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Abstract

This paper presents a new, extensible annotation scheme for offensive language data
sets. The annotation scheme expands coverage beyond fairly straightforward cases of
offensive language to address several cases of complex, implicit, and/or pragmatically-
triggered offensive language. We apply the annotation scheme to create a new Complex
Offensive Language Data Set for English (COLD-EN). The primary purpose of
this data set is to diagnose how well systems for automatic detection of abusive language
are able to classify three types of complex offensive language: reclaimed slurs, offensive
utterances containing pejorative adjectival nominalizations (and no slur terms), and
utterances conveying offense through linguistic distancing.
COLD offers a straightforward framework for error analysis. Our vision is that

researchers will use this data set to diagnose the strengths and weaknesses of their
offensive language detection systems. In this paper, we diagnose some strengths and
weaknesses of a top-performing offensive language detection system by: a) using it to
classify COLD, and b) investigating its performance on the 10 fine-grained categories
supported by our annotation scheme. We evaluate the system’s performance when
trained on five different standard data sets for offensive language detection. Systems
trained on different data sets have different strengths and weaknesses, with most
performing poorly on the phenomena of reclaimed slurs and pejorative nominalizations.
NOTE: This paper contains sensitive and offensive material. The offensive materials
are part of a complex puzzle we wish to better understand; they appear in the form of
lightly-censored slurs and degrading insults. We do not condone this type of language,
nor does it reflect the attitudes or beliefs of the authors.

1 Introduction

Existing systems for detecting offensive language1 mostly rely on identifying explicitly
offensive keywords, and they often get things wrong, sometimes in rather troubling
ways. Current evaluations tend to misrepresent the capability of these systems to
handle the complex nature of offensive language (Wiegand et al., 2019, among others).
Systems are particularly challenged when it comes to classification of implicitly offensive

1We use “offensive language” as a broad term to include hate speech, abusive language, insults,
profanity, and other forms of expression triggering negative reactions in (at least some) hear-
ers/readers.
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language. At the same time, systems tend toward false positives on expressions like
reclaimed slurs, with outcomes that unfairly and disproportionately penalize certain
linguistic and social communities. Mis-classifications of such instances (false positives, in
particular) contribute to the systematic racial bias seen in automatic offensive language
classification (Davidson et al., 2019). That bias in turn can have a disproportionate
negative effect on members of already-stigmatized communities.

In the name of better understanding existing systems’ limitations, we present COLD
(Complex Offensive Language Dataset),2 an annotation scheme and evaluation data set
that codes for reclaimed slurs as well as two categories of implicitly offensive language:
distancing and pejorative adjectival nominalization. We propose the term complex
offensive language to describe occurrences of offensive language signaled with more
complex means than explicitly offensive keywords, as well as explicitly offensive keywords
used with neutral or positive force. This term encompasses a broad range of linguistic
phenomena using different means for conveying offense, or using purportedly offensive
language in non-offensive contexts. COLD is easily extensible to include additional
types of complex offensive language, and we hope that the community will join us in
including data and annotations for additional types of complex offensive language.
Our vision is that this data set can be used to diagnose the strengths

and weaknesses of offensive language detection systems, as well as offer
a straightforward framework for error analysis. The motivation is similar to
targeted evaluation data sets constructed in order to gauge the ability of automated
systems to handle particular linguistic concepts. Our approach is also similar in spirit
to efforts like the Build it, Break it, The Language Edition shared task (Ettinger et al.,
2017) or the Winograd Schema Challenges (Kocijan et al., 2020).

Contributions. The contributions of this work are:

1. Linguistically-grounded discussion of several categories of complex offensive lan-
guage;

2. A straightforward annotation scheme with simple annotation questions leading to
fine-grained categorization of instances;

3. A procedure for attempting to mitigate the residual harms of annotation;
4. An evaluation data set with fine-grained categories relevant for detailed error

analysis of systems for automatic detection of offensive language;3 and
5. Diagnostic analysis of how well some existing systems are able to classify these

three categories of complex offensive language.

Overview. Our approach to annotation targets three subtypes of offensive language
that, we hypothesize, tend to elude correct classification by automatic systems. Each of

2In a previous presentation (Carr, Robinson, & Palmer, 2020), we used the name DEIOLD for the
same data set.

3The data sets, related code, and annotation guidelines are available at: https://github.com/
alexispalmer/cold.
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these subtypes is connected to a significant linguistic literature, discussed in Section 2.
The COLD annotation scheme (Section 3) poses four binary questions to annotators
and then uses the answers to these questions to associate a single fine-grained category
with each instance. We compile a diagnostic corpus from several different data sources
(described in Section 4) and annotate it using the new scheme, creating a set of 2016
instances with both detailed linguistic annotation and fine-grained categorization.4
We train neural models (Section 5) on five different data sets and analyze the models’
performance on the new COLD corpus (results in Section 5.3).

2 Selected linguistic phenomena in complex offensive language

Offensive language that uses means other than explicitly offensive slur terms or profanity
to convey offense is harder to automatically detect than explicitly offensive language.
Such non-explicit phenomena are often referred to as implicitly offensive language
(Wiegand et al., 2019; Waseem et al., 2017, among others). Another category that
poses challenges for automatic detection systems are reclaimed or reappropriated uses
of slur terms. Though identical in form with explicit slur terms, they serve entirely
different semantic and pragmatic functions (Rahman, 2012). In this paper, we propose
the term complex offensive language as an umbrella term for the range of linguistic
phenomena posing challenges for automated detection of offensive language online.
The space of phenomena constituting the category of complex offensive language

has yet to be fully delineated, and we suspect the members of this category are many
and varied – offensive language is inherently a complex enterprise. The current work
addresses three different phenomena, each of which we find to be both important and
linguistically interesting.
The phenomena are realized in COLD as features of the annotation scheme. This

section touches on some of the linguistic background for each of these features, each of
which is complex and well-studied. We offer only a brief introduction to the literature and
encourage the reader to consult cited works for more detailed and nuanced discussion.

First, we consider the phenomenon of distancing and several linguistic realizations
of distancing (Sec. 2.1). Next, we consider slurs in both their typical uses and in the
case of slurs reclaimed by the communities they were originally intended to degrade
(Sec. 2.2). The third relevant characteristic is pejoration which arises through adjectival
nominalization, described in Sec. 2.3.

2.1 Pejoration through distancing

Culpeper (1996) describes distancing/othering as a linguistic act through which a
speaker creates space between themselves and another person or group. The distinction
between in-group and out-group is crucial for understanding the use of distancing to
cause offense. Following Staszak (2009), the in-group is a group the speaker belongs to,

4COLD has since been expanded to 2500 instances. Both the smaller and larger versions of the data
set can be found in the repository.
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and the out-group is a group the listener or some other individual belongs to. Speakers
may use language to show that they think their own social group (in-group) is in some
way superior to the out-group, or to show that the out-group has negative qualities.
The resulting utterances are offensive but not easily detectable by automatic means,
particularly when there is no offensive keyword to strengthen pejorative meaning.

Recent computational work has investigated the use of distancing-related features for
hate speech classification (Alorainy et al., 2019; Burnap & Williams, 2016), but to our
knowledge there is no previous data set which codes for the presence of distancing.

