
Louis Mahon / Carl Vogel

The Proof is in the Pudding: Using Automated Theorem Proving
to Generate Cooking Recipes

Abstract

This paper presents FASTFOOD, a rule-based natural language generation (NLG)
program for cooking recipes. We consider the representation of cooking recipes as
discourse representation, because the meaning of each sentence needs to consider
the context of the others. Our discourse representation system is based on states of
affairs and transtions between states of affairs, and does not use discourse referents.
Recipes are generated by using an automated theorem-proving procedure to select the
ingredients and instructions, with ingredients corresponding to axioms and instructions
to implications. FASTFOOD also contains a temporal optimization module which can
rearrange the recipe to make it more time efficient for the user, e.g. the recipe specifies
to chop the vegetables while the rice is boiling. The system is described in detail,
including the decision to forgo discourse referents and how plausible representations
of nouns and verbs emerge purely as a by-product of the practical requirements of
efficiently representing recipe content. A comparison is then made with existing recipe
generation systems, NLG systems more generally, and automated theorem provers.

1 Introduction

In recent decades, cooking recipes have received a degree of attention in the field of
rule-based Natural Language Processing. They are highly uniform in their general
structure, with an ingredients list followed by a series of instructions, and can be easily
accessed in large numbers on cooking websites and recipe search engines. However,
the majority of work has focused either on searching and annotating large databases
of online recipes, or on methods for processing and representing individual recipes, in
either case, the approach has been one of Natural Language Understanding. The present
system, named FASTFOOD, instead approaches cooking recipes from the direction of
Natural Language Generation (NLG): rather than trying to extract a representation
of the discourse of a recipe from a natural language description, it first derives the
discourse representation, and then realizes this representation in natural language.

We consider cooking recipes as a discourse, because their constituent sentences
contribute to a shared meaning, and should not be analyzed independently. Recall
that the discourse representation theory (DRT) literature in particular (see Kamp and
Reyle (1993)) emerged as a framework that captured conditions on the accessibility
of discourse referents to anaphora and cataphora within sentences and in sequences of

JLCL 2023 – Band 36 (2) – 29–85

Mahon / Vogel

sentences as uttered by individual speakers, even outside dialogue contexts. DRT also
attended to questions of fiction (see Kamp (2021)). Fundamental questions are about
the nature of the objects that serve as antecedents to pronouns. We feel that recipes are
merely another variety of discourse in this same spirit, and an interesting one because
of the nature of change to the starting point objects. While it is certainly interesting to
dwell on the inaccessibility of “a bicycle” as an antecedent to “it” in “Leslie does not
own a bicycle. It is red” as has been addressed within DRT, it is also interesting to
see that “Leslie pureed a potato. It is large” is an incoherent discourse because of the
change that the underlying referent undergoes.

The purpose of DRT is to specify what referents are named in discourse, what
expressions co-refer to those same entities (e.g. pronouns pointing to objects introduced
via indefinite descriptions), and what relations hold true among those entities. Our
system uses a related but alternative approach to representing discourse, in which the
first-class citizens are the processes that change the relevant entities—some to the
extent that the entities are obliterated, some merely changing the state, other entities
brought into existence–rather than the entities themselves (see Section 3).

The task of NLG has been analysed in numerous ways. Some early examples
(K. R. McKeown, 1985)) make a binary distinction between a strategic component that
decides what to say, and a tactical component that decides how to say it. Following
work has continued the idea of a spectrum from strategic to tactical but increased the
number of levels to 3 (Bateman, 2002; Panaget, 1994) or even 6 (Dale & Haddock, 1991;
Reiter, Sripada, Hunter, Yu, & Davy, 2005). The most fruitful framework in which
to view the present work is that of Robin (1993), which uses 4: content production,
content selection, content organization, and content realization. Using this framework,
the operation of FASTFOOD can be summarized as follows.

Content Production The first phase is to produce the content that may possibly
appear in discourse. FASTFOOD represents discourse content with two types of
structure: descriptive strings, intuitively a natural language description of a state
of affairs; and processes, intuitively transitions from one state of affairs to another.
Internally these are produced from more fundamental structures such as cooking actions,
intuitively verbs such as chop or mash, and food classes, intuitively a type of food such
as carrot. The result of the content production phase is the creation of a database
consisting of a set containing all recognized descriptive strings and a set containing all
recognized processes.

Content Selection Once the possible content has been produced, the system must
select the appropriate content for a given discourse (recipe) in response to a user input.
This is done by an algorithm akin to a backwards chaining Automated Theorem Prover
(ATP): the desired dish is treated as a formula, the possible ingredients as axioms and
the processes as rules of inference. The algorithm proceeds backwards from the desired
dish, attempting to reach a set of possible ingredients. The output of the content
selection phase is a set of descriptive strings corresponding to an ingredients list and a
set of processes corresponding to a list of cooking instructions; or else an indication

30 JLCL

The Proof is in the Pudding

that the dish cannot be made from the set of foods the user has access to (the formula
is unprovable).

Content Organization FASTFOOD is concerned not only with generating a recipe,
but also with ensuring the recipe is time efficient. Improvements in time efficiency can
be achieved by performing multiple tasks at once: it is quicker to chop the carrots
while waiting for the rice to boil than to wait for the rice to boil and then chop the
carrots. The information on how to achieve efficiency is expressed by the third of
the NLG subtasks: content organization. FASTFOOD must determine the order in
which instructions are to be performed, and provide an indication of which are to be
performed simultaneously, i.e. when to print successive instructions together in the
form ‘while A, B’. The output of the content organization phase is an ordered list of
processes, some of which have been marked as warranting concurrent execution. There
are two advantages of including this module. Firstly, it demonstrates that the discourse
representation system is robust enough to allow meaningful inference of the sort that
might be made by a human cook. Secondly, it is of practical benefit to a user, and the
growing area of smart kitchen appliances has specifically called for a representation of
the cooking process that facilitates temporal optimization (Hamada et al., 2005; Reichel
et al., 2011).

Content Realization The final phase is to create text from the organized content.
Each process contains an imperative formed by an, often simple, combination of the
action and food class from which the process was formed in the content production
phase. The realized text is a successive printing of each imperative in the organized list
of processes generated in the previous phase; along with the ingredients list, the total
cooking time, and the times during the cooking at which the cook will be passive.

Figure 2 shows an example of a possible input-output pair for FASTFOOD. The
corresponding fully worked example can be found in the appendix.

Section 2 relates FASTFOOD to the existing literature on NLP of cooking recipes.
Section 2.1 conducts a comparison with an early example of an NLG system for cooking
recipes, (Dale, 1990). Section 2.2 discusses an instance of the more common NLU
approach, specifically a technique for depicting recipes as workflows. A potential problem
with this technique is demonstrated, and it is shown that workflow representation is
easily accomplished in FASTFOOD.

Section 3 describes the representation system in FASTFOOD. Section 3.1 addresses
some problems with using discourse referents in the domain of cooking recipes. Sec-
tion 3.2 introduces FASTFOOD’s representational structures: descriptive strings and
processes. Section 3.3 briefly relates this representational system to a long standing
philosophical debate on the nature of names and descriptions.

Section 4 describes the content production module. Sections 4.1 and 4.2 introduce
two types of structure, cooking actions and food classes, that interact to produce a
number of descriptive strings and processes. Section 4.3 describes the elements of the
system created to deal with the existence of multiple descriptions for the same dish e.g.
‘chips’ vs. ‘fried sliced potatoes’.

JLCL 2023 – Band 36 (2) 31

Mahon / Vogel

can_make
content

production

skills

user input

supplies

desired_dish

content
selection

content
organization

can dish be
made from the

supplies?

ingred_list

action_list

needed

recipe_plan

content
realization

no

yes

Figure 1: Graphical overview of our recipe generation system. Yellow circles indicate data, in
various structures, as it flows through the system is can_make is the set of all makeable
foods; skills is the set of all performable processes; supplies is the set of ingredients on
hand; desired_dish is the descriptive string of the dish to make; action_list is partially
ordered set of instructions; needed is set of ingredients that are missing from supplies;
ingred_list is subset of supplies; recipe_plan is parallelized, topological sort of the
instructions from action_list.

Section 5 is an exposition of the content selection module. Section 5.1 directly
describes the algorithm that selects the appropriate descriptive strings and processes
from FASTFOOD’s internal database in response to a user input. Section 5.2 compares
this algorithm with automated methods of parsing and, in more detail, with Automated
Theorem Proving.

Section 6 describes the content organization module, which arranges the selected
instructions into a coherent, temporally optimized recipe.

For algorithm description, a basic style pseudocode is used. Syntactic definitions are,
where appropriate, given in Backus-Naur form. A Python implementation is available
at https://github.com/Lou1sM/FastFood.

2 Related Work

The majority of recent computational approaches to cooking recipes have focussed
either on searching and annotating large online databases, or on deriving a graphical
depiction of a given recipe in terms of a workflow. These are efforts of Natural
Language Understanding (NLU), which is a fundamentally different approach to the
recipe generation attempted by FASTFOOD. On the side of generation, there exists an
early and detailed system which also takes the generative approach in Dale’s EPICURE
(1992) (2.1). More recently, there has been some work applying neural language models
and rule-based systems to the problem of recipe generation, discussed in Section 2.3
and 2.2, respectively.

32 JLCL

The Proof is in the Pudding

INPUT:
vegetable dahl

OUTPUT:
Time: 53mins
Ingredients:
coconut milk
lentils
olive oil
raw peppers
raw broccoli

Instructions:
0mins: while placing water in pot and heating on cooker; chop the peppers, chop the broccoli
5mins: while adding the lentils to the boiling water and cooking for 45mins, stirring occasionally; heat olive
 oil in pan and add chopped vegetables, fry until soft
50mins: strain the lentils
51mins: add the sauteed vegetables and coconut milk to the lentils and stir

Passive:
from 4mins30secs to 5mins while while placing water in pot and heating on cooker; choping the peppers,
choping the broccoli
from 7mins30secs to 50mins while while adding the lentils to the boiling water and cooking for 45mins, stir
ring occasionally; heating olive oil in pan and adding chopped vegetables, frying until soft

Figure 2: An example of an input-output pair, the user inputs the title of a dish and receives a
recipe for that dish along with the total cooking time and the passive intervals that occur
during the recipe.

2.1 EPICURE

EPICURE is a program for recipe generation proposed by Dale (1989). It contains a
representation system for recipe discourse and a method of generating a text describing
this recipe. It is similar to FASTFOOD in that its focus is on natural language
generation (NLG) as opposed to natural language understanding (NLU), and the
difficulties identified by Dale (1992) in semantically representing cooking discourse are
similar to those identified in Section 3.1 of the present paper. Thus, EPICURE and
FASTFOOD both aim to achieve the same goal—a method of text generation in a
domain with mutable entities, see Section 3.1 and Dale and Haddock (1991), Chapter 2.

However, there are considerable differences in the structure and performance of the
two programs. As discussed in the Section 1, NLG systems can generally be thought
of as first performing strategic choices of ‘what to say’, and then moving towards a
tactical specification of ‘how to say it’ K. McKeown (1992); K. R. McKeown (1985).
This framework can provide a fruitful comparison between FASTFOOD and EPICURE.
Within such a comparison FASTFOOD focuses primarily on the ‘what to say’ component
of NLG, employing an ATP style algorithm to determine the steps necessary in a cooking
recipe (Section 5), and to derive a time-efficient way of performing these steps (Section
6). There is no scope for verb phrase coordination—it may for example contain a

JLCL 2023 – Band 36 (2) 33

Mahon / Vogel

fragment such as ‘peel the carrot, chop the carrot, roast the carrot’, instead of ‘peel
chop and roast the carrot’—and in certain contexts verbs do not receive the correct
inflexion—‘while boil the lentils..’ instead of ‘while boiling the lentils. . . ’. EPICURE,
focuses more on tactical realization than strategic planning, such as correct use of
anaphora and level of conjunction application: “add the salt and pepper” vs “add the
salt and add the pepper”.

This difference is also reflected in the use of discourse referents. As discussed in
Section 3.1, these are not used by FASTFOOD at all, whereas they are employed in a
detailed manner by EPICURE in order to assist in generating referring expressions.

However, there are also disadvantages to the representation system of EPICURE
as compared with FASTFOOD. Firstly, it is less efficient in its content generation,
deriving its discourse content, ‘what to say’, from a plan library that, for a given dish,
explicitly contains the steps necessary to make it. For example, the fact that beans
can be prepared by first soaking, then draining and then rinsing is hard-coded into the
program. FASTFOOD on the other hand, creates its discourse content by selecting
elements from a database of descriptive strings and processes, (Section 5) with this
database in turn being produced by more fundamental structures corresponding to
foods such as carrot, and cooking actions such as chopping (Section 4).

There are strengths and weaknesses to both systems. EPICURE’s more detailed
discourse representation, in terms of discourse referents and states holding at a sequence
of time points, produces a smoother and more natural output text but requires pre-
existing specification of discourse content. FASTFOOD on the other hand, uses a lighter
representation of discourse as a set of processes and descriptive strings. This sometimes
produces unnatural output text but means that discourse content can be formed in
response to user input The advantages of each could possibly be achieved by describing
the processes in FASTFOOD as transitions between the state descriptions in EPICURE.
The state descriptions in EPICURE are formed from EPICURE objects and so encode
grammatical properties such as ‘count noun’ and ‘plural’ as well as cooking-related
properties such as ‘soaked’ and ‘whole’. This may allow the recipe to be generated and
optimized by an architecture like that of FASTFOOD, with the resulting discourse
being represented by the discourse referents and states of EPICURE.

2.2 Rule-based Systems

FASTFOOD, similar to EPICURE (Dale, 1989) discussed in Section 2.1, is a program
for Natural Language Generation. Most existing rule-based work on cooking recipes
however, approaches the problem from the side of Natural Language Understanding
(NLU). There, the goal is to analyse a natural language recipe and extract a more
abstract representation. The purpose of such extraction can be quite varied: aligning
actions across recipes (Donatelli et al., 2021), recipe search (Yamakata et al., 2017),
recipe recommendation and alteration (Cordier et al., 2014; Gaillard, Nauer, Lefevre, &
Cordier, 2012; Gunamgari, Dandapat, & Choudhury, 2014); recipe comparison (Mori,
Sasada, Yamakata, & Yoshino, 2012); instruction of robotic cooking assistants; or

34 JLCL

The Proof is in the Pudding

translation recipes from one natural language to another (Mori, Maeta, Yamakata,
& Sasada, 2014). However, the representation systems themselves are more uniform.
While some technical systems exist for annotating recipes with logical or computer
language notation (Cazzulino, Aprea, Greenwood, & Hart, 2004), the majority of recent
work has used the intuitive method of representing recipes as workflows. The technical
structure for such a representation is a directed acyclic graph (DAG) where an edge
from step u to step v indicates that v depends on, and so must be performed before,
u. An example of a workflow representation can be seen in Figure 5 in the appendix,
which represents FASTFOOD’s recipe for vegetable dahl.

