ensemble NMT baseline SMT context * SMT baseline *

SMT baseline * SMT context * SMT baseline SMT context

NMT single ensemble NMT multi ensemble NMT multi ensemble NMT baseline

NMT glyph embeddings NMT context NMT single ensemble NMT glyph embeddings

NMT context NMT time factor context NMT context NMT multi ensemble

fr Periodical fr Monograph fr Periodical fr Monograph

NMT multi ensemble NMT multi ensemble NMT multi ensemble * SMT context *

NMT baseline * SMT context * NMT time factor context SMT baseline

NMT time factor context NMT single ensemble NMT error-focused NMT multi ensemble

NMT error-focused NMT context NMT glyph embeddings NMT single ensemble

NMT glyph embeddings NMT glyph embeddings SMT baseline NMT context

Table 9: Systems which were included in our system combination for task 1 and 2. Systems marked
with an asterisk have the smallest Levenshtein distance of the systems in that combination.

token-level improvement if the top-ranked correction candidate of a system is applied.
Compared to the other approaches, we consistently deliver best results across all data
sets. A hyphen in the cells indicates that a system actually deteriorated more tokens
than it improved. In contrast to our submission, quite a lot of system failed to improve
the texts, which is an indication of the difficulty of the task.

In error detection (task 1), we performed comparatively to other submissions. The
best approach for task 1 applies a noisy channel model to the OCR post-correction, and
uses the Google Books Ngrams for their vocabulary and language model. Therefore,
error detection probably profits from external data. In contrast, our approach does not
need additional resources to train the MT systems. Other models that achieve similar
results as our method use character-based NMT with context, SMT on character and
token level, spell checkers, error frequency patterns, or a 2-pass RNN architecture where
the first RNN works on character level and the second on token level. The official shared
task report (Chiron et al., 2017) contains short summaries of the chosen approach from
all participating teams.

Table 11 shows the results of task 1 in more detail. Accuracy and recall can be
compared directly. Our method achieved by far the highest accuracy. However, even
though we tried to increase the recall for error detection via system combination, our
recall is not as high as it is for other methods. Still, the amount of documents that our
system actually improves (102 documents) is much higher than for all other systems.
The best system for error detection is only able to improve about 60% of documents

70 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

Task 1 (F-measure) Task 2 (%Improvement)
(top-ranked correction candidate)

Teams/Data Sets en
mono

en
peri

fr
mono

fr
peri

mean en
mono

en
peri

fr
mono

fr
peri

tokens
(error rate)

63371
(10%)

33176
(15%)

32274
(5%)

48356
(7%)

63371
(10%)

33176
(15%)

32274
(5%)

48356
(7%)

WFST-PostOCR 0.73 0.68 0.55 0.69 0.66 28% - - -
2-pass-RNN ‡ 0.66 0.66 0.43 0.60 0.59 x - x x
EFP 0.69 0.54 0.40 0.54 0.54 13% - 23% 5%
Char-SMT/NMT 0.67 0.64 0.31 0.50 0.53 43% 37% 44% 29%
CLAM 0.67 x 0.36 0.54 0.52 29% 22% 1% 5%
MMDT ‡ 0.66 0.44 0.36 0.41 0.47 20% - 3% 2%
Post-Submission 0.62 0.59 0.35 0.51 0.52 18% 21% 40% 24%

Table 10: Official ICDAR OCR post-correction results (only 6 best teams out of 11 shown). Systems
marked with “‡” had partially malformed submission format. Cell entries with “x” indicate
missing or malformed submissions for this data set. Cell entries with “-” indicate that no
improvement was achieved, meaning there was a deterioration of the texts. The last row
shows the performance of our high-performing single system post-submission.

compared to our submission.
Table 11 provides valuable information on what could be improved with our method

and in what cases it makes sense to use it. Our approach is optimal for an automatic
OCR correction scenario with high precision requirements for error detection and high
correction quality. On the other hand, if recall is more important, for instance, if
manual verification is applied to the correction candidates, our method might need to
be adapted further, or another approach should be used for the error detection.

There is a practical issue with our approach if we want to apply it to new datasets.
Building all the necessary systems for our system combination is a bit complex and
laborious. In a post-submission experiment, we therefore tried to build the most
promising single system according to our experimental experience.

Our post-submission system is a combination of the strategies with the greatest
potential to profit from each other13: For each language, we combined the context-
sensitive (two preceding and one following token) training material for periodicals and
monographs and used factors to encode information on the time period and text type
of the documents. The last row in Table 10 shows that such a single system performs
reasonably across all data sets, however, there is a substantial drop in comparison to
the best reported result.

13We did not empirically test all combinations systematically, though.