2.1.1 Impoliteness and distancing

The use of linguistic distancing to create offense is, in essence, a form of impoliteness.
The study of impoliteness in language examines how the intent of a speaker can cause
social disharmony, often by attacking the face of their interlocutor. Following Brown et
al. (1987) and others, face can be viewed as public self-image, and conversational ideals
should preserve face, thereby maintaining social harmony. Positive face represents a
speaker’s “desire to be liked and appreciated by others.”
The use of offensive language creates disharmony in conversation (and in society),

and Culpeper (1996) identifies various strategies speakers use to create disharmony;
here we focus on the strategy of positive impoliteness. Positive impoliteness is an attack
on the hearer’s positive face, their desire to be accepted (Bousfield & Locher, 2008).
Speakers may use derogatory words (1)5,6 to target either an individual or a particular
characteristic or characteristics seen as negative by the speaker. Speakers may also
use taboo words (2) to cause a face attack, or demonstrative pronouns (3) to distance
themselves from the targeted group.

(1) Ceasefire? Let’s see how long those t*wel h**ds can go without trying to attack
Israel then cry to national media when they get popped again ! [HateBase Twitter]

(2) Thinking that i care i don’t give a f*ck about what you think ! [HateBase Twitter]
(3) When I talk about those blacks, I really wasn’t talking about you. [HateBase

Twitter]

Personal pronouns are another potential distancing strategy, as they can be chosen
to represent in- and out-groups, emphasizing the polarization and distancing of the
targeted group. Alorainy et al. (2019) confirm that pairs of pronouns are more frequent
in hate speech than in neutral utterances. In particular, speakers may choose inclusive
vs. exclusive pronouns (we vs. they, us vs. them, ours vs. theirs) to create a dichotomy
in which the in-group is seen in a positive light and the out-group more negatively
(Riggins, 1997). Examples (4) and (5) illustrate:

5We have made the choice to censor quoted slurs and profanity throughout the paper by masking
initial vowels with asterisks. We also replace usernames with the token @USER.

6Throughout, the source of examples is indicated in square brackets. “HateBase Twitter” refers to
the corpus presented in Davidson et al. (2017).
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(4) Homelessness, is it our problem or someone else’s? Granted the homeless are
down on their luck and don’t really have a choice weather or not they are poor,
but that is not my fault. [(Pandey, 2004)]

(5) @USER all them b*tches far as f*ck from us. We got el gran p*llo up this way
and it serves us well. @USER [HateBase Twitter]

The term othering is sometimes used to describe distancing constructions that use
metaphor and stereotypes to highlight distance between two social groups, with the
targeted group being negatively viewed by the speaker. One classic othering construction
has the form ‘X is ADJ for NP’, as seen below. Such constructions are implicitly offensive
when the NP contains a neutral counterpart, or non-pejorative correlate (Hom, 2008).
This is essentially a non-pejorative alternative for a potential slur term. In (6), gay is
the neutral counterpart.

(6) He looks straight for a gay man. [AdjNom: Tw.]7

(7) You’re pretty white for a Mexican, no that means you’re prettier. [AdjNom: Tw.]

In example (6) the user creates opposition between straight men and gay men via the
properties stereotypically associated with each group. Similarly, in example (7) the
speaker creates distance between white people and Mexicans, reflecting stereotypes
about skin color and beauty. Othering constructions can also occur with slurs, as in
the back-handed compliment seen in example (8). The slur term makes the utterance
explicitly offensive and therefore more easily detectable by automated systems.

(8) They are not like other n*ggers. [Twitter]

In this case, the speaker suggests that the grammatical subject of the utterance does
not embody the negative properties stereotypically associated with the slur term.

2.1.2 Linguistic form, othering, and distancing

Linguistic form, for example the choice of a definite plural instead of a bare plural, also
can be used as a means for the speaker to indicate non-membership in a referenced
group. Acton (2014) argues that the definite plural indicates non-membership, as in
example (9), in which the speaker suggests that they are not a member of the referenced
group, Americans. This stands in contrast to the bare plural form in example (10),
which makes no commitment as to the speaker’s membership (or not) in the referenced
group.

(9) The Americans love their fast food! [Acton 2014]
(10) Americans love their fast food! [Acton 2014]

Additionally, Acton points out that certain words, such as gay, can take on a derogatory
meaning when used in the definite plural form. This is because gay has associated

7Twitter example from the AdjNom corpus (Robinson, 2018), described in Section 4.
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social meaning from multiple statements of othering and marginalization. This social
meaning adds distancing to non-membership, which can lead to pejorative meaning.

2.2 Slur terms: use and reappropriation

Slurs are lexical items that convey negative attitudes or heavy emotional connotations
towards a social group (Hess, 2019), typically centered around race, nationality, religion,
gender, or sexual orientation (Bianchi, 2014). As one of their functions, slurs derograte
targeted groups or individuals, and they specifically call up one or more descriptive
attributes of the targeted group.

Sometimes slurs are reclaimed by the community they are intended to oppress, through
a process known variably as reclamation, (re-)appropriation, and resignification. When
reappropriated, slurs shift in meaning, losing their pejorative load (usually, though not
always). Reclaimed slurs are used in many different ways by different speakers in the
community, often performing complex identity work. Rahman (2012) is an engaging
and detailed look at African American communities and reclamation of the n-word.
Theoretical approaches to understanding the variable meanings of slur words have
developed from content-based analyses (Hornsby, 2001, for example), which struggle to
capture the flexibility of slurs with respect to pejorative content, to more pragmatic
accounts (Hom, 2008; Bianchi, 2014; McCready & Davis, 2017). The latter accounts
have different views on the details of the interaction between contextualized usage and
pejorative association, but share the understanding that appropriated in-group uses of
slur terms occur in a context which alters the derogatory force of the word. Further,
Hornsby, Hom, and Bianchi all convincingly argue that in-group appropriation of slurs
pushes back against their derogatory force, by echoing and subverting offensive uses.
Our primary interest in reclaimed slurs for this work is the following: these uses,

judged as non-offensive by human moderators, are very frequently incorrectly flagged
as offensive or inappropriate by automated content moderation systems. The high
frequency of these false positives leaves some speakers in the difficult situation of having
to choose between a) being unfairly penalized for utterances that are unproblematic from
their perspective (and, importantly, their community’s perspective); or b) censoring
their preferred use of such constructions for fear of triggering false flags.

Slurs as slurs. In (11), the Twitter user quoted attacks another user, using the term
f*ggot to degrade the user and to indicate that the speaker sees gay men as inferior to
other social groups. Bolinger (2017) proposes that all slurs have five characteristics in
common: they are offensive even when the speaker does not intend them to be, they
are offensive even to hearers who are not being targeted, they carry derogatory cultural
meanings, they do not all appear to be equally offensive on the surface, and they can
occur, sometimes, inoffensively (Bolinger, 2017).