Expressing a cooking recipe in the form of a workflow requires identifying the steps
in the recipe and the dependencies that exist between them. The typical method for
extracting workflows from procedural texts has been described in general by (Abend,
Cohen, & Steedman, 2015), and in the specific domain of cooking recipes by (Dufour-
Lussier, Le Ber, Lieber, Meilender, & Nauer, 2012; Hamada, Ide, Sakai, & Tanaka,
2000; Mori et al., 2014). It uses a combination of named entity recognition (NER) and
predicate-argument analysis (PAA). Firstly, NER is performed on each instruction to
extract the name1 of the food being operated on. Next, a predicate-argument structure
is formed for each verb, essentially by pairing it with the nearest noun that was identified
in NER. Formally, these extracted entities correspond to the vertex set of the DAG.
Finally the dependencies between these structures — formally the edges of the DAG

— are determined using the order in which they appeared in the text — a predicate
-argument structure A depends on another B if they share the same argument and A
appears later in the text than B. The recipe fragment ‘peel the carrot, chop the carrot’
would be represented as ‘peel(carrot), chop(carrot)’ and so the latter would be said to
depend on the former, i.e. they would be joined with a directed edge. However, this
technique faces a problem in certain circumstances which comes back to the transitory
quality of the ontology of a cooking discourse (see Section 3.1). Specifically, it would
seem unable to identify dependencies in cases where new entities have been introduced.
Consider the following online recipe for sweet potato burgers.

1. chop cilantro and leaves
2. bake patties for 35 min
3. place burgers on burger bun

The entity ‘burgers’ has never been mentioned before, so there would be no guide as to
which nodes it should be joined, no reason for 3 to be joined to 2. If it were specified
that every node must be joined to at least one preceding node (formally that the DAG
be connected) then there would be nothing in the above technique to indicate that 3
should be joined to 2 rather than 1.

Of course, one could supplement this technique in an attempt to address such
problems. For example, (Hamada et al., 2000) also employ a dictionary of cooking items.
However, even a dictionary may fail to resolve this problem: the entry for ‘burgers’ does

1See Section 3.3 of the present work for a brief philosophical discussion of the ontological properties
of names in cooking recipes.

JLCL 2023 – Band 36 (2) 35

Mahon / Vogel

not contain the word ‘patties’ in any of 4 large online dictionaries (Oxford Dictionary of
English 2022; Collins Dictionary 2022; Cambridge Dictionary, 2022; Merriam-Webster
2022), so it is not clear how this could directly provide the missing link between 3 and 2.

In FASTFOOD on the other hand, workflow representation is readily attained by
the methods described in Sections 4 and 5. Indeed this representation is generated
first, and then used as the basis for generating the text. In the appendix, Figure 5 is a
graphical depiction of this representation in the case of the worked example. This can
be seen as a more general advantage of exploring the NLG of cooking recipes: when
the representational elements are created by the system itself, they can be created in a
way that facilitates the extraction of whatever information is most pertinent. In this
case, representing cooking instructions in terms of input and output states (Section 3)
allows dependencies to be readily established by matching the input of one with the
output of another (Section 6.1).

These dependency relations were used in FASTFOOD’s temporal optimization module
(Section 6). Such optimization required the consideration of multiple orders for the steps
in the cooking recipe, and accurate identification of dependency relations was necessary
to establish which orders produce coherent recipes (see Section 6.1). Further to this
point, the only account of recipe optimization in the surveyed literature (Hamada et al.,
2005), observed that automated DAG extraction was insufficiently accurate for their
purposes, and that a manual annotation was required instead.2 Thus it can also be said
that the NLG approach to cooking recipes is helpful to their temporal optimization:
generating (as opposed to extracting) discourse representations aids in the accurate
identification of dependency relations, and this in turn is necessary for any optimization
process that considers reorderings.

Another potential approach to cooking recipe generation is via controlled languages
(Kuhn, 2014), which have been applied as knowledge representation languages for other
applications of rule-based reasoning systems (Pulman, 1996). No work, to our knowledge,
has attempted this, but the similarity between cooking recipes and controlled languages
has been noted by at least one author (Mogensen, 2004).

2.3 Neural Approaches

Much of the natural language generation research in recent years has been dominated
by neural language models. These are, generally very large, over-parametrized (more
parameters than datapoints) neural networks trained on very large datasets to perform
next-token prediction (Li, Tang, Zhao, & Wen, 2021). Currently, top-performing models
have several billion parameters, (He, Gao, & Chen, 2022; Patra et al., 2022; W. Wang
et al., 2020), with some reaching hundreds of billions (Brown et al., 2020). These have
several advantages, such as obviating the need for feature engineering and showing,
so far, continuing improvement with each increase in model and dataset size (Brown

2The optimization attempted by Hamada et al. (2005) is different to that of FASTFOOD as it was
not solely concerned with temporal optimization, but also the optimization of other factors such
as utensil use.

36 JLCL

The Proof is in the Pudding

et al., 2020; Kaplan et al., 2020). However, a significant disadvantage is the lack of
guarantees and consistency on the output. For example, a question-answering system
using a large language model is highly sensitive to how the question is asked (Shin,
Razeghi, Logan IV, Wallace, & Singh, 2020), and can give completely different answers
when asked the same question twice.

This instability makes large language models less suitable for structured text gen-
eration, where it is very important that the output be globally coherent, rather than
free-form text, where the output can drift from topic to topic without needing to make
reference to content from many tokens back. One example of such structured text is
code generation. Several works have applied large language models to code generation.
The results show some promise and can often generate correct code, but the average
accuracy is almost never above 30% (Xu, Alon, Neubig, & Hellendoorn, 2022), with
models especially struggling when code requires longer sequences of steps (Chen et al.,
2021). It has also been shown that, even when generated code is correct, the model is
unable to predict the output of basic programs (Chen et al., 2021).

Cooking recipes are another example of structured text generation. A recipe needs
to be a meaningful sequence of steps that a user can follow, where the ingredients for
each step are all in the ingredients list or produced by previous steps. If even one
ingredient is missing or one instruction step does not make sense, the entire recipe
can be ruined. For these reasons, existing recipe generation by large language models
has focused on completing partially given recipes (H. Lee et al., 2020) or measuring
perplexity on existing recipes (Parvez, Chakraborty, Ray, & Chang, 2018). Perhaps the
most successful results were found by conditioning the recipe generation on an image of
the food to be cooked (Salvador, Drozdzal, Giró-i-Nieto, & Romero, 2019; H. Wang,
Lin, Hoi, & Miao, 2020). Thus, although deep learning dominates the current research
on natural language generation, it is not currently able to generate meaningful cooking
recipes from scratch. Moreover, as it struggles to identify the purpose or output of
generated code, it is very unlikely to be able to perform temporal reasoning about a
cooking recipe, even if it were able to generate such a recipe.

Our proposed method, in contrast, can reliably generate cooking recipes from scratch,
perform temporal reasoning to determine the passive times, and perform temporal
optimization to rearrange the recipe to make it more time efficient. Additionally,
in comparison with deep learning approaches, it carries the obvious advantage of
not requiring large datasets or compute, and not requiring any time to train. Most
importantly, deep learning does not give any insight into the cognitive nature of foods,
cooking actions and abstract food classes, but our model does, via the structures that
emerge naturally from the representation system, as described in Section 3.

3 Representation System

This section describes the format in which discourse content is represented in FAST-
FOOD. Section 3.1 discusses problems arising from the use of discourse referents in the
domain of cooking recipes, and explains why they are not used here. This discussion is

JLCL 2023 – Band 36 (2) 37

Mahon / Vogel

included because discourse referents are a common modelling framework for discourse,
and so our choice not to use them here may be thought to require some justification.
Section 3.2 exposits the structures termed descriptive strings and processes, which
together form the representation structure. Section 3.3 sketches a brief connection
between this representation choice and a long-standing debate in philosophy on the
nature of names, objects and descriptions. This section is not needed to understand
the behaviour of our system itself, but may be of interest to one concerned with the
general philosophical issue of reference vs description.

3.1 Problems with Discourse Referents

Discourse referents constitute a popular and often useful method for semantically
representing a discourse. Each discourse referent corresponds to an entity discussed
in the discourse, and the semantics of the discourse can then be described as various
changes in the properties of these referents. Discourse referents have been used with
success for a number of different purposes: e.g. modelling of anaphoric reference
(Kamp, Genabith, & Reyle, 2011; Kamp & Reyle, 1993), topic segmentation/document
summarization (Webber, Egg, & Kordoni, 2012), and opinion mining (Indurkhya &
Damerau, 2010; Mooney, 1996; Sarawagi, 2008). However, in the domain of cooking
recipes, their use may be problematic. Cooking is essentially an activity which makes
new things out of old things, so we would expect entities to come into and out of
existence over the course of a recipe; and for a representational system based on these
entities, this irregularity in the ontology presents some difficulties. Firstly, how could
it be determined whether a new noun phrase calls for a new referent? It does not
seem that chopped carrot should indicate something entirely new, rather it should be
a modification of the already existent, (raw) carrot; but perhaps the same cannot be
said of carrot puree or carrot soup. Some actions transform one thing into another
whereas some simply modify the original, and deriving a definite rule to distinguish
is non-trivial. A second, related, problem is in accounting for the disappearance of
individuals. After an instruction like ‘add the salt to the boiling water’ there is no
longer (at least in the immediate sense) an individual called ‘the salt’; whereas after
‘add the quinoa to the boiling water’ the entity corresponding to the ‘the quinoa’ is
extant. The latter might be followed by ‘strain the quinoa’, but the former could not be
followed by ‘strain the salt’. Some additions constitute combinations in which the parts
are no longer easily distinguishable or separable, and some do not; and again there is
no obvious rule to capture this difference. Indeed, even among artificial intelligence
programs specifically designed for chemical reasoning it is not clear that there would be
anything capable of a cook’s intuitive understanding of transformation vs. modification,
or of reversible vs. irreversible combinations (McCudden, 2017). Despite being a fruitful
approach elsewhere, the utilization of discourse referents encounters difficulties in the
domain of cooking recipes. As humans can easily intuitively understand the meaning
of cooking recipes, these difficulties also suggests that our semantic representation of

38 JLCL

The Proof is in the Pudding

cooking recipes does not involve discourse referents, that they do not form a part of
human understanding, and so they are not employed in the current representation.

3.2 Descriptive Strings and Processes

The fundamental representational unit used in FASTFOOD is a structure called a de-
scriptive string. Intuitively descriptive strings can be thought of as a partial description
of the state of affairs at some stage during the carrying out of a recipe. Formally they
are written as strings in natural language — ‘there is a mixture of fried vegetables
and boiled lentils’, ‘there is chopped carrot in boiling water’. However, for the sake
of simplification, the initial ‘there is’ is omitted. Descriptive strings are then used to
define processes, defined by an input and output set of description strings. Intuitively,
processes correspond to the acts performed by the cook, e.g. chopping carrots, which
contains ‘raw carrot’ in the input and ‘chopped carrot’ in the output, i.e. chopping
carrot is an action that begins with there being carrot and ends with there being
chopped carrot. As will be seen in Section 6, it is necessary to keep track of both the
total time taken by the action, and the passive time that exists during the action.

The discourse content for a recipe comprises an ingredients list, i.e., a set of descriptive
strings, and a list of cooking instructions, i.e. a list of processes. The only constraint
on descriptive strings is a semantic one, that they describe a state of affairs. Here we
use strings in natural language, but other alternatives are possible, as briefly discussed
in Section 2.

3.3 Things vs Descriptions

A representation system in terms of states of affairs can be seen to be related to a
long-standing philosophical debate on the logical and semantic properties of names,
objects and descriptions. Introduced in its current form by Frege et al. (1892), this
debate is now well over 100 years old (French, Uehling, & Wettstein, 1979; Quine, 1948;
Russell, 1905, 1910; Searle, 1958). The central point has been to question what is
indicated by using a name, whether names are essential and, if not, what they might
be replaced with. It should be noted that typically the discussion was of named objects
vs. proper definite descriptions, and upon reflection cooking recipes cannot contain
either proper definite descriptions or uniquely identifying names3. If they did they
would become chronicles of one particular instance of cooking, for example describing
what took place in John’s kitchen yesterday, rather than the blueprint for a potentially
infinite number of such chronicles that we expect them to be. The idea of a name can
be employed in a looser sense to provide a reference to an entity, rather than attaching
an enduring label to it—‘the carrot’ as opposed to ‘John’.4 For example, it is this looser
sense at play in the technique of Named Entity Recognition (discussed in Section 2.2).

3Brand names may occur, but, we contend, this would be as noun-modifiers, ‘the Cadbury chocolate’,
rather than names ‘Cadbury was acquired by Mondelez’.

4See Evans (1982)) for a comprehensive discussion of different sorts of names and references.

JLCL 2023 – Band 36 (2) 39

Mahon / Vogel

However, to avoid confusion remainder of this paper equates the term ‘name’ with
proper names, such as ‘John’.

With an acknowledgement of the difference between named entities and discourse
referents in mind, a parallel can be drawn between names vs. definite descriptions on one
hand, and discourse referents vs. states of affairs on the other. A particular connection
might be seen with Russell’s [1905] well-known analysis of ‘the present king of France’
as being a description rather than a reference, anything that fits the description of
being the present king of France, or Searle’s 1958 claim that names are merely ‘pegs
on which to hang descriptions’ (p172). These both suggest that descriptions are more
fundamental than named objects. Even Wittgenstein’s famously cryptic remark that
‘the world is the totality of facts, not of things’ [1922; 1961] can be broadly interpreted
as stating that everyday objects, such as tables and chairs, supervene on states of
affairs (see Copi and Beard (2013); Georgallides (2015); Miller (2017) for discussion of
a more detailed interpretation). The key point of similarity is that entities (whether
named or not) are not essential, but rather to be used only when convenient. In many
circumstances it is indeed efficacious to be able to group multiple properties together.
For example, entities can be helpful for discourse segmentation methods: if entities are
in fact pegs holding together multiple properties or ideas then it would be expected
that identifying a change in the entities under consideration would be an effective
way of sectioning a text (more effective than, for example, identifying a change in
the verbs being used) (Bayomi, Levacher, Ghorab, & Lawless, 2015; Fragkou, 2017).
However, in the cooking domain, whose central purpose is to manipulate and recombine
to produce a desired outcome, the same properties do not remain together for very long.
Consequently, entity-based understanding, which often offers a simplification, was felt
to be less appropriate than a representation system in terms of states of affairs.