JLCL 2018 – Band 33 (1) 71

Amrhein, Clematide

en fr en fr all
mono peri mono peri mo pe mo pe all

System Acc./Rec. Acc./Rec. Acc./Rec. Acc./Rec. # # # # #
Char-SMT/NMT 0.98/0.51 0.88/0.50 0.74/0.19 0.93/0.34 40 4 46 12 102
CLAM 0.93/0.52 -/- 0.48/0.28 0.71/0.44 36 4 31 7 78
MMDT 0.84/0.55 0.72/0.32 0.62/0.25 0.71/0.28 37 3 28 7 75
EFP 0.62/0.77 0.54/0.55 0.29/0.60 0.49/0.58 31 1 24 11 67
WFST-PostOCR 0.67/0.82 0.68/0.68 0.51/0.59 0.72/0.66 36 0 20 3 59
2-pass RNN 0.58/0.77 0.64/0.68 0.33/0.60 0.09/0.04 x 0 x x 0

Total # of Documents in Test Set ⇒ 41 4 54 12 110

Table 11: Official ICDAR results break down (only 6 best performing teams out of 11 shown) on
accuracy, recall, and number of documents where a net improvement resulted from the
corrections of task 2.

6 Future Work

The comparison of the best ICDAR systems in error detection with our results indicates
that our methods do not yet spot the optimal amount of OCR issues that need correction.
The resources that our models use are strictly limited to the official training material.
The best ICDAR error detection system uses additional material from Google Books
n-grams. For a practically oriented OCR error detection, we should think about ways
to integrate external data for error detection. However, for solving the full OCR
post-correction task one still has to be able to actually generate the correct spelling.

An important question for practical applicability is the amount of training data needed
for our approach. Ablation experiments where the training material is systematically
reduced would offer some insights about the correlation of training data size and the
post-correction improvement, which is probably also dependent on the original error
rate.

A better tuning of the subsampling for error-focused models is worth trying. For an
optimal F1 score in error detection, recall and precision should be perfectly balanced.
However, this goal is difficult to optimize directly and needs further experimentation.

In our work, we experimented with only one way (two preceding and one succeeding
token) for introducing textual context into the translation model. Context is needed
for high-quality OCR post-correction with character-based MT, but other ways of
integrating it might work as well.

A more sophisticated model representation of glyph shapes that are more similar to the
historical fonts used for typesetting is worth exploring. Furthermore, our experiments

72 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

suggest that it would be interesting to train models on data from smaller time periods,
e.g. only documents from 1800 to 1850.

Finally, one should better analyze how the training material size, relative error
frequency, language, text type, time span and typeface influence the OCR post-correction
quality. Our experiments with different data sets with different properties often showed
strongly varying or inconsistent effects. Conclusive and generally applicable insights are
hard to achieve, but they are strongly needed for a practical application of supervised
OCR post-correction.

7 Conclusion

This article presented a broad overview as well as extensive experiments and evaluations
on how character-based neural and statistical machine translation techniques can be
used for OCR post-correction. We showed that SMT systems perform better in error
correction, while NMT systems achieve higher results in error detection. This is
important to know for anyone who plans to employ character-based MT for any of
these subtasks.

We tested both state-of-the-art and novel strategies to include more information in the
training and translation process of NMT systems. Giving enough context to the systems
for a correction candidate allows better detection of real word errors and increases
the training material. We found that no improvement in OCR post-correction can be
achieved when data sets with different error characteristics are combined. However,
when the individual training examples are labelled with their data set characteristics
as factors, neural systems are able to generalize from the increased training sets and
produce better results, especially for error correction. Specifically, data sets with
considerably varying error rates profit from time factors. Another insight is that
error-focused models can boost error detection, but have a rather negative influence on
error correction. Correctly calibrating the error threshold for subsampling the training
material is essential for these models. We showed that the decrease in error correction
with error-focused models can be mitigated by using ensemble decoding. In fact, normal
ensembling of single systems’ output is useful for OCR correction, even more so, if
different systems are combined for ensemble decoding. Finally, we experimented with a
novel, straightforward approach how visual information on glyphs can be included in
the training process of character-based NMT systems.

However, we also saw that for the given training sizes and the highly varied training
material it is hard to achieve conclusive and generally applicable insights about the
best settings and hyperparameters. We often observed some improvements on some
data sets and at the same time performance deterioration or no effect on others. Thus,
it is hard to reuse models for out-of-domain data sets.

A carefully compiled ensemble of our models reached best performance in ICDAR’s
2017 error correction subtask and performed competitively in error detection. Due
to the individual systems’ strengths and weaknesses, we proposed an algorithm that
combines different system outputs. The results of the shared task show that our

JLCL 2018 – Band 33 (1) 73

Amrhein, Clematide

approach is competitive in error detection and strongly outperforms other approaches in
error correction, even though we do not use any external resources. We also presented
post-submission results on the ICDAR data set for the best single-model configuration,
which is more practical to adapt and apply on new data sets than complex ensemble
solutions. Our evaluation suggests that future work on NMT for OCR post-correction
should focus on improving error detection.

Acknowledgements

SC has been supported by the Swiss National Science Foundation under grant CR-
SII5_173719.

References

Afli, H., Barrault, L., and Schwenk, H. (2015). OCR error correction using statistical ma-
chine translation. In 16th International Conference on Intelligent Text Processing and
Computational Linguistics, Cairo, Egypt.

Afli, H., Qiu, Z., Way, A., and Sheridan, P. (2016). Using SMT for OCR error correction of
historical texts. In Proceedings of LREC-2016, Portorož, Slovenia, pages 962–965.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In International Conference on Learning Representations.