(11) @USER fight me 1 on 1 ur choice of game f*ggot see what happens [HateBase
Twitter]

(12) @USER not as sick as you m*zzie trash @USER [HateBase Twitter]
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Slurs differ from other general pejorative terms (e.g. *sshole, sh*thead). Pejorative
lexical items generally target one or more specific individuals on a personal basis (13),
and slurs target individuals based on characteristics of the group (Hay, 2013; Blakemore,
2015; Bach, 2018). The slur in (14) is a term that degrades based on characteristics of
an entire religion; the degree of offense is much greater than in (13).

(13) No matter what there is always an *sshole wearing a Yankee cap at these games.
[HateBase Twitter]

(14) @USER Send all the f*cking m*zzies home, now DOJ come and get me moth-
erf*ckers. [HateBase Twitter]

Reclaimed slurs. In some cases, slurs may undergo a process of reclamation, or
appropriation, through which people belonging to the targeted group use the slur in
non-derogatory ways within the targeted community (Hess, 2019). As noted above,
reclamation serves many different functions for the community, including (among others)
expression of a sense of solidarity and companionship, signaling shared identity and
socio-cultural experiences, performing the social and political move of “taking back” a
word of violence and oppression, subverting social norms, and expressing friendship or
other close relationships.
McCready and Davis (2017) offer what they call an invocational account of slurs,

whereby the use of a slur term “invoke[s] a preexisting complex of social attitudes and
background related to the slurred group.” Under this account, the hearer’s interpretation
of the speaker’s intention in using the slur depends crucially on whether the speaker
and hearer each belong to the slurred group or the privileged (i.e. non-targeted) group.
The speaker/hearer configuration determines whether the slur is used for subordination
of the targeted group member, for expression of solidarity, for indicating complicity, or
to make an accusation. For example, expression of solidarity may occur when the slur
is uttered by one member of the slurred group to another member of the slurred group.
In (15), an African American Twitter user calls his friend my n*gga to signify that

both belong to the group and, further, that they have a close relationship. The choice
of this phrase over other available terms conveying shared identity (such as brother)
signals that speaker and hearer are especially close (Rahman, 2012, 148).

(15) Imma have to f*ck my n*gga up with some pot brownies [HateBase Twitter]

In appropriation contexts, reclaimed slurs may be used by political organizations or
artists to subvert socio-cultural norms (Hom, 2008). The text in example (16) is from
a sign held by a woman at a rally for sex workers. Here the speaker subverts sexual
norms placed on women by society by using a word that typically conveys negative
attitudes about women.

(16) Sl*ts say yes [Text on a sign from an image on Twitter]

In rarer cases, terms that previously were highly-offensive slurs can, through repeated
use and resignification, begin to be used in mainstream settings with neutral or even
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positive meanings. One such example is queer. Though some speakers still use this
as a slur (17), the reclaiming of the word has progressed far enough that positive
in-community uses are not at all unusual, as in (18).

(17) Die f*cking qu**r. [HateBase Twitter]
(18) I’m literally laughing in shock, amazement, joy. In...just everything. In

everything! Pop the champagne American qu**rs. We have arrived. [HateBase
Twitter]

In some very specific contexts, which Bianchi (2014) describes as “highly-regulated,”
even speakers outside of the targeted community can use the expression non-offensively.
For example, the phrases Queer Theory and Queer Studies are acceptable in academic
settings (Bianchi, 2014), and queer is part of the widely-used acronym LGBTQ(+).

2.3 Adjectival Nominalization

The pejorative use of adjectival nominalizations has become salient in public conversa-
tions in recent years. As an example, some public figures have come under fire for how
they have referenced certain groups. In examples (19) and (20), the speaker uses gay
and black in otherwise neutral contexts, and yet the particular linguistic form of these
terms upset people (especially when spoken the way they were spoken).

(19) For the gays out there—ask the gays and ask the people—ask the gays what
they think and what they do [Donald Trump]

(20) I have a great relationship with the blacks. I’ve always had a great relationship
with the blacks. [Donald Trump]

Similarly, there was backlash on Twitter during the first GOP debate (August 6, 2015)
over the use of the term illegals. Below are some examples of reactions to the multiple
uses of illegals during the debate.

(21) The word "Illegals" will never cease to make me cringe y’all don’t even pretend
to see them as human beings #GOPDebate [AdjNom:Tw.]

(22) "Illegals" as a noun is SO PROBLEMATIC #GOPDebate [AdjNom:Tw.]
(23) You know when you are using an adjective as a noun you are being racist

"felons" "illegals" "Blacks" #GOPDebate [AdjNom:Tw.]

In example (21), the speaker recognizes the dehumanizing effect of the nominalization,
even if they do not pinpoint the linguistic source of the problem.8 The speakers in (22)
and (23) both remark that making the adjective illegal into a noun and referring to
people in that way is offensive and/or racist. The examples above along with many other
reactions to such linguistic forms show that people are aware of this subtle linguistic
phenomenon, but the reasons behind it may not be widely understood.

Wierzbiecka (1986) explains that when adjectives are nominalized, the new nominal
incorporates reference to a generic category or kind based on a prototypical idea of

8See Mendelsohn et al. (2020) for computational approaches to analyzing dehumanization in text.
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that category. As seen in example (24) below, blonde, as an adjective, contains only the
semantic adjectival property of hair color. However, as a noun, a blonde (25), it has
new semantic properties that are associated with the prototypical idea of what a blonde
(person) is. These properties include both factual information, such as +HUMAN, and
stereotypical information, such as +DUMB and +SEX_OBJECT.

(24) ADJ: Becky has blonde hair. [Constructed]
(25) NOM: Becky is a blonde. [Constructed]

Some adjectives become strongly pejorative when nominalized. Robinson (2018) argues
that the adjectives which undergo this transformation often have meanings tied to
demographic features of individuals, such as socioeconomics, ethnicity, gender, or
sexuality. When these adjectival demographic features are nominalized, the feature is
expanded into a generic kind that is based on the prototypical idea of that class of
individuals. This process leads to stereotypical properties, very often negative, being
tied to the use of these adjectival nominalizations. Consider the contrast below:

(26) ADJ: Becky is a gay woman. [Constructed]
(27) NOM: Becky is a gay. [Constructed]

In example (26), gay is simply an adjective describing Becky’s sexual orientation.
Example (27), on the other hand, conveys negative sentiment toward Becky. Similarly,
Dixon et al. (2018) observe the prevalence of identity terms in toxic comments and note
that the syntactic frame in which the term appears can influence whether its use is
neutral or offensive.

Robinson performs a focused, in-depth study of four adjectival nominalizations: poor,
gay, female, and illegal. Additionally, she investigates variation between four different
forms the nominalizations can take: indefinite singular (a gay), definite singular (the
gay), bare plural (gays), and definite plural (the gays). Along with the nominalization
process, changes to both reference type and linguistic form can influence the amount of
pejorative meaning associated with an expression. Note the examples below.

(28) That moment when you realize ALL illegals are technically criminals.
[AdjNom:Reddit]

(29) jesus christ i make a joke and now im a gay? [AdjNom:Tw.]

While the generic reference forms (bare plural and definite plural) can still be pejorative
such as in example (28), the offensive meaning is enhanced when a specific individual is
evoked using an adjectival nominalization, as in example (29). In addition, annotation
studies (Palmer et al., 2017) confirm that nominalizations of these four terms are
significantly more likely to convey offense than adjectival uses.