4 Content Production

The algorithm of this section determines the set of all possible descriptive strings, termed
can_make, and the set of all processes that the cook can perform, termed skills. These
sets are then used by the content selection and organization modules (Section 5 and
6, respectively). In order to efficiently generate the sets can_make and skills, we can
exploit the similarity in the input-output structure of many different elements. For
example, one process would take “(there is) raw broccoli” as input and return “(there
is) chopped broccoli”, another would take “(there is) raw carrot” as input and return
“(there is) chopped carrot”. To this end, we use two intermediary structures, cooking
actions and food classes, which intuitively correspond to verbs and nouns, respectively.
Cooking actions (verbs) generalize the change between input and output across a set
of processes, food classes (nouns) generalize the similarity between input and output
across a set of processes. The current version of FASTFOOD contains 8 cooking actions,
including chop, boil, mash and soak; and a number5 of food classes including broccoli,

5This number is different at different points in the production phase, see Algorithm 2.

40 JLCL

The Proof is in the Pudding

coconut milk, potato and pasta. The formation of skills requires a specification of how
these interact to obtain meaningful processes. The term ‘meaningful’ is used to describe
a process that it is pertinent for FASTFOOD to consider; this excludes those that may
be called physically impossible, such as chopping coconut milk along with those that
may be possible but are highly impractical, such as soaking pasta. The complete action
of the content production module is given in Algorithm 2.

4.1 Cooking Actions

Syntactically, each cooking action is a set of processes of a similar form. For example,
the above processes would be generalized under the cooking action ‘chop’. Part of the
form for ‘chop’ is that the output is ‘chopped’ concatenated with the input. These sets
are formed separately and then their elements are all added to skills. The general
form for the cooking action ‘chop’, that is, the form of all processes that fall under
the ‘chop’ cooking action, is given in Grammar 1. For this, and all following syntactic
specifications, are given in Backus-Naur form.

⟨chop-process⟩ ::= ⟨chop-input-pair⟩ ⟨chop-output-pair⟩ ⟨chop-time-pair⟩
⟨chop-ftime-pair⟩ ⟨chop-direction-pair⟩

⟨chop-input-pair⟩ ::= ‘input’ ⟨choppable-food⟩

⟨chop-output-pair⟩ ::= ‘output’ ‘chopped’ ⟨choppable-food⟩

⟨chop-time⟩ ::= ‘time’ float

⟨chop-ftime⟩ ::= ‘f time’ 0

⟨chop-direction⟩ ::= ‘direction’ ‘chop the’ ⟨choppable-food⟩

Grammar 1: Grammar for the chop process.

Certain values of the descriptive string ‘choppable-food’ could produce non-meaningful
processes, such as chopping hummus. Thus, it must be specified which descriptive
strings are compatible with which actions. Directly defining a separate set of suitable
descriptive strings for each cooking action would require many specifications, e.g., ‘chop’
getting ‘raw carrot’, ‘peeled carrot’, ‘boiled carrot’, but not ‘chopped carrot’. Indeed,
this would be just as tedious as specifying each allowable process directly. The problem
is instead solved using an intermediary structure termed food classes, which correspond
closely to nouns.

4.2 Food Classes

They are abstract entities that indicate compatibility or incompatibility with each of
the cooking actions. They capture that, for example, the descriptive string ’raw carrot’
is compatible with chop and peel, but not with mash. This information is encoded by

JLCL 2023 – Band 36 (2) 41

Mahon / Vogel

a class Carrot, which has a root string ‘carrot’, a state string, e.g., ‘peeled’, and an
indication as to which cooking actions it is compatible with. In order to also capture
the time that can be taken for the action to apply to the food class, e.g., boiling
spinach is considerably quicker than boiling lentils, this indication is given by a float
specifying the ‘time’ value of the process (in seconds) that will be produced, or −1 if
the action and food class are incompatible. This element is referred to as an indicator.
The full syntax for food classes is shown in grammar 2. The eight indicators specify
compatibility/incompatibility with the eight cooking actions. For example, if the first
indicator is false, it means the foodclass cannot be chopped.6

⟨foodclass⟩ ::= ⟨root⟩ ⟨state⟩ ⟨Indicator⟩ ⟨Indicator⟩ ⟨Indicator⟩ ⟨Indicator⟩
⟨Indicator⟩ ⟨Indicator⟩ ⟨Indicator⟩ ⟨Indicator⟩

⟨indicator⟩ ::= False | float

Grammar 2: Grammar for foodclass.

Having defined these food classes, it becomes apparent that some sets of food classes
are similar, both in their descriptive string and in their indicators, and it is therefore
efficient to group them under a common abstraction. Carrot is grouped with parsnip,
potato, sweet potato and onion under the abstract class RootVegetable, which specifies
that they can be peeled and chopped and boiled, but not soaked, and can be fried
only if their state included ‘chopped’ etc. This can be accomplished naturally in our
object-oriented programming description, where RootVegetable is an abstract class
from which Carrot inherits. Exceptions to the properties of the parent class, such as
onion only being able to be fried if it has been peeled, can be simply overridden in the
child class.

The sets can_make and skills can then be defined by instantiating an object for
each food class, the iteratively applying the processes corresponding to each of the
actions. So, beginning with a Carrot object in the ‘raw’ state, the cooking action Peel
could be applied to produce the new process that converts “raw carrot” to “peeled
raw carrot”, and the new descriptive string “peeled raw carrot”. These are then added
to skills and can_make, respectively. The peel indicator on the carrot object is also
changed to False, capturing the fact that you cannot peel what has already been peeled.
An example, for the chop action, is described formally in Algorithm 1. Other actions
are defined similarly, but with some slight differences in the changes to the indicators,
e.g. the fry function also sets the ‘boilable’ indicator to false, as we do not wish to
consider boiling a food after frying it. The action of Algorithm 1 is recursive, applying
to the modified food objects from previous applications, but the recursion depth is
limited to the number of cooking actions, because of the restriction that no action can
be applied to the same food object twice. As an example, Algorithm 1 would operate

6An alternative solution, in a functional paradigm, could be to use dependent types to restrict the
arguments to the chop function, see Ranta (2011), p.130.

42 JLCL

The Proof is in the Pudding

on the food class raw_carrot as follows (using python-style syntax):

input
raw_carrot = {‘root:’, ‘carrot:’

‘state:’, ‘raw:’,
‘choppable:’, True,

‘boilable:’, True,

‘fryable:’, True,

‘soakable:’, False,

...

output
chopped_carrot = {‘root:’, ‘carrot:’)

‘state:’, ‘chopped:’,
‘choppable:’, False,

‘boilable:’, True,

‘fryable:’, True,

‘soakable:’, False,

...

Similarly, Algorithm 2 produces all possible processes. For example, the processes
corresponding to the above input-output pair is

chop_carrot = {(input, {‘raw carrot’}),
output, {‘chopped carrot’}),
time, 120),
ftime, 0),
direction, ‘chop the carrot’)} .

At this point in the production phase, skills includes all processes formed from the
interaction of the appropriate food classes and cooking actions, and can_make contains
all descriptive strings that are inputs or outputs to these processes. These are then
added to by the structures discussed in Section 4.3.

JLCL 2023 – Band 36 (2) 43

Mahon / Vogel

Algorithm 1 Formal description of a function used to create new food classes,
f[choppable], f[boilable] and f[fryable] refer respectively to f’s indicators for chopping,
boiling and frying.

function chop(x)
x← a food class
chopped_x← x will be updated to show effects of chopping
chopped_x[state]← ‘chopped’
chopped_x[choppable]← F alse
Return chopped_x

4.3 Synonyms and Ghosts

The production method described in Sections 4.1 and 4.2 produces only those descriptive
strings constructed from combinations of the given cooking actions and food classes,
e.g. ‘chopped carrot’, ‘mashed chickpeas’; and this excludes the likes of ‘hummus’,
‘ratatouille’ or ‘chips’. These sorts of descriptions, unlike ‘chopped carrot’ have nothing
in their linguistic structure to indicate their physical structure. The production methods
of Sections 4.1 and 4.2 would apply the cooking action for frying to the descriptive
string ‘sliced potato’ to produce ‘fried sliced potato’; but a human would instead use the
description ‘chips’. Therefore, we encode these anomalous descriptions, like ‘chips’, along
with a synonymous one that could be understood by FASTFOOD, ‘fried sliced potato’.
Such a relation between two strings, one of which is a descriptive string produced by
Algorithm 2, is defined syntactically in Grammar 3.

⟨synonym⟩ ::= ⟨descriptive-string⟩ ⟨descriptive-string⟩

Grammar 3: Grammar for synonym.

For each synonym (x, y) a process is produced which has x as input, y as output,
zero time, zero f time and empty direction. These processes are termed ghost processes
and are defined syntactically in Grammar 4. In the case of ‘chips’, this results in

S = (‘fried sliced potatoes’, ‘chips’)
G = {(input, {‘fried sliced potatoes’}),

(output, {‘chips’}),
(time, 0),
(ftime, 0),
(direction, ‘’)}

44 JLCL

The Proof is in the Pudding

Algorithm 2 Formal description of the algorithm used to produce many descriptive
strings and processes, which are then stored in can_make and skills. The fields of each
process are defined as in Algorithm 1.

function produce_content(foods)
foods← predefined set of food classes
chop← ∅ , will be updated to contain all chopping-related processes
boil← ∅, will be updated to contain all boiling-related processes
fry ← ∅, will be updated to contain all frying-related processes
skills← ∅, will be updated to contain all chopping- boiling- and frying-related

processes
can_make← ∅, will be updated to contain recognized descriptive strings
for each f ∈ foods do

add f [description] to can_make

for each f ∈ foods do
if f [choppable] is a float then

chopped_f ← chop(f)
chop_f ← (input, f [description]), (output, chopped_f [description]),

(time, f [choppable]), (f time, 0), (direction, ‘chop the f [root]’)
add chopped_f to foods
add chop_f to chop

if f [boilable] is a float then
boiled_f ← boil(f)
boil_f ← (input, f [description], ‘boiling water’), (output, boiled_f [description]),

(time, f [boilable]), (f time, f [boilable]−30), (direction, ‘boil the f [root] for f [boilable]’)
add boiled_f to foods
add boil_f to boil

if f [fryable] is an float then
fried_f ← fry(f)
boil_f ← (input, f [description]), (output, fried_f [description]),

(time, f [fryable]), (f time, f [fryable]− 120), (direction, ‘fry the f [root] for f [fryable]’)
add fried_f to foods
add fry_f to fry

skills← chop ∪ boil ∪ fry
Return skills

JLCL 2023 – Band 36 (2) 45

Mahon / Vogel

⟨ghost-process⟩ ::= ⟨input-pair⟩⟨output-pair⟩ ⟨ghost direction⟩ ⟨ghost-time⟩
⟨ghost-f-time⟩

⟨input-pair⟩ ::= ‘input’ ⟨descriptive-string⟩

⟨output-pair⟩ ::= ‘output’ ⟨descriptive-string⟩

⟨ghost-direction⟩ ::= ‘direction’ ‘’

⟨ghost-time⟩ ::= ‘time’ 0

⟨ghost-f-time⟩ ::= ‘f time’ 0

Grammar 4: Grammar for ghost process.

A ghost process with input x and output y, allows FASTFOOD to simplify the search
for a recipe for y to the search for a recipe for x. On a request for a recipe for chips
FASTFOOD would decide that chips can be made from ‘fried sliced potatoes’, and
then begin searching for a recipe for the latter.7 Ghost processes are removed after
the content selection stage (see Section 5) and would make no appearance in the final
generated output. Ghosts also provide a way of allowing for multiple methods of making
the same dish. Chips may also be made by baking sliced potatoes, and so we could
define a new synonym between ‘chips’ and ‘baked sliced potatoes’, along with the
corresponding ghost process. In the current version, when there are multiple ways of
making the given dish, a selection is made at random.8 This calls into question whether
‘chips’ and ‘fried sliced potato’ are in fact synonymous after all. If synonymy is an
equivalence relation, and both S and S′ both describe such relations, then this would
seem to imply the spurious conclusion that ‘fried sliced potato’ is a synonym of ‘baked
sliced potato’. One interpretation is that ‘chips’ has multiple senses, one corresponding
to ’fried sliced potato’ and another to ‘baked sliced potato’. Another is that, rather
than synonymy, the relation is really one of hyponymy-hypernymy, or near-synonymy
Edmonds and Hirst (2002), with synonym reserved for pairs such as ‘coriander’ and
‘cilantro’.9

Another feasible interpretation is to view ghosts as paraphrases: if asked for a recipe
for ‘chips’, G would allow FASTFOOD to replace ‘chips’ with ‘fried sliced potato’, and
instead search for a recipe for the latter. By employing various paraphrase extraction
techniques to a number of online corpora, Ganitkevitch, Van Durme, and Callison-Burch

7A more precise function of these ghosts can be understood in the context of the content selection
algorithm (Section 5) and the worked example in the appendix.

8While synonyms and ghosts are mostly used to allow multiple ways to make the same dish, or to
relate names for processed foods such as hummus, to a longer descriptive string that reveals the
contents of that food, they can also be used to model synonymous terms for basic ingredients,
such as cilantro and coriander.

9This concern is purely semantic. Synonyms are ordered pairs—ghost processes do not exist in both
directions—and so it would not be possible to use ‘chips’ as an intermediary and employ both S
and S’ to conclude that one can make ‘fried sliced potato’ from ‘baked sliced potato’ or vice versa.