Bollmann, M. and Søgaard, A. (2016). Improving historical spelling normalization with bi-
directional LSTMs and multi-task learning. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages 131–139,
Osaka, Japan.

Brill, E. and Moore, R. C. (2000). An improved error model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting on Association for Computational Linguistics,
ACL ’00, pages 286–293.

Chiron, G., Doucet, A., Coustaty, M., and Moreux, J.-P. (2017). ICDAR2017 competition
on post-OCR text correction. In 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), volume 01, pages 1423 –1428.

Chung, J., Cho, K., and Bengio, Y. (2016). A character-level decoder without explicit
segmentation for neural machine translation. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1693–1703,
Berlin, Germany.

Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors.
Commun. ACM, 7(3):171–176.

Eger, S., Mehler, A., et al. (2016). A comparison of four character-level string-to-string
translation models for (ocr) spelling error correction. The Prague Bulletin of Mathematical
Linguistics, 105(1):77–99.

74 JLCL

Supervised OCR Error Detection and Correction Using SMT and NMT

He, W., He, Z., Wu, H., and Wang, H. (2016). Improved neural machine translation with SMT
features. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pages
151–157. AAAI Press.

Koehn, P. (2009). Statistical machine translation. Cambridge University Press.

Koehn, P. (2017). Neural machine translation. CoRR, abs/1709.07809.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen,
W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses:
Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics Companion Volume Proceedings
of the Demo and Poster Sessions, pages 177–180, Prague, Czech Republic.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Computing
Surveys (CSUR), 24(4):377–439.

Lee, J., Cho, K., and Hofmann, T. (2017). Fully character-level neural machine translation
without explicit segmentation. Transactions of the Association for Computational Linguistics,
5:365–378.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet physics doklady, 10(8).

Luong, M.-T. and Manning, C. D. (2016). Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1054–1063,
Berlin, Germany.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015). Addressing the rare
word problem in neural machine translation. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 11–19, Beijing, China.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–167,
Sapporo, Japan.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models.
Computational linguistics, 29(1):19–51.

Pettersson, E., Megyesi, B., and Tiedemann, J. (2013). An SMT approach to automatic
annotation of historical text. In Proceedings of the workshop on computational historical
linguistics at NODALIDA 2013; May 22-24; 2013; Oslo; Norway. NEALT Proceedings Series
18 / Linköping Electronic Conference Proceedings 87, pages 54–69. Linköping University
Electronic Press.

Piotrowski, M. (2012). Natural language processing for historical texts. Synthesis Lectures on
Human Language Technologies, 5(2).

Reynaert, M. (2016). OCR post-correction evaluation of early dutch books online - revisited. In
Proceedings of the Tenth International Conference on Language Resources and Evaluation
LREC 2016, Portorož, Slovenia, May 23-28, 2016. European Language Resources Association
(ELRA).

JLCL 2018 – Band 33 (1) 75

Amrhein, Clematide

Rosca, M. and Breuel, T. (2016). Sequence-to-sequence neural network models for transliteration.
CoRR, abs/1610.09565.

Schnober, C., Eger, S., Do Dinh, E.-L., and Gurevych, I. (2016). Still not there? comparing
traditional sequence-to-sequence models to encoder-decoder neural networks on monotone
string translation tasks. In Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pages 1703–1714, Osaka, Japan.

Schulz, S. and Kuhn, J. (2017). Multi-modular domain-tailored ocr post-correction. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 2716–2726, Copenhagen, Denmark. Association for Computational Linguistics.

Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-Dowmunt, M.,
Läubli, S., Miceli Barone, A. V., Mokry, J., and Nadejde, M. (2017). Nematus: a toolkit
for neural machine translation. In Proceedings of the Software Demonstrations of the 15th
Conference of the European Chapter of the Association for Computational Linguistics, pages
65–68, Valencia, Spain.

Sennrich, R. and Haddow, B. (2016). Linguistic input features improve neural machine
translation. In Proceedings of the First Conference on Machine Translation, pages 83–91,
Berlin, Germany.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany.

Silfverberg, M., Kauppinen, P., and Lindén, K. (2016). Data-driven spelling correction using
weighted finite-state methods. In Proceedings of the SIGFSM Workshop on Statistical NLP
and Weighted Automata, pages 51–59, Berlin, Germany. Association for Computational
Linguistics.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112.

Volk, M., Furrer, L., and Sennrich, R. (2011). Strategies for Reducing and Correcting OCR
Errors, pages 3–22. Springer Berlin Heidelberg, Berlin, Heidelberg.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., and Ng, A. Y. (2016). Neural language
correction with character-based attention. CoRR, abs/1603.09727.

Yao, K. and Zweig, G. (2015). Sequence-to-sequence neural net models for grapheme-to-
phoneme conversion. In 16th Annual Conference of the International Speech Communication
Association (INTERSPEECH 2015), pages 3330–3334.

Zhao, S. and Zhang, Z. (2016). An efficient character-level neural machine translation. CoRR,
abs/1608.04738.

76 JLCL