We investigate pejorative nominalizations in this work because they are frequent and
insidious in their offensiveness. A straight keyword approach is certain to fail, given
that these word forms are typically neutral when used adjectivally but offensive when
used as nouns.
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Summary. Our goal is to construct an evaluation data set that contains roughly equal
numbers of offensive and non-offensive instances, with a reasonably balanced distribution
across the categories of offensive slur, reclaimed slur, distancing (pejorative or not),
and adjectival nominalization (pejorative or not). We select the latter three phenomena
because they are difficult to detect automatically. The remainder of the paper describes
the resulting data set and its use for targeted evaluation and error analysis.

3 COLD: The annotation scheme

The annotation scheme has two steps. For each instance, a) four Yes-No questions
capture different characteristics of the instance; and b) a fine-grained category label
is derived based on the answers to the four questions. The scheme can easily be
extended to other types of complex offensive language, simply by adding questions
and/or fine-grained categories as needed.

The four questions. The four questions to be answered for each instance are:

1. Is it Offensive?
2. Is there a Slur?
3. Is there an Adjectival Nominalization?
4. Is there Distancing?

For each question, the only possible answers are Yes and No. This streamlined process
does not ask annotators to determine a final category label for a given utterance, only
to determine whether the tweet is offensive overall and whether it contains any of
the three linguistic phenomena. The approach of breaking a difficult annotation task
down into a number of easier questions is inspired by Friedrich and Palmer (2014).
Our approach also allows for easy annotation of instances which contain two or more
different phenomena, such as a slur plus distancing.

Fine-grained categories. From the answers to the four questions, we deterministically
derive a fine-grained category for the utterance (see Table 1). There are 10 possible
categories, 5 of them offensive and 5 non-offensive.
In terms of categorization, we allow the presence of a slur in an utterance to take

precedence over the other two linguistic features (nominalization and distancing). In
other words, if an utterance has been labeled as containing a slur, only two of the ten
categories are available. If the utterance is labeled offensive, it gets the category label
OffSlur. If not, its category is Reclaimed. This decision is taken with error analysis
in mind, so that utterances with and without slur keywords are in different groups
with respect to error analysis. Other researchers using COLD could make a different
decision in terms of the grouping of the instances into fine-grained categories.

Offensive utterances without slurs fall into one of four different categories: OffNom for
offensive nominalizations; OffDist for offensive utterances with distancing; OffBoth for
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Fine-grained category Off? Slur? AdjNom? Distancing?
Offensive with slur y y y/n y/n
Offensive with nominalization y n y n
Offensive with distancing y n n y
Offensive with both y n y y
Offensive, other y n n n
Reclaimed slurs n y y/n y/n
Nonoffensive with nominalization n n y n
Nonoffensive with distancing n n n y
Nonoffensive with both n n y y
Nonoffensive, no cues n n n n

Table 1: Fine-grained categories, defined with respect to four (yes-no) annotation questions.

offensive utterances with both nominalization and distancing; and OffOther for offensive
utterances with none of the three cues. The categories are similar for non-offensive
tweets without slurs: NonNom, NonDist, NonBoth, and NonNone.

Annotation guidelines and training. Each annotator attended two in-person training
sessions with the authors. During the training sessions, important terms and concepts
were discussed, including slurs, reclaimed slurs, adjectival nominalization, and distancing.
Numerous examples were given to show what would and would not fall into each category.
Additionally, the concepts of explicit and implicit offensive language were discussed, with
slurs given as an example of explicit offensive language, and adjectival nominalization
and distancing as examples of implicit offensive language. Annotators were given access
to a set of written annotation guidelines which they could access online at any point in
the annotation process.9 The following are similar to the examples used for training:
slurs (30), reclaimed slurs (31), distancing (32), and adjectival nominalizations (33).

(30) stfu! she thinks your ugly and hard to look at! get he f*ck out of chat f*ggot
before i block you [HateBase Twitter]

(31) I love all my qu**r boys!! [HateBase Twitter]
(32) Michelle Obama is pretty for a black woman [HateBase Twitter]
(33) The uncultured poors complaining again? Lol [AdjNom: Tw.]

As part of each training session, each annotator completed a test batch with 50 instances,
after which the annotators and the authors met to discuss results and disagreements.
This is the only time that this sort of calibration and discussion took place. The
first version of the annotation scheme used a different approach, asking annotators to
select from a set of labels indicating different categories of offensive and non-offensive
language. After the initial independently-submitted batches showed low agreement

9Our written guidelines are available in the COLD repository.
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between annotators and some confusion about the labels, we switched to the 4-question
procedure described above. To conclude training, each annotator independently labeled
and submitted a final test batch of 25 instances. The elapsed time between training
and the start of annotation was roughly one week for most annotators.

4 COLD: The data set

COLD is a collection of instances extracted from pre-existing offensive language data
sets. We use the existing labels to guide sampling from the existing corpora, and each
instance is then re-annotated using the scheme described above. To compile COLD, we
use focused sampling (Wiegand et al., 2019) from pre-existing data sets to collect a
balanced number of instances that potentially belong to the categories of offensive with
slur, reclaimed (non-offensive) uses of slurs, adjectival nominalizations, and distancing.
For the latter two categories in particular, automatic extraction from unrestricted data
is difficult, so other strategies are needed. For nominalization, we select data from a
hand-collected and annotated corpus. For distancing, we apply heuristic filters based
on syntactic patterns. Focused sampling is appropriate precisely because the data set
is intended for focused, diagnostic evaluation and error analysis. It is not intended for
use as training data.
This section describes the filtering process over existing data sets (Sec. 4.1), the

annotation process (Secs. 4.2 and 4.3), and the resulting final corpus (Sec. 4.4).

4.1 Focused filtering

We select 2400 tweets, comments, and posts, balanced across offensive and non-offensive
instances, according to the original annotations in the corpora we sample from. The
majority of instances (1860) come from the HateBase Twitter corpus of Davidson
et al. (2017). This is supplemented by 140 instances from the WaseemHovy corpus
(Waseem & Hovy, 2016), and 400 from Robinson’s AdjNom corpus (Robinson, 2018).

Slurs and reclaimed slurs. All instances containing slurs or reclaimed slurs come from
the HateBase Twitter corpus, which consists of 25,000 tweets annotated as offensive,
hate speech, or non-offensive. As the name suggests, all data comes from Twitter and
was extracted using the hate speech lexicon from HateBase10 via the Twitter API.
Original annotations were done via crowd sourcing, with each tweet receiving from 4-9
annotations. The resulting distribution is 5 percent hate speech, 76 percent offensive
speech, and the rest neither hate speech nor offensive.
We extract instances containing slurs by querying the corpus for a set of 12 slur

terms, then filtering for the number of annotators (minimum 3) who labeled the tweet
as offensive and selecting the top 500 results. Reclaimed slurs are selected using a set
of 10 frequently-reclaimed slur terms, then filtering for the number of annotators who
10http://Hatebase.org

12 JLCL



Complex offensive language

labeled the tweet as non-offensive/neither, and taking the top 500 results. In the case of
reclaimed slurs, most selected instances have 2-3 offensive labels and 4-6 non-offensive.