46 JLCL

The Proof is in the Pudding

(2013) have constructed a large database of paraphrases. This database has allowed a
practical investigation of synonymous pairs based on the assumption that synonyms are
words that can act as paraphrases for each other (Koeva (2015); Pavlick and Nenkova
(2015); Preotiuc-Pietro, Xu, and Ungar (2016). However, as noted by Koeva (2015)
synonymy understood in terms of paraphrasing may not formally be an equivalence
relation—for example, ‘brain’ could likely be a substitute for ‘encephalon’ in the medical
literature, but the reverse substitution could be incongruous in less formal discourse,
and so the relation is not symmetrical.

Certain synonyms are built in to FASTFOOD from the beginning—‘hummus’,
‘chips’,‘guacamole’,‘pancakes’ etc., but often such a synonym may be required of the
user, for example if a recipe for ‘butter bean soup’ were requested, then the user would
be required to add a synonym such as

R = (‘butterbean soup’,
‘liquidized mixture of butterbeans, milk and pureed vegetables’) .

It may seem a shortcoming of the system that a user would have to specify much of
the essential information, but note that the question ‘what exactly do you mean by
butter bean soup?’ is exactly the sort of question a menu reader, or personal chef, might
ask. The description ‘butter bean soup’, like ‘chips’ is ambiguous in natural language,
and the hesitation of FASTFOOD is an appropriate response to this ambiguity.

5 Content Selection

The content selection algorithm in this section requires the following for operation:
• the content produced by the methods of Section 4, consisting of can_make and

skills

• a user description of the desired dish in a form understood by FASTFOOD, i.e. a
descriptive string that is an element of can_make

• a user-specified subset of can_make, called supplies, corresponding to all foods
the user has at home

The algorithm can then select which elements of can_make are required as ingredients,
and which elements of skills are required to transform the ingredients into the desired
dish. If the ingredients are not all in supplies, then the program terminates with
output ‘insufficient ingredients, you need: A1, A2, ..., An’ where {A1, A2, ..., An} =
ingred_list \ supplies. Section 5.1 describes the algorithm for selecting both the
subset of supplies that will form the ingredients list, and the subset of skills that will
collectively transform the ingredients list into the desired dish. Section 5.2 relates
this algorithm to parsing and, in more detail, to well established work in the field of
automated theorem proving.

JLCL 2023 – Band 36 (2) 47

Mahon / Vogel

5.1 Selection Algorithm

Algorithm 3 Algorithm that selects the appropriate ingredients (descriptive strings)
and steps (processes) to form a recipe for a dish requested by the user.

function select_content(dish)
ingred_list← ∅, will contain ingredients that are in supplies
needed← ∅, will contain ingredients that are not in supplies
action_list← ∅, will contain all processes required to make the dish
looking_for ←list containing only the dish, items will be removed from this list

by (a) finding them in ingred_list (b) placing them in needed or (c) finding a process
for which they are the output and replacing them with the corresponding inputs

while looking_for ̸= ∅ do
for each item ∈ looking_for do

if item ∈ supplies then
remove item from looking_for
add item to ingred_list

else if item /∈ can_make then
remove item from looking_for
add item to needed

else
for each p ∈ skills do

if item is an output of p then
remove item from looking_for
add the inputs of p to looking_for
add p to action_list
break

if needed == ∅ then
Return ingred_list, action_list

else
Print ’Insufficient ingredients, you need:’
for each x ∈ needed do

Print x

Given the sets of recognizable processes and descriptive strings, can_make and
skills, as computed in Section 4, along with a user description of the desired dish and a
user-specified subset of can_make, called supplies, corresponding to all foods the user
has at home, the content selection algorithm proceeds as follows. First, the descriptive
string for the desired dish is set as the sole element of the list needed. The following
is then performed until this list is empty: if the first element of the list is in supplies
then it is removed and added to ingred_list; otherwise, if the first element of the list
is not in can_make then it is removed and added to needed; otherwise, a process is
found with the first element of the list as output (a failure of the previous condition

48 JLCL

The Proof is in the Pudding

guarantees that such a process exists), the element is removed and the inputs of the
process are added to the end of the list, the process is added to action_list. If, after
this loop, needed is non-empty then the dish cannot be made with the current supplies,
and so the program terminates and the elements of needed are printed, preceded by the
directive ‘Insufficient ingredients, you need:’. Otherwise, ingred_list and action_list
are returned to the content organization phase (Section 6).

5.2 Comparison with Parsing and Automated Theorem Proving

This algorithm has similarities to both parsing and automated theorem proving. Parsing
is the general term for any technique that analyses a string of symbols in terms of its
role in a formal grammar. A formal grammar, as it is considered here, is a set of rewrite
rules, which describe how certain symbols can be rewritten as others, along with a
privileged start symbol from which the rewriting process may begin. A subset of these
symbols are defined to be terminal, and the set of all generated strings composed purely
of terminal symbols is defined as the language of the formal grammar.10 A prototypical
instance of parsing is to determine whether a given string is part of a given language,
and if so to identify the production rules from which it can be generated. For example,
treating natural language as a formal grammar, a sentence can be parsed to determine
whether it is grammatical and, if so, to produce a diagram, sometimes called a parse tree,
detailing its grammatical structure. The similarity with the algorithm Algorithm 3 can
be seen by equating production rules to processes, terminal symbols to the descriptive
strings in supplies, and non-terminal symbols to all other descriptive strings. Both
techniques aim to establish a connection between a given element (dish/start symbol)
and a given set of elements (subset of supplies/string of terminal symbols) by applying
certain transformations (processes/rewrite rules).

The start symbol in formal grammars is unique, but we could simply include, for each
dish a user might specify, a rule transforming the start symbol into that dish, which
would allow the parsing of more than one input dish. A difference with parsing is that
the set of symbols in a string is ordered, whereas the descriptive strings in ingred_list
are not—the parse of a natural language sentence would change if the order of the
words was changed, but the same is not true with respect to the ingredients list of a
recipe. There is existing work on applying parsing techniques to unordered (or only
partially ordered) domains such as image recognition (Elliott & Keller, 2013; Hongxia
& Li, 2008; Zhao et al., 2010) and narrative comprehension of stories ((Zhang, 1994)
and the references therein). One solution is to use a formal grammar that does not
discriminate based on order: a formal grammar such that for every permutation P and
rewrite rule

a1, . . . , an → b1, . . . , bn ,

10For discussion of formal grammars see Chomsky (1956); Meduna (2014).

JLCL 2023 – Band 36 (2) 49

Mahon / Vogel

there also exists a rule
a1, . . . , an → P (b1, . . . , bn) .

Robust frameworks for representation of natural language with a separation of immedi-
ate dominance and linear precedence constraints are readily available – for example,
Generalized Phrase Structure Grammar (Gazdar et al, 1985) – and decidable parsing
regimes are available to them (Seiffert, 1987), with polynomial time complexity in some
cases (Nederhof, Satta, & Shieber, 2003).

Another fruitful comparison is that with automated theorem provers (ATP). An
ATP is an algorithm that seeks a method of proving a formula P from a known list
of axioms and implicational rules. In the case of a backwards chaining ATP, the
basic method for proving P is to search for an implication R with consequent P, thus
reducing the search for P to a search for the antecedents of R, and continue to apply
this method to these antecedents until the formulae to be proved are all in the list of
axioms. If this can be done then P can be established as a theorem provable by the
axioms reached and the implicational rules used to reach them.11 When compared
with the SELECT_CONTENT algorithm, the set of axioms corresponds to supplies,
the implications to skills, and P to the desired dish. Deriving a proof of the formula
P corresponds to generating a recipe for the dish. One important difference with
ATP is that the latter contains explicit implications, ‘raw carrot’ → ’chopped carrot’,
and the former implicational rules e.g. (P → Q). Explicit implications can only be
backward-chained if the consequent (output) exactly matches a specific proposition to
be proved, whereas implicational rules can describe an arbitrary number of implications.
The consequent of modus ponens for example, can be matched to any formula and so
the search could proceed indefinitely: proving P1 could be reduced to proving P2 and
(P2 → P1), then proving P2 could be reduced to proving P3 and (P3 → P2).12 Here,
however, if a formula (descriptive string) doesn’t exactly match the consequent of any
rule (/∈ can_make) then there are no options left and the formula can be declared
unprovable (the dish unmakeable). This is an advantage. Formally, it means that given
a set of foods and cooking actions, the set of makeable dishes is recursive, whereas it
has long been known that the set of provable formulae is merely recursively enumerable
(Gödel, 1929). Practically, it means that it is immune to the significant danger faced
by ATP of being led down blind alleys and failing to halt. Heuristics are necessary
to guide ATP search in an ‘intelligent’ direction, e.g. not continue to apply modus
ponens as above. After initial interest in ATP in the 1950s and 1960s, the necessity
of effective heuristics soon became clear (Bledsoe, 1984; Loveland, 2016). Automated
theorem proving remains an open problem (Avigad & Harrison, 2014). Most work is
still devoted to intelligent proof guidance (Sutcliffe & Suttner, 2001; Urban, Hoder, &
Voronkov, 2010), with a growing trend to derive such guidance from machine learning
((Bansal, Loos, Rabe, Szegedy, & Wilcox, 2019; Bridge, Holden, & Paulson, 2014; Loos,

11For a full exposition of the various approaches to automated theorem proving, see (Geffner, 2013)
12Such a possibility recalls Lewis Carrol’s famous discussion of the validity of Modus Ponens in a

conversation between Achilles and the Tortoise [1895].

50 JLCL

The Proof is in the Pudding

Irving, Szegedy, & Kaliszyk, 2017; Schulz & Sutcliffe, 2015). In contrast, Algorithm 3
does not require any search heuristics.

Another problem faced by automated theorem provers is that the resulting proofs,
are often extremely long and difficult for human readers to understand, and so require
postprocessing such as removing superfluous or repeated inferences (Fontaine, Merz, &
Woltzenlogel Paleo, 2011) or graphically representing parts of the reasoning process
(Flower, Masthoff, & Stapleton, 2004; Stapleton, Masthoff, Flower, Fish, & Southern,
2007). The inferences made by mathematicians are of a much higher order than the
fundamental implicational rules such as modus ponens, a single step in the head of
a mathematician might correspond to thousands or even tens of thousands of logical
inferences (Fontaine et al., 2011). A cooking recipe, on the other hand, is rarely more
than a couple of pages: the average recipe has less than ten ingredients (Kinouchi,
Diez-Garcia, Holanda, Zambianchi, & Roque, 2008) and a brief search through 3
commercial recipe books (Culleton & Higgs, 2016; Flynn & Dave, 2016; Gavin, 2016)
encounters nothing longer than 50 steps, with the vast majority being under 20.13

SELECT_CONTENT is therefore unlikely to struggle with overly long output.
One potential issue with the treatment of recipe generation as theorem proving

concerns resource sensitivity: applying a process results in the deletion of the input,
whereas, in classical logic, applying a rule of inference does not delete the antecedent.
So if the idea of chopping carrot were to be expressed as ‘raw carrot’ implies ‘chopped
carrot’, then we could use the inference A ∧ (A =⇒ B)) =⇒ (A ∧B) to incorrectly
conclude that if there is raw carrot and we can chop carrots, then we could produce
a state of affairs in which there is both raw carrot and chopped carrot. However,
this problem could be circumvented by a switch to a resource-sensitive logic. Linear
logic, for example, includes the notion of linear implication to describe cases in which
the antecedent must be deleted in order to produce the consequent (Galmiche, 2000;
Galmiche & Marion, 1995; Galmiche & Perrier, 1994).

A final point is that the two objects of comparison in this section, parsing and ATP,
can themselves be constructively compared. This comparison is not explored in any
depth here, but the characterization of parsing as deduction has been conducted in
detail by numerous authors (Shieber, Schabes, & Pereira, 1995) since its formulation by
Pereira and Warren in 1983. The same idea is the basis of the significant work employing
logic programming to parse natural language, (Matsumoto, Tanaka, Hirakawa, Miyoshi,
& Yasukawa, 1983; Mooney, 1996; Stabler Jr, 1983), logic programming being essentially
a systematization of simple ATP methods (Lloyd, 2012).

6 Content Organization

The algorithm in the previous section selects the required ingredients and cooking
instructions, respectively ingredlist and actionlist, to produce the user-specified input
dish. The next phase is to organize this content.
13The longest encountered was a recipe for Mushroom and Leek Pie with Roast Potatoes and Cabbage

(Culleton & Higgs, 2016) p93., which was analysed as containing 32 steps.

JLCL 2023 – Band 36 (2) 51

Mahon / Vogel

6.1 Overview of the Optimization Problem

The principles used to guide this the organization of content are that the final recipe (a)
be coherent, (b) be as time efficient as possible. Fulfilling (a) requires a sensitivity to
the fact that not all orders form coherent recipes. Some processes can only be performed
after the completion of others, e.g. one can only strain the lentils after boiling the lentils.
Such constraints occur when one process takes as input a descriptive string that is in
the output of another.

Definition 6.1.1 For any two processes P1, P2, requires(P1, P2) iff the input of P1
and the output of P2 have non-empty intersection.

Definition 6.1.2 Two processes P1, P 2 are independent iff neither requires(P1, P2)
nor requires(P2, P1).

Definition 6.1.3 A list of processes L is permissible iff for any P1, P2 in L,
requires(P1, P2) implies P2 precedes P1 in L.

Thus part of the requirement in (a) is that the list into which the processes in actionlist
are organized is permissible. There are two reasons why the temporal optimization in
(b) is desirable. Firstly it demonstrates that the representation system is robust enough
to facilitate inference of the sort that might be made by a human chef; and secondly,
optimization has been identified as a desirable feature of representations used by smart
kitchen appliances (Hamada et al., 2005; Reichel et al., 2011). The basis for temporal
optimization is that some processes have times during their execution which allows
parallelization, e.g. peeling potatoes while the casserole is in the oven. Choosing to
perform some processes P1, . . . , Pn during the passive time of some other process P
will be referred to as inserting P1, . . . , Pn into P or combining P, P1, . . . , Pn, and the
result will be referred to as a combination. The result of ordering and combining the
processes in actionlist is referred to as a recipe plan. This terminology is formalized in
Grammar 5.

⟨organized-content⟩ ::= ⟨ingredients-list⟩ | ⟨recipe-plan⟩

⟨ingredients-list⟩ ::= ⟨descriptive-string⟩ | ⟨descriptive-string⟩ ⟨ingredients-list⟩

⟨recipe-plan⟩ ::= ⟨process⟩| ⟨combination⟩ | ⟨process⟩ ⟨recipe plan⟩ | ⟨combination⟩
⟨recipe-plan⟩

⟨combination⟩ ::= ‘while’ ⟨process⟩ ‘,’ ⟨process-list⟩

⟨process-list⟩ ::= ⟨process⟩ | ⟨process⟩ ‘and’ ⟨process_list⟩

Grammar 5: Grammar for organized-content

Just as there are restrictions on which orders are coherent, so too are there restrictions
on which processes can be coherently combined. One condition for inserting P1 into P2

52 JLCL

The Proof is in the Pudding

is that the cook be free for long enough during P2 for P1 to be performed. A process is
encoded as a 5 element associative array and two key-value pairs of this array have form
(time, M) and (f time, N) where M and N are non-negative floats. These key-value
pairs respectively express the total time the process will take, and the amount of time
during the process at which the cook is free. So by definition, combinations are only
possible when the total time of the inserted processes is less than or equal to the free
time of the process into which they are to be inserted. A second restriction is imposed
by the requires relation. requires(P1, P2) means P1 must occur after the completion of
P2, so they cannot occur at the same time. One cannot chop the broccoli while boiling
the chopped broccoli. The two conditions for the insertion of P1 into P2 are shown in
Condition 6.1.4.

Condition 6.1.4 P1[time] ≤ P2[f time], and P1 and P2 are independent

Therefore another requirement of (a) is that no combinations are performed that
violate these two conditions. Temporal optimization is performed by considering
multiple organized discourses, calculating the total time of each organized discourse by
adding together the times of each process that hasn’t been inserted into another, and
then selecting the organized discourse with the least overall time. It is contended that
the precise way this is done is guaranteed to achieve an optimal solution, i.e. there will
exist no faster coherent organized discourse with shorter overall time; however, a proof
of this contention is outside the scope of the present work. The content organization
algorithm contains two main components. The first generates all permissible lists of
the processes in actionlist, the second acts on each list to combine certain processes.
These two components are the respective subjects of the following two subsections.

6.2 FIND_ALL_LISTS

Before the application of the algorithm to generate all permissible lists of the processes
in actionlist, any ghost processes (see Section 4.3) are removed. After doing this,
the requires relations in actionlist must be updated to ensure no impermissible lists
are generated. If A, B, G are 3 processes and G is a ghost; and if requires(A, G)
and requires(G, B) then when G is removed, the relation requires(A, B) must be
added. Before the temporal optimization, ghost processes are removed and the requires
relations updated accordingly, as decribed in Algorithm 4.

The input set of processes, in this case actionlist, is iterated through. For each ghost
G found, the set of all processes that G requires are placed in new_requirements; then all
processes that require G are updated to require everything in new_requirements; then
G is removed.14 After this removal of ghosts, the algorithm for finding all permissible
14The necessity of such a specification can be seen as follows. Before the removal of G, if permissibility

requires that B precede G and G precede A, then B would have to precede A. If G were to be
removed and the requires relations not updated, there would be nothing to prevent A preceding
B, and this would result in an incoherent recipe. As discussed in Section 4.3, A semantically
requires the input of G, and the fact that requires(G, B) holds means the input of G is in the
output of B. Therefore A semantically requires something in the output of B and so any order in

JLCL 2023 – Band 36 (2) 53

Mahon / Vogel

Algorithm 4 Algorithm for removing ghost processes from actionlist before application
of FIND_ALL_LISTS.

function removeghosts(L)
L← set of processes, some of which may be ghosts
for each item ∈ L do

if item[time] == 0 then
newrequirements← ∅, will contain all elements that item requires
for each item′ ∈ L do

if requires(item, item′) then
newrequirements← newrequirements ∪ {item′}

for each item′′ ∈ L do
if requires(item′′, item) then

for each req ∈ newrequirements do
requires(item′′, req)← T rue

L← L \ {item}

lists, called FIND_ALL_LISTS, is run. A necessary precursor to this algorithm is
Definition 6.2.1.

Definition 6.2.1 norequirements(x, S) iff X is a process and S is a set of processes
such that requires(x,s) does not hold for any element s of S.

If x is an element of the given set S then norequirements(x, S) is equivalent to saying
that x can be the first element in a permissible order of S. Algorithm 5 applies this
idea iteratively to compute all permissible orders of a given set of processes. It begins
by adding to paths all elements that have no requirements in S and so could come first
in a permissible order. Then it iterates through paths, replacing each element x, with
all lists [x, y] where y is a process that doesn’t require any other except for possibly
x; then it again iterates through paths, replacing each list [x, y] with all lists [x, y, z],
where z is a process that doesn’t require any other except for possibly x or y. It iterates
this operation a number of times equal to the cardinality of the input set. At this point
paths contains all permissible orders as desired.15

The second component of the content selection algorithm is to temporally optimize
and maintain coherence of a given order of instructions. Algorithm 6 receives as input

which A precedes B must be marked as impermissible. This is ensured precisely by specifying
that requires(A, B).

15It is possible to represent the steps in a recipe using a Directed Acyclic Graph. Figure 5 below is
an example of such a representation, and techniques for extracting DAG representations from
natural language recipes are discussed in Section 2.2. A DAG, in turn, is equivalent to a partial
order, see Kozen (1992) for a proof of this equivalence and a general discussion of partial orders.
Thus the above search for all permissible orders is equivalent to the search for all total orders
consistent with a partial order, and so FIND_ALL_LISTS is similar to the Kahn algorithm for
topological sorting [1962]. The latter determines a single total order consistent with a given
partial order, the algorithm here determines all total orders consistent with a given partial order.

54 JLCL

The Proof is in the Pudding

Algorithm 5 Algorithm that determines all permissible lists of a given set of processes.
|S| refers to the cardinality of the set S

function possiblenext(S,L)
S ←a set of processes
L←a list of processes in S
possibles ← ∅ will contain all permissible lists obtained by adding a further

element of S to L
S ← S \ L
for each x of S: do

if norequirements(x,S) then
possibles← possibles ∪ {x}

replace each y ∈ possibles with the list L + [y]
S ← S ∪ L
Return possibles

function findalllists(S)
paths← ∅ that will contain all permissible lists
for each x ∈ S do

if norequirements(x, S) then
paths← paths ∪ {[x]}

for i in range(|S| − 1) do
for each z ∈ paths: do

for each p ∈ possiblenext(S, z) do
paths← paths ∪ {p}

paths← paths \ {z}
Return paths

a list L of processes (note, L is already coherent) and inserts some processes into others
so as to reduce the overall cooking time as much as possible without violating 6.1.4. In
Section 6.1 an organized discourse was said to be coherent iff

i there are no two processes P1 preceding P2 such that requires(P1, P2)

ii there are no two processes P1 and P2 such that P1 and P2 are combined and
requires(P1, P2)

iii it does not contain a process P and a set of processes S such that every element of
S has been inserted into P , and the sum of the total time of every element of S is
greater than the free time of P

The resulting output is guaranteed to be coherent in this sense. The algorithm
accomplishes (i) by inserting neighbouring processes one at a time and ending the
insertions when an incompatible process is encountered. Thus only contiguous sublists

JLCL 2023 – Band 36 (2) 55

Mahon / Vogel

Algorithm 6 Algorithm that iterates through a given list of processes and performs
combinations under certain criteria.

function concurrentcompression(L)
L← list of processes
for each process p ∈ L, beginning from the end of the list do

concurrents← empty list that will contain inserted processes
for each process p′ to the right of p, moving right do

if p′[time] ≤ p[f time] and p and p′ are independent then
add p′ to concurrents
p[f time]← p[f time]− p′[time] + p′[f time]

combine(concurrents, P, L)
function combine(concurrents,p,L)

concurrents← a list of processes
p← a process into which the processes in concurrents will be inserted
L← concatenation of p and concurrents
futureinsertee← ∅
requiredf_time← p[time]
for each p′ ∈ L preceding p, moving left do

if requires(p, p′) or requires(p′, p) then
break

else if p′[f time] ≥ requiredf_time then
futureinsertee← p′

break
else

increase requiredf_time by p′[time]
if futureinsertee ̸= ∅ then

for each q ∈ concurrents do
if q and futureinsertee are not independent then

remove q from concurrents

for each item ∈ concurrents do
add the input of item to the input of p
add the output of item to the output of p
x stands for all known processes
if requires(item, x) then

requires(p, x)← T rue

if requires(x, item) then
requires(p, item)← T rue

remove item from L
concurrentinstruction← concatenation of the ‘direction’ entry of all processes

in concurrents, with ‘and’ occurring between each
p[direction]← ‘while’ + cont_form(p[direction]) + concurrentinstruction

56 JLCL

The Proof is in the Pudding

of processes are combined and so the order is not changed, i.e. there are no two processes
P1 and P2 such that P1 preceded P2 in the input and P2 precedes P1 in the output. The
input list satisfies (i), and therefore so does the output. It accomplishes (ii) by making
it an explicit condition for the combination of two processes that neither requires the
other. It accomplishes (iii) by making it an explicit condition for the insertion of P1
into P2 that P1[time] ≤ P2[f time]; and then inserting one at a time and, whenever P1
is inserted into P2, reducing the free time of P2 by an amount equal to the non-passive
time of P1.16

Algorithm 6 is run on each permissible list of the processes in actionlist a coherent
recipe plan. FASTFOOD then determines the total time of each of these recipe plans
by summing the times of all processes that have not been inserted into another, and
selects that with shortest total time. This temporally optimized recipe plan constitutes
the final discourse representation. It is then realized by printing the total cooking time,
the ingredients list, the cooking instructions and the times during the recipe at which
the cook is passive.

7 Conclusion

This paper introduced FASTFOOD, an NLG system that uses a backwards-chaining
automated theorem prover (ATP) to select the correct steps and ingredients required
to make a given dish, and then modifies the recipe to optimize time efficiency in the
generated recipes. We now conclude and summarize by considering the theoretical and
practical value of our work.

7.1 Pratical Use

The representation system and NLG methods discussed in this paper are capable of
generating a cooking discourse which is understandable, albeit slightly unnatural (see
Figure 2 and appendix for full example). The temporal optimisation procedure (Section
6) is effective, clearly there are time savings by performing the instructions concurrently
where directed, rather than one at a time. We claim that the temporal optimisation
algorithm will always obtain an optimal solution, but a proof of this is outside the scope
of the present paper. In comparison with those from a cookbook, there are some clear
advantages and some disadvantages to FASTFOOD’s generated recipes.

Advantages
• The language is uniform and concise. Something which has been identified as

desirable in cooking recipes (Mori et al., 2012) and advantageous to users in other
practical domains (Reiter et al., 2005).

16It is important to subtract the non-passive time, and not the total time, because the passive time
in P 1 should not reduce the passive time of P 2. For example, if there is fives minutes of free time
while boiling the pasta, and if toasting bread takes two minutes with one minute of passive time,
then toasting the bread while the pasta is boiling still leaves four minutes of passive time, not
three.

JLCL 2023 – Band 36 (2) 57

Mahon / Vogel

• The user can input the foods on hand and then receive a yes or no as to whether
the dish was makeable (yes in this case). This is perhaps an easier task than the
corresponding task of the user of a cookbook: for every item in the ingredient list,
checking whether it is on hand.

• It gives a precise indication of the time taken, although this is based on assumed
times for each step and so may vary depending on the cook.

• It saves the cook the effort of deciding which steps to perform simultaneously, as
this is indicated explicitly in every case.

• It displays the times at which the cook will be passive. Two recipes may have the
same total time, but differ significantly in how much free time they include and
consequently in how demanding they are.

Disadvantages

• There is no notion of quantity, no specification of the amount of each ingredient
required. It is thought that an extension to include quantity would not be overly
difficult within the existing framework, though the function of FASTFOOD is
currently impoverished in the absence of such an extension.

• The language is less natural than would be desired. A particular problem is the
lack of inflection for progressive aspect in the combined instructions: ‘while boil
the lentils..’ instead of ‘while boiling the lentils..’.

• A more complete version would have considered alternative ways of making the
dish, e.g. by using different vegetables.

The performance of FASTFOOD is partially of academic interest, as it constitutes
support for the NLG techniques discussed in this paper. However it also presents
some practical advantages over cookbook recipes. These advantages may become
more significant if the disadvantages were mitigated through various extensions and
improvements to the program, most notably the inclusion of the notion of quantity and
the correct inflection of certain verbs in the output text.

7.2 Theoretical Interest

NLG in FASTFOOD was analysed as operating over four distinct phases: content
production, content selection, content organisation which were described in detail in
Sections 4, 5, and 6, and content realisation, which is given only minimal treatment.
The use of a backwards-chaining ATP algorithm is of theoretical interest, as it draws a
connection between the two ostensibly disparate areas of ATP and cooking recipes; and
also of practical use, as it allows the NLG process to be modularized so that a set of
representational elements is produced and stored, and then elements from this database
are selected in response to various user inputs.

58 JLCL

The Proof is in the Pudding

A number of theoretical points of interest were also encountered in the design choices
of FASTFOOD. Choosing a suitable representation system (Section 3) meant omitting
discourse referents; a decision which connected to an established philosophical debate on
the nature of names and descriptions, and the method for handling different descriptions
of the same dish touched on various semantic interpretations of the synonymy relation
(Section 4.3). The content selection algorithm, while initially inspired by ATP, also
exhibited a similarity to automated parsing. This led to a three-way comparison
between ATP, automated parsing and FASTFOOD’s content selection algorithm. The
content organization algorithm, i.e. the temporal optimization module, validated the
representation system by showing that it was capable of supporting reasoning about
recipe content.

This work can be compared to existing literature on Natural Language Processing
of cooking recipes (Section 2, especially EPICURE (Dale & Haddock, 1991). The two
were shown to have different strengths and weaknesses, and a way to combine the
benefits of both was briefly explored. A comparison was also made with a common
NLU technique of converting natural language recipes to directed acyclic graphs, where
it was shown that, due in part to its representation system (Section 3), FASTFOOD
avoids a common problem encountered by such techniques. In comparison to neural
recipe generation, FASTFOOD has the advantage of reliably producing coherent recipes
and being able to reason recipe content. Future work includes introducing a notion of
quantity, allowing the user to choose between multiple recipes for the same dish, and
linking with the field of image processing.

References

Abend, O., Cohen, S. B., & Steedman, M. (2015). Lexical event ordering with
an edge-factored model. In Proceedings of the 2015 conference of the north
american chapter of the association for computational linguistics: Human language
technologies (pp. 1161–1171).