Distancing. To select tweets with potential distancing, we rely on heuristic patterns
over part-of-speech labels; this particular filtering process is the least successful (see
Sec. 4.5 for analysis), as these constructions are the most difficult to detect automatically.
We first tag the HateBase Twitter corpus with part-of-speech labels, using the

Stanford POS tagger (Toutanova, Klein, Manning, & Singer, 2003). We then search
for particular POS patterns, to retrieve othering expressions (of the form ‘ADJ PREP
NP’) and distancing using personal and/or possessive pronouns (particularly tweets
which set up us/them dichotomies). The retrieved expressions are manually inspected,
and for othering expressions, we enforce the constraint that the expression includes a
non-pejorative correlate (see also section 2.1). From the HateBase corpus, we extract
100 tweets with othering constructions and 260 with distancing using pronouns.

To reach the target of 500 tweets with potential distancing constructions, we sample
additional data from the corpus created by Waseem and Hovy (2016). This corpus
consists of about 16,000 tweets, annotated as racist, sexist, or neither. We use the same
sampling process applied to the HateBase Twitter corpus. As a result, we extract 140
instances of distancing using pronouns.

Adjectival nominalizations. Finally, we include 400 instances of adjectival nominal-
izations, selected from the data from Robinson (2018). The corpus includes both
nominalizations and adjectival uses of four target forms: poor, female, gay, and illegal.
The nominalizations are distributed across four linguistic forms: indefinite singular,
definite singular, bare plural, and definite plural. Each instance is annotated for both
pejoration and linguistic form.

The corpus, which was collected for linguistic research on pejorative nominalizations,
contains 1742 nominal forms across the 4 target words, plus adjectival uses. Each
instance was manually identified and verified, for example, ensuring that occurrences of
female have human reference. The instances come from a variety of sources, including
reddit, Twitter, YouTube videos and commentary, blogs, and news media. Searches
were conducted across various platforms on topics likely to produce high levels of the
target forms. For example, subreddits such as The_Donald have threads on the topic of
immigration. Most of the data was collected during the 2016 US Presidential elections,
and many of the topics center around that election and issues central to the election,
such as immigration. Many of the blogs, videos, and subreddits searched cater to the
Alt Right or to Men’s Rights groups such as Men Going Their Own Way (MGTOW).
Other data comes from more neutral sources, such as a CNN interview with a business
woman sharing her political beliefs about the potential of a female president.

Search engines work well for finding plural forms. Singular forms, however, present
more of a challenge, as search results often return adjectival forms rather than singular
noun forms. To resolve this issue, common verbs, such as forms of copular be, were
added after the singular form while searching, resulting in instances like example (34).
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(34) Yeah dude being poor happens from time to time, but being A poor is a way
of life. LOL [AdjNom:Tw.]

From the adjectival nominalization corpus, we randomly select 300 instances annotated
as pejorative and 100 instances annotated as nonpejorative. These are divided evenly
across the four target forms, with 75 pejorative and 25 non-pejorative instances for
each lexical item.

4.2 Annotation Process

We trained and employed six undergraduate Linguistics majors for this annotation
task. With the goal of 2500 annotated instances, each with labels from three different
annotators, we assigned each annotator a total of 1250 instances, divided into batches
of either 100 or 50 instances each. Annotators were paid $12/hour for their work, and
the batches were distributed through online spreadsheets, allowing annotators to work
from their preferred locations. Each batch was assigned to three annotators, shuffling
the groupings of annotators from batch to batch. For example, batch 1 was assigned to
annotators A-B-C, batch 2 to D-E-F, batch 3 to A-B-D, batch 4 to A-C-E, and so forth.
The corpus is compiled from several pre-existing data sets (see Section 4). We

distribute instances from the two smaller data sets evenly across the batches.

Mitigation of the residual harms of annotation.11 Given the highly toxic nature of the
data, and the growing evidence suggesting that regular and repeated exposure to such
data can be detrimental (Newton, 2019; Simon & Bowman, 2019; Dwoskin, Whalen,
& Cabato, 2019), we took measures to mitigate potential negative effects. First, we
openly discussed the potential issues with our annotators, encouraging them to work
on the data in small chunks of time, to perform self check-ins of their mental states,
and to take breaks as necessary. We checked in with them periodically and encouraged
them to reach out to us with any concerns. Second, we incorporated hand-selected
cute animal videos into the annotation batches, inserting a video link after every 25
instances. The videos were offered as a required step in the annotation process, with
link text reminding the annotators (e.g.) “Watch this cute video for a mental health
break. It’s required, and you get paid for doing it!” Anecdotally, the annotators have
said that they enjoyed watching the videos and that they did provide a welcome break
from the difficult data. Our understanding of the effectiveness of this strategy is limited.
A careful and rigorous study of the potential harms of annotating toxic data is needed
in the future, as well as studying the effectiveness of various strategies for mitigating
those harms.
The potential negative impact of extended exposure to toxic data is not to be

underestimated, and we feel that some sort of mitigation strategy should be incorporated
whenever annotators are asked to take on this kind of task.
11Thanks to an anonymous reviewer for the phrase “residual harms of annotation.”
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COLD: 2016 instances
Majority Y Majority N

Offensive 952 1064
Contains Slur 1012 1004
Adj. Nom. 500 1516
Distancing 89 1927

Table 2: Distribution of labels in the COLD corpus.

4.3 Inter-annotator agreement and selection of gold-standard labels

We compute agreement between annotators for each of the four annotation questions
using the nltk.metrics.agreement implementation of Fleiss’ kappa, as described in
(Artstein & Poesio, 2008).

Over the 2016 instances of the COLD corpus, we see good agreement for the categories
of Offensiveness (0.61) and Distancing (0.76), and only moderate agreement for the
categories of Slur (0.38) and Adjectival Nominalization (0.43). The label distribution
for the four categories appears in Table 2. The high agreement seen for Distancing
is an artifact of the skewed distribution for this label, as annotators marked very few
instances of distancing.
The relatively low agreement we see for Slurs reflects the fact that this is quite

a subjective assessment. We chose not to use any sort of lexicon of slurs, leaving
annotators to decide for themselves whether an instance contains a slur. Although
there is evidence to suggest that demographic factors influence human classification of
offensive language (Waseem, 2016), we have not done a detailed study of this interaction.
With the exception of race, the demographic profiles of our annotators are somewhat
similar. All identify as female, and all are between the ages of 19 and 25. We did not
investigate other demographic factors.
Additional training could be helpful for recognizing nominalizations as well, as

this distinction relies on linguistic awareness of part-of-speech categories. Overall,
inter-annotator agreement for this data set is moderate.

Gold-standard labels. To produce a stable labeled version of the data set, we take a
simple majority vote for each annotation question, for each instance. Table 2 summarizes
the distribution of labels in the final corpus, across the four annotation questions. Of
the 2016 instances in the data set, 47% are labeled offensive, 50% as containing a slur,
25% as containing adjectival nominalizations, and only 4% as containing distancing.

Annotator self-consistency. Four months after the original annotations were finished,
we asked three of the original annotators to re-annotate two batches of 50 instances each,
in order to measure annotator consistency and reliability for the task. We selected one
batch from early in the original annotation process (first 10 batches) and one from later
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in the process (last 10 batches), selecting batches that were originally labeled by the
three annotators in the consistency study. The annotators did not have access to their
original data files. Table 3 shows the percentage of instances for which each annotator
agreed with their original annotations, four months later. We see high agreement across
the board, with the lowest agreement for the question of whether a tweet is offensive.

Annotator Offensive? Slur? AdjNom? Distancing?
Annotator A 87% 96% 92% 92%
Annotator D 87% 96% 96% 92%
Annotator E 94% 96% 99% 97%

Table 3: Consistency check – percentage of instances (out of 100) for which the annotator gave
the same label as their original annotation, 4 months later.

4.4 Data set details and clean-up

As released, COLD consists of 2016 triply-annotated instances, meaning we lost nearly
400 of the extracted instances due to various problems with annotations. First, only
2156 of the instances were sent out to the annotators. After collecting, collating, and
cleaning up the annotations, we found that the number of annotators per instance
varied. 121 instances had labels from only 1 or 2 annotators and were therefore excluded
from COLD. 206 instances had labels from 4 or more annotators. For each of these
instances, we randomly selected 3 annotators and set the remaining labels aside. Finally,
19 instances were removed due to problems with ID numbers.12

After converting the Y/N labels to fine-grained categories (Sec. 3), we see the
distribution of categories shown in Table 4. The corpus shows good representation
for the categories of offensive with slur, reclaimed slur, offensive with nominalization,
non-offensive with nominalization, and non-offensive (no cues). All categories related
12The publicly-available version of the data set includes all annotations. A second, slightly-larger

version of COLD is also available, with 2500 instances.

Offensive types # Non-offensive types #
Offensive with slur 620 Reclaimed slurs 392
Offensive with nominalization 201 Non-off. with nominalization 141
Offensive with distancing 19 Non-off. with distancing 6
Offensive with both 31 Non-off. with both 0
Offensive, no cues 81 Non-off., no cues 525
Total Offensive 952 Total Non-offensive 1064

Table 4: DEIOLD: number of instances per fine-grained category, based on a majority vote of
three annotators. (Category definitions in Table 1.)

16 JLCL



Complex offensive language

to distancing are under-represented, in some cases severely. For example, though we
extracted 500 instances potentially containing pejorative distancing, annotators only
mark 50 of them as offensive.

Clean-up of annotations. Following annotation, the following cleaning steps were
taken to prepare the data for analysis. First, labels were modified as necessary for
consistency (e.g. removing leading or trailing spaces, changing case). Next, the format
of instance IDs was normalized to contain both a data set code and a unique ID number.
New line characters in the middle of tweets were replaced with spaces, and duplicate
annotations (i.e. same tweet, same annotator) were removed.

4.5 Problems with distancing.

There is a huge discrepancy between the number of instances we extracted as potentially
containing distancing constructions (n = 500) and the number labeled by the annotators
as containing distancing (n = 89). This discrepancy could be caused by several different
factors: a) a noisy extracting/filtering process; b) annotator misunderstanding and/or
confusion; c) poor training of the annotators; or d) faulty conception of the category.
One way of testing some of these factors is to have the same data labeled by the

experts who conceived of the category. We perform a small study in which two of the co-
authors labeled 98 instances previously extracted as potential distancing constructions.
The experts used the four-question annotation process.

Table 5 shows the results. Of the 98 instances, the two experts agree on the distancing
label for 56 instances, slightly more than 50%. 18 of the agreed-upon instances are
marked by both annotators as not containing distancing. The examples below show
the four possible label configurations: Yes-Yes, No-No, Yes-No, and No-Yes.

(35) Agree: Yes – Hearing these girls in my class talk about cars is some of
the lowest IQ discussion I’ve ever heard. #NotSexist #JustAnObservation
[WaseemHovy]

(36) Agree: No – Time to see these girls finally cook.... Sink or swim. Sassy won’t
save you #mkr [WaseemHovy]

(37) Disagree: Yes, No – 61% of welfare/government aid is claimed by white
people. So y’all black slander is trash now. [HateBase Twitter]

Offensive? Slur? AdjNom? Distancing?
Agreement 84% 89% 99% 57%

Distancing → AgreeYes AgreeNo Disagree
Number of Instances 38 18 42

Table 5: Top: Agreement between two experts for 98 instances potentially containing distancing.
Bottom: Number of instances per agreement status.
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(38) Disagree: No, Yes – These girls should know skinny sausages are no fun at
all. #mkr [WaseemHovy]

Where the experts disagree, they are remarkably consistent in their disagreements; in
32 of the 42 instances, Expert 1 chooses Yes and Expert 2 chooses No. This finding
suggests that each annotator has a coherent notion of what is intended by distancing,
but that there are some differences in their respective ideas of the category. Both
experts participated in the training process, potentially leading to mixed messages
about distancing coming through to the annotators.
Overall, at least one expert chooses the Yes label for about 80% of this randomly-

selected subset of potential distancing constructions, but the two expert annotators
only agree on distancing for 56/98. This result clearly indicates significant problems
with both the extraction process and our understanding of what counts as distancing.

5 Using COLD for diagnostic evaluation

In the remainder of this paper, we put COLD to its intended use: as a diagnostic
evaluation data set, to better understand the performance of offensive language detection
systems on difficult categories of complex offensive language.
We use one model architecture – a pre-trained BERT (Devlin, Chang, Lee, &

Toutanova, 2018) model fine-tuned on an offensive language data set – and train five
different versions, each one fine-tuned on a different data set. There is no overlap
between the data sets used for fine-tuning the BERT model and those from which
COLD is compiled.
This section describes details of the model (Sec. 5.1) and data sets (Sec. 5.2) and

results of the diagnostic evaluation (Sec. 5.3).

5.1 Model details

Due to its state-of-the-art performance on many NLP tasks, as well as its success in the
Semeval 2019 offensive language detection task (Zampieri et al., 2019b), we use BERT
(Devlin et al., 2018) as our base model. The top performing system in the Semeval task
fine-tunes a BERT model on the task’s training data set (Liu, Li, & Zou, 2019); we
take a similar approach. Using this general architecture, we use five different offensive
language and hate speech data sets with varying levels of label granularity, and we
report performance for each of the five resulting models.

BERT. Bidirectional Encoder Representations for Transformers (BERT) was released
by Google Research (Devlin et al., 2018) and has achieved state-of-the-art results on
a variety of NLP tasks. The model is based on Vaswani et al. (2017)’s multi-headed
transformer model and utilizes a masked language modeling and next sentence training
regime. Typical language modeling schemes have the model attempt to predict the next
token given a sequence of input tokens and repeat this process over the entire training set,
requiring significant training time and compute resources. Masked language modeling,
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on the other hand, masks a fraction of the input tokens and trains the model on only
those that are masked, reducing training time as well as preventing the bidirectional
model from leaking information about the token being predicted. In combination with
masked language modeling, input sequences are also paired with true and false following
sentences so the model is also forced to determine if it is the true next sentence. Finally,
all outputs are concatenated with a classification token, so the model can be used for
sentence classification (e.g. as offensive or not).