Avigad, J., & Harrison, J. (2014). Formally verified mathematics. Communications of
the ACM , 57 (4), 66–75.

Bansal, K., Loos, S., Rabe, M., Szegedy, C., & Wilcox, S. (2019). HOList: An
environment for machine learning of higher order logic theorem proving. In
International conference on machine learning (pp. 454–463).

Bateman, J. A. (2002). Natural language generation: an introduction and open-ended
review of the state of the art. http://www.fb10.uni-bremen.de/anglistik/
langpro/webspace/jb/info-pages/nlg/ATG01/ATG01.html. (Accessed: 2023-10-
17)

Bayomi, M., Levacher, K., Ghorab, M. R., & Lawless, S. (2015). Ontoseg: a novel ap-
proach to text segmentation using ontological similarity. In 2015 ieee international
conference on data mining workshop (icdmw) (pp. 1274–1283).

JLCL 2023 – Band 36 (2) 59

http://www.fb10.uni-bremen.de/anglistik/langpro/webspace/jb/info-pages/nlg/ATG01/ATG01.html
http://www.fb10.uni-bremen.de/anglistik/langpro/webspace/jb/info-pages/nlg/ATG01/ATG01.html

Mahon / Vogel

Bledsoe, W. W. (1984). Automated theorem proving: After 25 years: After 25 years
(Vol. 89). American Mathematical Soc.

Bridge, J. P., Holden, S. B., & Paulson, L. C. (2014). Machine learning for first-order
theorem proving. Journal of automated reasoning, 53 (2), 141–172.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . others
(2020). Language models are few-shot learners. Advances in neural information
processing systems, 33 , 1877–1901.

Cazzulino, D., Aprea, V. G., Greenwood, J., & Hart, C. (2004). Beginning visual web
programming in c#: From novice to professional. Apress.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., . . . oth-
ers (2021). Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 .

Chomsky, N. (1956). Three models for the description of language. IRE Transactions
on information theory, 2 (3), 113–124.

Copi, I. M., & Beard, R. W. (2013). Essays on wittgenstein’s tractatus. Routledge.
Cordier, A., Dufour-Lussier, V., Lieber, J., Nauer, E., Badra, F., Cojan, J., . . . others

(2014). Taaable: a case-based system for personalized cooking. In Successful
case-based reasoning applications-2 (pp. 121–162). Springer.

Culleton, T., & Higgs, D. (2016). Simply vegetarian. Merlin.
Dale, R. (1989). Cooking up referring expressions. In 27th annual meeting of the

association for computational linguistics (pp. 68–75).
Dale, R. (1990). Generating recipes: An overview of epicure. Current research in

natural language generation, 229–255.
Dale, R. (1992). Generating referring expressions: Constructing descriptions in a

domain of objects and processes. The MIT Press.
Dale, R., & Haddock, N. (1991). Content determination in the generation of referring

expressions. Computational Intelligence, 7 (4), 252–265.
Donatelli, L., Schmidt, T., Biswas, D., Köhn, A., Zhai, F., & Koller, A. (2021). Aligning

actions across recipe graphs. In Proceedings of the 2021 conference on empirical
methods in natural language processing (pp. 6930–6942).

Dufour-Lussier, V., Le Ber, F., Lieber, J., Meilender, T., & Nauer, E. (2012). Semi-
automatic annotation process for procedural texts: An application on cooking
recipes. In Computers workshop (cwc) (p. 35).

Edmonds, P., & Hirst, G. (2002). Near-synonymy and lexical choice. Computational
linguistics, 28 (2), 105–144.

Elliott, D., & Keller, F. (2013). Image description using visual dependency represen-
tations. In Proceedings of the 2013 conference on empirical methods in natural
language processing (pp. 1292–1302).

Evans, J. (1982). The varieties of reference. Oxford University Press.
Flower, J., Masthoff, J., & Stapleton, G. (2004). Generating readable proofs: A heuristic

approach to theorem proving with spider diagrams. In International conference
on theory and application of diagrams (pp. 166–181).

Flynn, S., & Dave, F. (2016). The world of the happy pear. Penguin Random House.

60 JLCL

The Proof is in the Pudding

Fontaine, P., Merz, S., & Woltzenlogel Paleo, B. (2011). Compression of proposi-
tional resolution proofs via partial regularization. In International conference on
automated deduction (pp. 237–251).

Fragkou, P. (2017). Applying named entity recognition and co-reference resolution for
segmenting english texts. Progress in Artificial Intelligence, 6 (4), 325–346.

Frege, G., et al. (1892). Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, 100 (1), 25–50.

French, P. A., Uehling, T. E., & Wettstein, H. K. (1979). Contemporary perspectives in
the philosophy of language (Vol. 1). U of Minnesota Press.

Gaillard, E., Nauer, E., Lefevre, M., & Cordier, A. (2012). Extracting generic cooking
adaptation knowledge for the taaable case-based reasoning system. In Cooking
with computers workshop@ ecai 2012.

Galmiche, D. (2000). Connection methods in linear logic and proof nets construction.
Theoretical Computer Science, 232 (1-2), 231–272.

Galmiche, D., & Marion, J.-Y. (1995). Semantic proof search methods for ALL-a rst
approach. In 4th workshop on theorem proving with analytic tableaux and related
methods, st goar am rhein, germany.

Galmiche, D., & Perrier, G. (1994). Foundations of proof search strategies design
in linear logic. In International symposium on logical foundations of computer
science (pp. 101–113).

Ganitkevitch, J., Van Durme, B., & Callison-Burch, C. (2013). Ppdb: The paraphrase
database. In Proceedings of the 2013 conference of the north american chapter of
the association for computational linguistics: Human language technologies (pp.
758–764).

Gavin, P. (2016). Italian vegetarian cookery. Macdonald Optima.
Gazdar, G., Klein, E., Pullum, G., & Sag, I. (1985). Generalized phrase structure

grammar. Blackwell, London, England.
Geffner, H. (2013). Computational models of planning. Wiley Interdisciplinary Reviews:

Cognitive Science, 4 (4), 341–356.
Georgallides, A. (2015). The unclarity of the notion ’object’ in the tractatus (Unpublished

doctoral dissertation). University of Sussex.
Gödel, K. (1929). Über die vollständigkeit des logikkalküls (Unpublished doctoral

dissertation). University of Vienna.
Gunamgari, S. R., Dandapat, S., & Choudhury, M. (2014). Hierarchical recursive tagset

for annotating cooking recipes. In Proceedings of the 11th international conference
on natural language processing (pp. 353–361).

Hamada, R., Ide, I., Sakai, S., & Tanaka, H. (2000). Structural analysis of cooking
preparation steps in japanese. In Proceedings of the fifth international workshop
on on information retrieval with asian languages (pp. 157–164).

Hamada, R., Okabe, J., Ide, I., Satoh, S., Sakai, S., & Tanaka, H. (2005). Cooking
navi: assistant for daily cooking in kitchen. In Proceedings of the 13th annual
acm international conference on multimedia (pp. 371–374).

He, P., Gao, J., & Chen, W. (2022). Debertav3: Improving deberta using electra-

JLCL 2023 – Band 36 (2) 61

Mahon / Vogel

style pre-training with gradient-disentangled embedding sharing. In The eleventh
international conference on learning representations.

H. Lee, H., Shu, K., Achananuparp, P., Prasetyo, P. K., Liu, Y., Lim, E.-P., & Varshney,
L. R. (2020). Recipegpt: Generative pre-training based cooking recipe generation
and evaluation system. In Companion proceedings of the web conference 2020 (pp.
181–184).

Hongxia, X., & Li, Z. (2008). An efficient extension of earley’s algorithm for parsing
multidimensional structures. In 2008 international conference on computer science
and software engineering (Vol. 2, pp. 780–783).

Indurkhya, N., & Damerau, F. J. (2010). Handbook of natural language processing.
Chapman and Hall/CRC.

Kahn, A. B. (1962). Topological sorting of large networks. Communications of the
ACM , 5 (11), 558–562.

Kamp, H. (2021). Sharing real and fictional reference. The Language of Fiction, 37-87.
Kamp, H., Genabith, J. v., & Reyle, U. (2011). Discourse representation theory. In

Handbook of philosophical logic (pp. 125–394). Springer.
Kamp, H., & Reyle, U. (1993). From discourse to logic kluwer academic publishers.

Dordrecht.
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., . . .

Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361 .

Kinouchi, O., Diez-Garcia, R. W., Holanda, A. J., Zambianchi, P., & Roque, A. C.
(2008). The non-equilibrium nature of culinary evolution. New Journal of Physics,
10 (7), 073020.

Koeva, S. (2015). Paraphrasing of synonyms for a fine-grained data representation. In
Semantics (posters & demos) (pp. 79–83).

Kozen, D. C. (1992). The design and analysis of algorithms. Springer Science &
Business Media.

Kuhn, T. (2014). A survey and classification of controlled natural languages. Computa-
tional linguistics, 40 (1), 121–170.

Li, J., Tang, T., Zhao, W. X., & Wen, J.-R. (2021). Pretrained language models for text
generation: A survey. In Proceedings of the thirtieth international joint conference
on artificial intelligence (p. 4492-4499).

Lloyd, J. W. (2012). Foundations of logic programming. Springer Science & Business
Media.

Loos, S., Irving, G., Szegedy, C., & Kaliszyk, C. (2017). Deep network guided proof
search. In Proceedings of the 21st international conference on logic for program-
ming, artificial intelligence and reasoning (lpar-21), epic series in computing
(p. 85-105).

Loveland, D. W. (2016). Automated theorem proving: A logical basis. Elsevier.
Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H., & Yasukawa, H. (1983).

Bup: a bottom-up parser embedded in prolog. New Generation Computing, 1 (2),
145–158.

62 JLCL

The Proof is in the Pudding

McCudden, C. (2017). The future of artificial intelligence and interpretative specializa-
tion in clinical biochemistry. Clinical biochemistry, 50 (6), 253–254.

McKeown, K. (1992). Text generation. Cambridge University Press.
McKeown, K. R. (1985). Discourse strategies for generating natural-language text.

Artificial intelligence, 27 (1), 1–41.
Meduna, A. (2014). Formal languages and computation: models and their applications.

CRC Press.
Miller, A. (2017). Representation and reality in wittgenstein’s tractatus. Oxford

University Press.
Mogensen, E. (2004). Controlled language. Perspectives, 12 (4), 243–255.
Mooney, R. J. (1996). Inductive logic programming for natural language processing. In

International conference on inductive logic programming (pp. 1–22).
Mori, S., Maeta, H., Yamakata, Y., & Sasada, T. (2014). Flow graph corpus from

recipe texts. In Proceedings of the ninth international conference on language
resources and evaluation (lrec’14) (pp. 2370–2377).

Mori, S., Sasada, T., Yamakata, Y., & Yoshino, K. (2012). A machine learning approach
to recipe text processing. In Proceedings of the 1st cooking with computer workshop
(pp. 29–34).

Nederhof, M.-J., Satta, G., & Shieber, S. (2003, April). Partially ordered multiset
context-free grammars and free-word-order parsing. In Proceedings of the eighth
international conference on parsing technologies (pp. 171–182). Nancy, France.
Retrieved from https://aclanthology.org/W03-3020

Panaget, F. (1994). Using a textual representational level component in the context
of discourse or dialogue generation. In Proceedings of the seventh international
workshop on natural language generation (pp. 127–136).

Parvez, M. R., Chakraborty, S., Ray, B., & Chang, K.-W. (2018, jul). Building language
models for text with named entities. In Proceedings of the 56th annual meeting of
the association for computational linguistics (volume 1: Long papers) (pp. 2373–
2383). Melbourne, Australia: Association for Computational Linguistics. Retrieved
from https://aclanthology.org/P18-1221 doi: 10.18653/v1/P18-1221

Patra, B., Singhal, S., Huang, S., Chi, Z., Dong, L., Wei, F., . . . Song, X. (2022).
Beyond english-centric bitexts for better multilingual language representation
learning. arXiv preprint arXiv:2210.14867 .

Pavlick, E., & Nenkova, A. (2015). Inducing lexical style properties for paraphrase
and genre differentiation. In Proceedings of the 2015 conference of the north
american chapter of the association for computational linguistics: Human language
technologies (pp. 218–224).

Pereira, F. C., & Warren, D. H. (1983). Parsing as deduction. In 21st annual meeting
of the association for computational linguistics (pp. 137–144).

Preotiuc-Pietro, D., Xu, W., & Ungar, L. (2016). Discovering user attribute stylistic
differences via paraphrasing. In Proceedings of the aaai conference on artificial
intelligence (Vol. 30, pp. 3030–3037).

Pulman, S. (1996). Controlled language for knowledge representation. In Proceedings of

JLCL 2023 – Band 36 (2) 63

https://aclanthology.org/W03-3020
https://aclanthology.org/P18-1221

Mahon / Vogel

the first international workshop on controlled language applications (p. 233-242).
Quine, W. V. (1948). On what there is. The review of metaphysics, 2 (1), 21–38.
Ranta, A. (2011). Grammatical framework: Programming with multilingual grammars

(Vol. 173). CSLI Publications, Center for the Study of Language and Information
Stanford.

Reichel, S., Muller, T., Stamm, O., Groh, F., Wiedersheim, B., & Weber, M. (2011).
Mampf: An intelligent cooking agent for zoneless stoves. In 2011 seventh interna-
tional conference on intelligent environments (pp. 171–178).

Reiter, E., Sripada, S., Hunter, J., Yu, J., & Davy, I. (2005). Choosing words in
computer-generated weather forecasts. Artificial Intelligence, 167 (1-2), 137–169.

Robin, J. (1993). A revision-based generation architecture for reporting facts in
their historical context. New concepts in natural language generation: Planning,
realization, and systems, 238–268.

Russell, B. (1905). On denoting. Mind, 14 (56), 479–493.
Russell, B. (1910). Knowledge by acquaintance and knowledge by description. In

Proceedings of the aristotelian society (Vol. 11, pp. 108–128).
Salvador, A., Drozdzal, M., Giró-i-Nieto, X., & Romero, A. (2019). Inverse cooking:

Recipe generation from food images. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition (pp. 10453–10462).

Sarawagi, S. (2008). Information extraction. Now Publishers Inc.
Schulz, S., & Sutcliffe, G. (2015). Proof generation for saturating first-order theorem

provers. All about Proofs, Proofs for All, Mathematical Logic and Foundations,
55 .