Several pre-trained base BERT models are available. These models for general English
can be fine-tuned on task-specific data sets at a substantially-reduced time and compute
cost compared to training a new model from scratch. The fine-tuning process performs
the masked language modeling step and uses the target label provided by the data set
as the concatenated classification token.

Data preprocessing. We follow the preprocessing techniques used by the winning team
NULI (Liu et al., 2019) in the SemEval-2019 Task on offensive language detection in
social media posts.

1. Lower case all text as the model we use is uncased.
2. Replace urls with "http", preventing wordpiece from segmenting URLs into

tokens that have likely never been seen in the training data.
3. Limit consecutive @USER mentions to 3 to reduce redundancy, as users

are mapped to a single placeholder token (@USER).
4. Segment hashtags into component words. Tweets often utilize hashtags

with important keywords strung together, we use the python library wordsegment
to separate these into their component tokens.

5. Replace emojis with word descriptions. Unicode characters for emojis often
have poor embedding representations relative to the tokens describing them, so
each emoji is converted to its textual description. ( → smiley face)

5.2 Fine-tuning data sets.

We perform the same fine-tuning process as Liu et al. (2019) on five different offensive
language classification data sets. We use BERT’s built-in tokenizer wordpiece, which
splits words into their morphological components, and start with the BERT-Large,
Uncased (Original) model with 12 transformer blocks, 12 attention heads, and 110
million parameters. We use the default fine-tuning configuration and train for 3 epochs.
Of the five data sets, four use binary labels (Off. or Not), and one uses three different
labels for offensive utterances. In the case of OLID-2020, the official shared task data is
labeled in a semi-supervised fashion with a confidence score, and we follow Fromknecht
and Palmer (2020) in choosing a confidence threshold to convert scores into binary
labels. The data sets are summarized in Table 6.
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Data set Offensive Non-Offensive Total
HATE / OFFN / PRFN -

HASOC_multi 1,143 / 667 / 451 NOT - 3,591 5,852
HASOC_binary HOF - 2,261 NOT - 3,591 5,852
OLID-2019 OFF - 4,400 NOT - 8,840 13,240
OLID-2020 OFF - 1,426,195 NOT - 5,834,139 7,260,334
Kaggle-Toxic TOX - 16,225 NOT - 143,346 159,554

Table 6: Label distributions and statistics for fine-tuning data sets. (LABEL - #)

HASOC. The Hate Speech and Offensive Content Identification in Indo-European
Languages data set (HASOC) (Mandl et al., 2019) consists of several thousand social
media posts from Twitter and Facebook in English, Hindi, and German. Posts are
labelled for three separate sub-tasks: (1) binary coarse grained labels hate/offensive
(HOF) or NOT, (2) multi-class fine-grained labels (NOT/HATE/OFFN/PRFN), and
(3) posts labeled HOF in task 1 are designated as targeted or untargeted hate/offensive
language. The labels:

• Hate Speech (HATE) : Text applying negative attributes to an individual due
to membership in a group or hateful comments towards groups because of race,
politics, sexual orientation, gender, social status, health condition, or similar.
• Offensive Language (OFFN): Posts containing threats of violence or attempts to
degrade, dehumanize, or insult an individual.
• Profanity (PRFN) : Language typically deemed inappropriate such as cursing or
swearing that is not abusive or insulting in nature.

We fine-tune two BERT models from this data set using English training instances from
tasks 1 (HASOC_Binary) and 2 (HASOC_Multi).

OLID-2019 and OLID-2020. The two OLIDs (Offensive Language Identification
Dataset) come from two consecutive years of SemEval shared tasks addressing identifi-
cation and classification of offensive language.
OLID-2019 (Zampieri et al., 2019a) contains thousands of tweets identified using

keywords and labelled with a three layer hierarchical annotation scheme for offensive
language. The first layer categorizes text as either offensive or not, the second layer
specifies whether the offensive language is targeted or not, and the final layer categorizes
the target as an individual, group, or other. Language is considered offensive in this data
set if it contains insults, threats, or profanity. We use only the first layer annotations
to fine-tune a model as a binary classification task.
OLID-2020 contains millions of tweets following the same three layer hierarchical

annotation scheme. Unlike OLID-2019, there are no manually-provided gold-standard
labels for OLID-2020. Instead, each tweet is labeled with confidence scores (ranging
from 0.0− 1.0) derived by averaging over the output of a number of supervised systems
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for detection of offensive language. Task participants are responsible for converting
confidence scores to labels. Following Fromknecht and Palmer (2020), we use a threshold
of 0.44 for the first annotation layer (offensive or not).

Kaggle-Toxic. The Kaggle-Toxic13 data set is a collection of Wikipedia Talk page
edits shared on Kaggle as a toxic comment classification competition. The texts are
posts and replies by Wikipedia contributors discussing page edits that sometimes lead
to arguments and toxic behavior. The data set is annotated for six labels that have
some overlap, and often a post contains multiple labels. The labels are toxic, severe-
toxic, obscene, threat, insult, and identity-hate. The two toxic labels are somewhat
ambiguous, and no annotation guidelines were released for this data set. We remove
the ambiguous overlap between classes and reduce the problem from a multi-label to a
binary classification task of toxic/not. Any text annotated to have any of the original
six categories is labeled as TOX, and any text containing none of the original categories
is labelled as NOT.

In-domain classification accuracy. Classification accuracy for each model is evaluated
on a development set (20% stratified split of the training data used for fine-tuning).
On the original labels, development set accuracies are as follows: (a) HASOC_multi:
65.4%; (b) HASOC_binary: 71.2%; (c) OLID-2019: 79.2%; (d) OLID-2020: 97.5% ;
and (e) Kaggle-Toxic: 96.2%. Kaggle-Toxic is an outlier due to both the larger amount
of data and its skewed distribution, and the high performance for OLID-2020 reflects
the much larger amount of training data available. It’s worth noting that accuracy on
the test data is significantly lower.
Evaluating these models on COLD means not only moving to a new domain for

testing, but also testing on mixed-domain data. Thus we can reasonably expect lower
overall performance than what we see on an in-domain development set. This cross-
domain evaluation setting provides a realistic view of the performance to be expected
when applying a system to new data.