Searle, J. R. (1958). Proper names. Mind, 67 (266), 166–173.
Seiffert, R. (1987). Chart-parsing of unification-based grammars with ID/LP-rules (Tech.

Rep. No. LILOG-REPORT 22). Stuttgart, West Germany: IBM Deutschland
GmbH.

Shieber, S. M., Schabes, Y., & Pereira, F. C. (1995). Principles and implementation of
deductive parsing. The Journal of logic programming, 24 (1-2), 3–36.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt:
Eliciting knowledge from language models with automatically generated prompts.
In Proceedings of the 2020 conference on empirical methods in natural language
processing (emnlp) (pp. 4222–4235).

Stabler Jr, E. P. (1983). Deterministic and bottom-up parsing in prolog. In Aaai (pp.
383–386).

Stapleton, G., Masthoff, J., Flower, J., Fish, A., & Southern, J. (2007). Automated
theorem proving in euler diagram systems. Journal of Automated Reasoning,
39 (4), 431–470.

Sutcliffe, G., & Suttner, C. (2001). Evaluating general purpose automated theorem
proving systems. Artificial intelligence, 131 (1-2), 39–54.

Urban, J., Hoder, K., & Voronkov, A. (2010). Evaluation of automated theorem proving
on the mizar mathematical library. In International congress on mathematical
software (pp. 155–166).

64 JLCL

The Proof is in the Pudding

Wang, H., Lin, G., Hoi, S. C., & Miao, C. (2020). Structure-aware generation network
for recipe generation from images. In European conference on computer vision
(pp. 359–374).

Wang, W., Bi, B., Yan, M., Wu, C., Xia, J., Bao, Z., . . . Si, L. (2020). Structbert: In-
corporating language structures into pre-training for deep language understanding.
In International conference on learning representations.

Webber, B., Egg, M., & Kordoni, V. (2012). Discourse structure and language technology.
Natural Language Engineering, 18 (4), 437–490.

Wittgenstein, L. (1922). Tractatus Logico-Philosophicus, translated by C.K. Ogden
with an introduction by Bertrand Russell. London: Kegan Paul.

Wittgenstein, L. (1961). Tractatus logico-philosophicus (trans. pears and mcguinness).
Springer.

Xu, F. F., Alon, U., Neubig, G., & Hellendoorn, V. J. (2022). A systematic evaluation of
large language models of code. In Proceedings of the 6th acm sigplan international
symposium on machine programming (pp. 1–10).

Yamakata, Y., Maeta, H., Kadowaki, T., Sasada, T., Imahori, S., & Mori, S. (2017).
Cooking recipe search by pairs of ingredient and action — word sequence vs.
flow-graph representation —. Transactions of the Japanese Society for Artificial
Intelligence, 32 (1), 1–9.

Zhang, S. (1994). Story parsing grammar. Journal of Computer Science and Technology,
9 (3), 215–228.

Zhao, P., Fang, T., Xiao, J., Zhang, H., Zhao, Q., & Quan, L. (2010). Rectilinear
parsing of architecture in urban environment. In 2010 ieee computer society
conference on computer vision and pattern recognition (pp. 342–349).

JLCL 2023 – Band 36 (2) 65

Mahon / Vogel

Correspondence

Louis Mahon
School of Informatics
University of Edinburgh
oneillml@tcd.ie

Carl Vogel
School of Computer Science and Statistics
Trinity College, Dublin

66 JLCL

https://orcid.org/0000-0003-0571-4611
mailto: oneillml@tcd.ie
https://orcid.org/0000-0001-8928-8546

The Proof is in the Pudding

Worked Example: Generating Recipe for Vegetable Dahl What follows is a worked
example of how FASTFOOD would generate the recipe for the dish described by the
string ‘vegetable dahl’. This is an application of the algorithms discussed in Sections 4,
5 and 6, and how they combine to produce a time-efficient recipe. Before ’vegetable
dahl’ can be used to generate a recipe, one must also input a specification of what
it is composed of in terms of descriptive strings already understood by FASTFOOD.
The specification amounts to defining what will be the final process in the recipe, the
process that produces the string ‘vegetable dahl’ itself, and in this case is given by

mix_dahl = {(input, {‘fried vegetables’, ‘coconut milk’, ‘boiled lentils’}),
output, {‘vegetable dahl’}),
time, 120),
ftime, 0),
direction, ‘mix together the vegetables, coconut milk and boiled lentils’)} .

The user would also specify what foods are at hand, by defining the descriptive strings
in supplies (see Section 5.1. For the purposes of this example it will be assumed that
supplies contains the descriptive strings ‘coconut milk’, ‘raw pepper’, ‘raw broccoli’,
‘lentils’ and ‘water’.

supplies = {‘coconut milk’, ‘raw pepper’, ‘raw broccoli’, ‘lentils’, ‘water’, . . . }

With the addition of mix_dahl to the set skills17, ‘vegetable dahl’ can be fed into
SELECT_CONTENT (Algorithm 3) which will perform the following steps.

• check if ‘vegetable dahl’ is in supplies and determine that it is not

• search skills for a process which has ‘vegetable dahl’ in the output, and find
mix_dahl, add mix_dahl to action_list

• check if the inputs to mix_dahl, ‘fried vegetables’, ‘coconut milk’ and ‘boiled
lentils’ are in supplies and determine that ‘coconut milk’ is, add ‘coconut milk’
to ingred_list

• search for processes with ‘fried vegetables’ and ‘boiled lentils’ as outputs and
find fry_vegetables and strain_lentils respectively, add fry_vegetables and
strain_lentils to action_list

• check if the inputs to fry_vegetables and strain_lentils, ‘chopped vegetables’
and ‘boiled lentils in boiling water’ are in supplies and determine that they are
not

17skills is the set of all known processes, see Section 4.

JLCL 2023 – Band 36 (2) 67

Mahon / Vogel

• search for processes with ‘chopped vegetables’ and ‘boiled lentils in boiling water’
as outputs and find the ghost process describing the synonym between ‘chopped
broccoli’ and ‘chopped pepper’ and ‘chopped vegetables’, and boil_lentils

• add ghost and boil_lentils to action_list

• check if the inputs to ghost, ‘chopped broccoli’, ‘chopped pepper’, ‘lentils’ and
‘boiling water’ are in supplies, determine that ‘lentils’ is

• add ‘lentils’ to ingred_list

• search for processes with outputs ‘chopped broccoli’, ‘chopped pepper’, and ‘boiling
water’, and find chop_broccoli, chop_pepper and bring_to_boil respectively

• add chop_broccoli, chop_pepper and bring_to_boil to action_list

• check if the inputs to chop_broccoli, chop_pepper and bring_to_boil, ‘raw broc-
coli’, ‘raw pepper’ and ‘water’, are in supplies and determine that they are

• add ‘raw broccoli’, ‘raw pepper’ and ‘water’ to ingred_list

• return ingred_list and action_list

Together ingred_list and action_list constitute the selected discourse content. This
content is represented as follows:

ingred_list = {‘coconut milk’, ‘raw pepper’, ‘raw broccoli’, ‘lentils’, ‘water’, . . . }
action_list = {‘chop_broccoli’, ‘chop_pepper’, ‘bring_to_boil’,

‘ghost’, ‘boil_lentils’, ‘fry_vegetables’,
‘strain_lentils’, ‘mix_dahl’ . . . }

This discourse content allows the appropriate requires relations to be determined:
requires(A, B) whenever A[input] contains an element from B[output].

Descriptive strings are brown circles and processes are blue boxes (and arrows).
Processes take a set of descriptive strings as input and produce a set of descriptive
strings as output. The figure is formed by matching the inputs of some processes with
the outputs of others. The five initial descriptive strings constitute ingred_list, and
the set of all processes constitutes action_list.

Next, the ghost is removed, giving Figure 4, and requires(A, B) is added whenever
requires(A, ghost) and requires(ghost, B) (see Section 6). This means adding

requires(fry_vegetables, chop_broccoli)
requires(fry_vegetables, chop_pepper) .

68 JLCL

The Proof is in the Pudding

Figure 3: Full DAG representing content of the generated recipe.

JLCL 2023 – Band 36 (2) 69

Mahon / Vogel

Figure 4: DAG representing recipe content after the removal of ghost processes. Its inputs are
joined to fry_vegetables. The requires relations are updated as per Section 6.

70 JLCL

The Proof is in the Pudding

The final requires relations are as follows:

requires(mix_dahl, fry_vegetables)
requires(mix_dahl, boil_lentils)
requires(fry_vegetables, ghost)
requires(ghost, chop_broccoli)
requires(mix_dahl, chop_pepper)
requires(strain_lentils, boil_lentils)
requires(strain_lentils, bring_to_boil)
requires(boil_lentils, bring_to_boil)

Then action_list is fed into FIND_ALL_LISTS, which determines all orderings of
action_list such that no process precedes another which it requires. In this case 40
such orderings exist, so it is not feasible to describe the full action of the algorithm.
Instead the first two steps are described and 3 of the output orders considered. The
first two stages to FIND_ALL_LISTS are shown below.

• search for the processes in action_list that do not require any others, and
determine these to be chop_broccoli, chop_pepper and bring_to_boil, add these
to the set possible_lists

• iterate through the set possible_lists, for each element P obtain all elements that
do not require any others except (possibly) P

• for each of these elements x, add the list [P, x] to possible lists, remove P from
possible_lists

• if P = chop_broccoli, then x = chop_pepper or bring_to_boil; giving the
following two element lists: [chop_broccoli, chop_pepper] [chop_broccoli,
bring_to_boil]

• if P = chop_pepper, then x = chop_broccoli or bring_to_boil; giving the
following two element lists: [chop_pepper, chop_broccoli] [chop_pepper,
bring_to_boil]

• if P = bring_to_boil, then x = chop_broccoli or chop_pepper or boil_lentils;
giving the following two element lists: [bring_to_boil, chop_broccoli] [bring_to_boil,
chop_pepper] [bring_to_boil, boil_lentils]

JLCL 2023 – Band 36 (2) 71

Mahon / Vogel

Figure 5: DAG showing recipe content with processes only, no descriptive strings. An arrow from
P1 to P2 indicates that requires(P2,P1). This form of representation can be termed a
workflow and is discussed briefly in Section 2.2.

At this point, possible_lists is composed of the following seven two-element lists:

possible_lists = [chop_broccoli, chop_pepper],
[chop_broccoli, bring_to_boil],
[chop_pepper, chop_broccoli],
[chop_pepper, bring_to_boil],
[bring_to_boil, chop_broccoli],
[bring_to_boil, chop_pepper],
[bring_to_boil, boil_lentils]] .

72 JLCL

The Proof is in the Pudding

The next step would be to again iterate through possible_lists and, for each
two-element list [P, Q], determine all the processes that do not require any others
except for (possibly) P and Q. For example, if [P, Q] = [chop_broccoli, chop_pepper],
then x = bring_to_boil or fry_vegetables; giving the following three element
lists: [chop_broccoli,chop_pepper, fry_vegetables] [chop_broccoli, chop_pepper,
bring_to_boil].

These three element lists would be added to possible_lists, and [chop_pepper, chop_broccoli]
would be removed. Of the 40 valid lists that would eventually be obtained by FIND_-
ALL_LISTS and hence fed into the CONCURRENT_COMPRESSION algorithm, the
following three are considered in this worked example. The notation P (x/y) refers to a
process P with total time x and free time y.

JLCL 2023 – Band 36 (2) 73

Mahon / Vogel

A = [chop_pepper(120/0),
chop_broccoli(120/0),
bring_to_boil(300/270),
fry_vegetables(420/300),
boil_lentils(2700/2670),
strain_lentils(60/0),
mix_dahl(120/0)]

B = [bring_to_boil(300/270),
boil_lentils(2700/2670),
chop_broccoli(120/0),
chop_pepper(120/0),
strain_lentils(60/0),
fry_vegetables(420/300),
mix_dahl(120/0)]

C = [bring_to_boil(300/270),
chop_broccoli(120/0),
chop_pepper(120/0),
boil_lentils(2700/2670),
fry_vegetables(420/300),
strain_lentils(60/0),
mix_dahl(120/0)]

CONCURRENT_COMPRESSION iterates through a list of processes and combines
neighbouring processes under certain conditions (see Algorithm 6 for a full description).
It’s action on A, B and C is described below. The notation X ′ indicates the output of
CONCURRENT_COMPRESSION after input X.

Order A

1. mix_dahl has no elements following it and so is passed over

2. strain_lentils has f time = 0 and so is passed over

74 JLCL

The Proof is in the Pudding

3. boil_lentils has f time > 0, but is followed by strain_lentils, and
requires(strain_lentils, boil_lentils), so boil_lentils is passed over

4. fry_vegetables has f time > 0, but it is followed by boil_lentils, and
boil_lentils[time] > fry_vegetables[f time], so fry_vegetables is passed over

5. bring_to_boil has f time > 0, but it has fry_vegetables to its right, and
fry_vegetables[time] > bring_to_boil[f time], so bring_to_boil is passed over

6. chop_broccoli has f time = 0 and so is passed over

7. chop_pepper has f time = 0 and so is passed over

Thus, no processes are combined and the output from concurrent compression is the
same as the input. A’ = A

Order B

1. mix_dahl has no elements following it and so is passed over

2. fry_vegetables has f time > 0, but is followed by mix_dahl and
requires(mix_dahl, fry_vegetables), so fry_vegetables is passed over

3. strain_lentils, chop_pepper and chop_broccoli have f time = 0 and so are passed
over

4. boil_lentils has f time > 0, it is followed by chop_broccoli, chop_broccoli[time] <
boil_lentils[f time] and neither requires(chop_broccoli, boil_lentils) nor
requires(boil_lentils, chop_broccoli) hold; also, boil_lentils is not going to
be inserted into anything else in the future as the only process preced-
ing it is bring_to_boil and requires(boil_lentils, bring_to_boil); therefore
chop_broccoli is inserted into boil_lentils and boil_lentils[f time] is then re-
duced by chop_broccoli[time] to 2670-120 = 2550

5. the next process after boil_lentils is chop_pepper, which for the same reasons
is also inserted, boil_lentils[f time] is then reduced by chop_pepper[time] to
2550-120 = 2430

6. the next process following boil_lentils is strain_lentils and
requires(strain_lentils, boil_lentils), so no more insertions into boil_lentils can
take place

7. bring_to_boil is followed by boil_lentils, and requires(boil_lentils, bring_to_boil)
so bring_to_boil is passed over

JLCL 2023 – Band 36 (2) 75

Mahon / Vogel

Thus, the only combination is the insertion of chop_broccoli and chop_pepper into
boil_lentils, and the output is as follows:

B = [bring_to_boil(300/270),
while boil_lentils; ; chop_broccoli and chop_pepper(2700/2430),
strain_lentils(60/0),
fry_vegetables(420/300),
mix_dahl(120/0)]

Order C

1. mix_dahl has no elements following it and so is passed over

2. strain_lentils has f time = 0 and so is passed over

3. fry_vegetables has f time > 0, it is followed by strain_lentils,
strain_lentils[time] < fry_vegetables[f time] and
requires(strain_lentils, fry_vegetables) does not hold; however, fry_vegetables
is preceded by boil_lentils and the conditions for combination hold between
fry_vegetables and boil_lentils, moreover the insertion of strain_lentils into
fry_vegetables would prevent the insertion of fry_vegetables into boil_lentils
as requires(strain_lentils, boil_lentils) and so it would be infelicitous to have
while boil lentils, (while fry vegetables, strain lentils); therefore the insertion of
strain_lentils into fry_vegetables is foregone in favour of the future insertion
of fry_vegetables into boil_lentils

4. boil_lentils is followed by fry_vegetables,
boil_lentils[ftime] > fry_vegetables[time] and requires(boil_lentils, fry_vegetables)
does not hold, moreover boil_lentils is not going to be inserted into anything
else in the future as chop_broccoli[f time] = chop_pepper[f time] = 0 and
requires (boil_lentils, bring_to_boil); therefore fry_vegetables is inserted
into boil_lentils, boil_lentils[f time] is then reduced by the non-passive time
in fry_vegetables to give 2670-420+300 = 2550 the next element following
boil_lentils is strain_lentils and requires(strain_lentils, boil_lentils), there-
fore no more insertions into boil_lentils can take place

5. chop_broccoli and chop_pepper have f time = 0 and so are passed over

6. bring_to_boil is followed by chop_broccoli, and bring_to_boil[f time] >
chop_broccoli[time] and requires(bring_to_boil, chop_broccoli) does not hold,
moreover bring_to_boil is not going to be combined with anything else in the
future as it has no elements preceding it; therefore chop_broccoli is inserted into

76 JLCL

The Proof is in the Pudding

bring_to_boil; bring_to_boil[f time] is then reduced by chop_broccoli[time] to
270 – 120 = 150 the next process following bring_to_boil is chop_pepper, and
for the same reasons it too is inserted into bring_to_boil, bring_to_boil[f time]
is then reduced by chop_pepper[time] to 150-120 = 30

7. the next process following bring_to_boil is boil_lentils and
requires(boil_lentils, bring_to_boil), therefore nothing else is inserted into
bring_to_boil

Thus fry_vegetables was inserted into boil_lentils, and chop_broccoli and chop_pepper
were inserted into bring_to_boil, and the output is as follows:

C = [while bring_to_boil; chop_broccoli and chop_pepper(300/30),
while boil_lentils; fry_vegetables(2700/2550),
strain_lentils(60/0),
mix_dahl(120/0)]

The total times for the compressed recipe plans A′,B′ and C′ are

TA′ = 120 + 120 + 300 + 420 + 2700 + 60 + 120 = 3840
TB′ = 300 + 2700 + 60 + 420 + 120 = 3600
TC′ = 300 + 2700 + 60 + 120 = 3180 ,

where Tx denotes the total time for recipe plan x. Thus, C is the most efficient as it
contains the largest amount of combinations. In fact of the 40 permissible orderings
of these processes, no other, when fed through CONCURRENT_COMPRESSION,
has total time less than that of C′. Thus, C′ is chosen as the recipe plan. The final
requirement is the temporal information: the total cooking time and the passive times.
This can be obtained by iterating through each element in C′ and noting those that
still have strictly positive free time (remembering that free time will have been reduced
in instances of insertion). The variable clock is used to keep track of when these free
times will occur. The notation ‘while P , P1, . . . , Pn’ refers to the combination that
results from inserting P1, . . . , Pn into P .

• clock is set to 0

• passives is set to ∅

• clock is increased by the time value of while bring_to_boil, chop_broccoli and
chop_pepper, giving 0 + 300 = 300

• while bring_to_boil, chop_broccoli and chop_pepper has f time = 30 so the
triple (270,300, ‘while fill pot with water and bring to boil’) is marked as passive;

JLCL 2023 – Band 36 (2) 77

Mahon / Vogel

the instruction of this process is also noted, so ((270,300),‘fill pot with water and
bring to boil’) is added to passives

• clock is increased by the time value of while boil_lentils, fry_vegetables , giving
300 + 2700 = 3000

• while boil_lentils, fry_vegetables has f time = 2550 so the triple (450,3000,
‘while boil the lentils’)18 is marked as passive; the instruction of this process is
also noted, so the triple (750, 3000, ‘while place lentils in boiling water and cook
for 45min, stirring occasionally’) is added to passives

• clock is increased by strain_lentils[time], giving 3000 + 60 = 3060

• strain_lentils has no passive time

• clock is increased by mix_dahl[time], giving 3060 + 120 = 3180

• mix_dahl has no passive time

• clock is saved as the total cooking time

Now the recipe can be generated from the set ingred_list, the recipe plan C′ and the
temporal information. The ingredients list is a printing of every element of ingred_list;
the list of instructions is a printing of the instruction of each element in C′ along with
the time at which they are to be performed (this is obtained using a clock variable as
in passives); and the description of passive times is a printing of the information in
each triple x in passives in the format: ‘from x[0] to x[1] while x[2]’. The total time
for the recipe is also printed. The final generated recipe for ‘vegetable dahl’ is shown in
Figure 6.

This example demonstrates that the representation system and NLG methods dis-
cussed in this paper are capable of generating a cooking discourse which is understand-
able, albeit slightly unnatural. It also shows that the temporal optimisation procedure
(Section 6) is effective, clearly there are time savings by performing the instructions
concurrently where directed, rather than one at a time. We claim that the temporal
optimisation algorithm will always obtain an optimal solution, which here implies there
is no faster way of performing the steps in this recipe than the method indicated; that,
based on the time assumed for each step, the recipe cannot be executed in less than 53
minutes. However, a proof of the guarantee of optimality is outside the scope of the
present paper.

Selected Examples In the absence of any existing metrics for quantitatively evaluat-
ing generated recipes, we show several example recipes here which can be inspected
qualitatively.

18The original direction of boil_lentils is stored on insertion, so that it can be used in passives.

78 JLCL

The Proof is in the Pudding

INPUT:
vegetable dahl

OUTPUT:
Time: 53mins
Ingredients:
coconut milk
lentils
olive oil
raw peppers
raw broccoli

Instructions:
0mins: while placing water in pot and heating on cooker; chop the peppers, chop the broccoli
5mins: while adding the lentils to the boiling water and cooking for 45mins, stirring occasionally; heat olive
 oil in pan and add chopped vegetables, fry until soft
50mins: strain the lentils
51mins: add the sauteed vegetables and coconut milk to the lentils and stir

Passive:
from 4mins30secs to 5mins while while placing water in pot and heating on cooker; choping the peppers,
choping the broccoli
from 7mins30secs to 50mins while while adding the lentils to the boiling water and cooking for 45mins, stir
ring occasionally; heating olive oil in pan and adding chopped vegetables, frying until soft

Figure 6: The recipe generated by FASTFOOD in response to a user input of ‘vegetable dahl’.

JLCL 2023 – Band 36 (2) 79

Mahon / Vogel

INPUT:
vegan lasagne

OUTPUT:
Time: 3hrs55mins
Ingredients:
pepper
salt
dijon mustard
apple cider vinegar
chopped garlic
whole lemon
nutritional yeast
raw cashews
lasagne sheets
fresh basil
pepper
salt
tinned tomatoes
chopped garlic
raw onion
olive oil
raw peppers
raw broccoli

Instructions:
0mins: while leaving cashews in bowl of water for 2 hours; chop the onion, chop the broccoli, chop the pe
ppers, squeeze the lemon, while heating olive oil in pan and adding chopped vegetables, frying until soft;
chop the basil, fry onion and garlic, add the tinned tomatoes, salt, pepper and basil to the onion and garlic
 and simmer for 10 min
3hrs0mins: mix all ingredients for cashew cheese in food processor
3hrs10mins: in large baking dish add layer of vegetables, layer of sauce, layer of cheese, until all three ha
ve been used up
3hrs15mins: bake lasagne for 40 min

Passive:
from 23mins20secs to 3hrs0mins while leaving cashews in bowl of water for 2 hours
from 3hrs16mins10secs to 3hrs55mins while baking lasagne for 40 min

Figure 7: The recipe generated by FASTFOOD in response to a user input of ‘vegan lasagne’.

80 JLCL

The Proof is in the Pudding

INPUT:
green stir fry

OUTPUT:
Time: 18mins30secs
Ingredients:
pasta
pepper
salt
olive oil
raw tofu
raw green beans
raw asparagus
raw broccoli
soya sauce

Instructions:
0mins: chop the broccoli
2mins: while placing water in pot and heating on cooker; chop the tofu, chop the green beans
7mins: while adding the pasta to the boiling water and cooking for 10mins, stirring occasionally; chop the
asparagus, heat olive oil in pan and add chopped vegetables, fry until soft
17mins: strain the pasta
18mins: mix fried vegetables and tofu with pasta and soya sauce

Passive:
from 6mins30secs to 7mins while placing water in pot and heating on cooker
from 11mins30secs to 17mins while adding the pasta to the boiling water and cooking for 10mins, stirring
occasionally

Figure 8: The recipe generated by FASTFOOD in response to a user input of ‘green stir fry’.

JLCL 2023 – Band 36 (2) 81

Mahon / Vogel

INPUT:
pasta e fagioli

OUTPUT:
Time: 17mins
Ingredients:
happy pear tomato pesto
pine nuts
pasta
olive oil
raw peppers
raw broccoli

Instructions:
0mins: while placing water in pot and heating on cooker; chop the peppers, chop the broccoli
5mins: while adding the pasta to the boiling water and cooking for 10mins, stirring occasionally; heat olive
 oil in pan and add chopped vegetables, fry until soft
15mins: strain the pasta
16mins: add the vegetables, tomato pesto and pine nuts to the pot containing the strained pasta and stir

Passive:
from 270 to 300 while placing water in pot and heating on cooker
from 450 to 900 while adding the pasta to the boiling water and cooking for 10mins, stirring occasionally

Figure 9: The recipe generated by FASTFOOD in response to a user input of ‘pasta e fagioli’.

82 JLCL

The Proof is in the Pudding

INPUT:
butterbean curry

OUTPUT:
Time: 31mins
Ingredients:
tinned beans
black pepper
curry powder
raw mushrooms
coconut milk
raw tomato
chopped garlic
rice

Instructions:
0mins: while placing water in pot and heating on cooker; rinse the beans, chop the mushrooms
5mins: while adding the rice to the boiling water and cooking for 25mins, stirring occasionally; chop the to
mato, fry the mushrooms, ginger and cumin seeds for 2 mins, then add the garlic, chilli, soy sauce, chopp
ed tomato, coconut milk and curry powder
30mins: strain the rice

Passive:
from 3mins30secs to 5mins while placing water in pot and heating on cooker
from 11mins30secs to 30mins while adding the rice to the boiling water and cooking for 25mins, stirring o
ccasionally

Figure 10: The recipe generated by FASTFOOD in response to a user input of ‘butterbean curry’.

JLCL 2023 – Band 36 (2) 83

Mahon / Vogel

INPUT:
tofu pad thai

OUTPUT:
Time: 16mins
Ingredients:
coconut milk
raw peppers
chopped garlic
raw mushrooms
tinned beans
raw sugar snaps
fresh coriander
noodles

Instructions:
0mins: chop the mushrooms
2mins: while placing water in pot and heating on cooker; chop the peppers, chop the coriander
7mins: while adding the noodles to the boiling water and cooking for 8mins, stirring occasionally; rinse the
 beans, while frying the mushrooms, scallions and pepper for 2 mins, then adding the garlic, chilli, choppe
d tomato, coconut milk and curry powder; chop the sugar snaps
15mins: strain the noodles

Passive:
from 6mins30secs to 7mins while placing water in pot and heating on cooker
from 14mins30secs to 15mins while adding the noodles to the boiling water and cooking for 8mins, stirrin
g occasionally

Figure 11: The recipe generated by FASTFOOD in response to a user input of ‘tofu pad thai’.

84 JLCL

The Proof is in the Pudding

INPUT:
jackfruit bolognese

OUTPUT:
Time: 56mins
Ingredients:
tomato puree
raw tomato
chopped garlic
raw onion
raw carrot
raw jackfruit
raw mushrooms
lentils
pasta

Instructions:
0mins: place water in pot and heat on cooker
5mins: place water in pot and heat on cooker
10mins: while adding the lentils to the boiling water and cooking for 45mins, stirring occasionally; chop the
 tomato, chop the mushrooms, chop the jackfruit, while adding the pasta to the boiling water and cooking f
or 10mins, stirring occasionally; chop the carrot, chop the onion, while frying the mushrooms, scallions an
d pepper for 2 mins, then adding the garlic, chilli, chopped tomato, coconut milk and curry powder; strain t
he pasta
55mins: strain the lentils

Passive:
from 0mins30secs to 5mins while placing water in pot and heating on cooker
from 5mins30secs to 10mins while placing water in pot and heating on cooker
from 26mins to 55mins while adding the lentils to the boiling water and cooking for 45mins, stirring occasi
onally

Figure 12: The recipe generated by FASTFOOD in response to a user input of ‘jackfruit bolognese’.

JLCL 2023 – Band 36 (2) 85

	Introduction
	Related Work
	EPICURE
	Rule-based Systems
	Neural Approaches

	Representation System
	Problems with Discourse Referents
	Descriptive Strings and Processes
	Things vs Descriptions

	Content Production
	Cooking Actions
	Food Classes
	Synonyms and Ghosts

	Content Selection
	Selection Algorithm
	Comparison with Parsing and Automated Theorem Proving

	Content Organization
	Overview of the Optimization Problem
	FIND_ALL_LISTS

	Conclusion
	Pratical Use
	Theoretical Interest