5.3 Diagnosis of performance on fine-grained categories

The ten fine-grained categories associated with the instances in COLD allow us to
investigate what kinds of labeling decisions each model makes for each type of instance.
To use COLD in its intended diagnostic capacity, we compare the distribution of
predicted labels for each category with the expected label, given the majority-vote
annotations. It is important to note that the set of output labels used by any given
model is determined by the labels in the data set used for fine-tuning the model.
The OLID-2019 model, for example, outputs the labels OFF and NOT, where the
HASOC_binary model outputs HOF and NOT. The output labels of binary models
can be mapped straightforwardly to the distinction between offensive and non-offensive
13https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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HasocBinary OLID-19 OLID-20 KagTox
Type OFF/NOT OFF/NOT OFF/NOT TOX/NOT
OffSlur 620 77% / 23% 85% / 15% 87% / 13% 88% / 12%
OffNom 201 40% / 60% 64% / 36% 59% / 41% 40% / 60%
OffDist 19 68% / 32% 68% / 32% 79% / 21% 63%/ 37%
OffBoth 31 45% / 55% 74% / 26% 71% / 29% 23% / 77%
OffOth 81 74% / 26% 79% / 21% 80% / 20% 77% / 23%
ReclSlur 392 79% / 21% 79% / 21% 83% / 17% 86% / 14%
NonNom 141 34% / 66% 43% / 57% 35% / 65% 28% / 72%
NonDist 6 33% / 67% 77% / 23% 67% / 33% 50% / 50%
NonBoth 0 – – – –
NonNone 525 22% / 78% 27% / 73% 28% / 72% 20% / 80%

Table 7: Diagnostic evaluation, training on different data sets and making predictions for COLD.
The table shows the percentage of instances in each category assigned each model output
label, for 4 binary models.

fine-grained categories. Our current approach to diagnostic evaluation involves looking
at the percentage of instances within one COLD category assigned each of the training
labels used by the model.
Results for the four binary models appear in Table 7, and results for the one multi-

class model appear in Table 8, in both cases with interesting numbers in boldface. For
example, the model fine-tuned on OLID-19 predicts OFF for 79% of the 392 instances in
COLD’s ReclSlur category, providing empirical verification that this model is terrible
at accurately labeling reclaimed slurs.

Finding One: All models do a good job of handling the explicit categories , labeling
offensive utterances with slurs as offensive in 72-88% of cases. Similarly, non-offensive
utterances with no pejoration cues receive non-offensive labels 73-88% of the time,
depending on the model. These results are expected; slurs serve as effective keyword
features for all models, and the non-offensive cases without pejoration cues rarely lead
the model astray.

Finding Two: All models fail at recognizing reclaimed uses of slur terms as non-
offensive ; these are classified as offensive or toxic 69-86% of the time. For example,
(39) is labeled by annotators as N-Y-N-N, yielding the label reclaimed, yet all four
models classify the tweet as offensive or toxic. Interestingly, the multi-class model labels
most of these as Profanity rather than Offensive.

(39) so many pretty b*tches coming to my birthday dinner [HateBase Twitter]
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HasocMulti
Type HATE/OFF/PROF // NOT
OffSlur 620 05% / 21% / 46% // 28%
OffNom 201 13% / 10% / 12% // 65%
OffDist 19 32% / 26% / 10% // 32%
OffBoth 31 16% / 13% / 10% // 61%
OffOth 81 15% / 28% / 15% // 42%
ReclSlur 392 01% / 04% / 65% // 31%
NonNom 141 06% / 06% / 07% // 81%
NonDist 6 17% / 00% / 00% // 83%
NonBoth 0 –
NonNone 525 04% / 03% / 05% // 88%

Table 8: Diagnostic evaluation, training on different data sets and making predictions for COLD.
The table shows the percentage of instances in each category assigned each model output
label, for 1 multi-class model.

Finding Three: Three of four models tend to miss the pejorative meaning associated
with adjectival nominalizations , mislabeling them about 60% of the time. OLID-19
and OLID-20, the exceptions, still get about 40% of such cases wrong. The utterance
in (40) is clearly anti-gay and is labeled by annotators as Y-N-Y-N, yielding the label
OffNom. All four models classify the utterance as non-offensive. In other cases, such
as (41), non-pejorative nominalizations are considered offensive by most models.

(40) Another huge reason I’m against gays is because their role in politics. [AdjNom]

(41) As a gay teen I can confirm first hand that there are many gays that are
depressed. [AdjNom]

The small number of occurrences of distancing identified by annotators prevent us from
drawing any strong claims, but we can look at a representative example. (42) is a
canonical pejorative othering construction, labeled by annotators as Y-N-N-Y. Only one
model (Kaggle-Toxic) classifies it as toxic, and the other three mark it as non-offensive.

(42) You’re pretty for a black girl [HateBase Twitter]

5.4 Discussion

Overall, the patterns seen in the analysis are not unexpected, but the structure provided
by COLD allows us to easily see which categories are most difficult for current models.
Diagnosis using COLD reveals that, despite strong classification accuracy overall,

state-of-the-art models fail hard on implicit offensive language, as well as on reclaimed
slurs. The result on reclaimed slurs is particularly informative, as mis-classifications of
such instances (false positives, in particular) contribute to the systematic racial bias
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seen in automatic offensive language classification (Davidson et al., 2019). That bias in
turn can have a disproportionate negative effect on members of already-stigmatized
communities.
The research community has long been aware of difficulties with detecting implicit

and complex offensive language. The new contribution made here is a mechanism for
systematic investigation of the strengths and weaknesses of systems for automatically
detecting offensive language. Such systematic investigation, coupled with extensive error
analysis, holds promise for making dramatic improvements to models for automatic
detection of abusive language.
The results are disappointing for the phenomenon of pejoration through distancing,

though the source of the problem likely lies in data extraction and filtering, as well
as annotation guidelines and training, rather than in the classification process, given
that the corpus contains few instances labeled as containing distancing. Even expert
annotators found that distancing occurs in fewer than 50% of the instances extracted
as potential cases of distancing.
It is our hope that improving performance on these categories of complex offensive

language will improve performance for offensive language detection overall. We also
hope to identify and add new linguistic phenomena to the data set, perhaps starting
our research with the instances in the Offensive-Other category.

We find cross-domain classification, as recommended by Wiegand et al. (2019), to be
an appropriate setting for performing this analysis, and we hope that domain effects are
mitigated at least to some extent by having assembled the corpus from disparate sources.
As a next step, we would like to train additional BERT models, this time fine-tuning on
HateBase Twitter and the Waseem and Hovy corpus (removing the instances already
in COLD). This will show us whether the error patterns change when the model is
trained and evaluated within the same domain.

6 Conclusion

This paper presents a new annotation scheme and evaluation data set for offensive
language detection in English which incorporates awareness of reclaimed slurs, pejorative
adjectival nominalizations, and pejoration through linguistic distancing. In order to
achieve better handling of complex offensive language, we argue that these phenomena
need to be considered. A system that can make correct predictions for these patterns will
be a stronger system overall, as the phenomena included in COLD require more nuanced
awareness of the roles of linguistic form, politeness strategies, and sociolinguistic factors.
Rather than building a large training corpus, we start by developing an evaluation data
set to diagnose whether these patterns are in fact mislabeled by existing systems.
We evaluate the performance of models trained on five different offensive language

data sets and find some interesting patterns of correspondence between predicted labels
and fine-grained categories. In particular, we show that current models perform poorly
on reclaimed slurs and pejorative nominalizations, no matter which data set is used for
model fine-tuning.
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Looking ahead, we are considering several different directions for extending this work.
First, the data has been made publicly available, together with annotation guidelines
and model outputs for analysis.14 We hope to continue expanding the corpus, both
with additional data sampled in a less-restrictive way, and with focused data targeting
specific linguistic phenomena. We plan to explore the possibility of collaborative data
set expansion, deciding on a common format to make it easy for other researchers to
contribute to COLD. In addition, we are considering developing a system to generate
diagnostic reports for existing systems. We can use the multiple annotations to identify
high-agreement (i.e. “easy”) and low-agreement (i.e. “difficult”) cases, enhancing the
quantitative results with examples of errors the system makes across various categories.
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