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Simple Signals for Complex Rhetorics:  

On Rhetorical Analysis with Rich-Feature Support Vector Models 

Abstract: Most text displays an internal coherence structure, which can be analyzed as 

a tree structure of relations that hold between short segments of text. We present a 

machine-learning governed approach to such an analysis in the framework of Rhetori-
cal Structure Theory. Our rhetorical analyzer observes a variety of textual properties, 

such as cue phrases, part-of-speech information, rhetorical context and lexical chain-

ing. A two-stage parsing algorithm uses local and global optimization to find an analy-

sis. Decisions during parsing are driven by an ensemble of support vector classifiers. 

This training method allows for a non-linear separation of samples with many relevant 

features. We define a chain of annotation tools that profits from a new underspecified 

representation of rhetorical structure. Classifiers are trained on a newly introduced 

German language corpus, as well as on a large English one. We present evaluation 

data for the recognition of rhetorical relations. 

1 Introduction 

Almost every author of a text has a mission: He or she wants to make an argument in 

support of an opinion or of information given, giving backgrounds, reasons, or dis-

cussing seemingly incompatible observations about the world. Hardly anyone tries to 

achieve this mission by just writing down a collection of singular statements. What 

readers would like to read is a text. One of the central properties of a text is that every 

one part of the text builds on another one.  A measure for this property is coherence.

There are different types of rhetorical relations that connect small chunks of coher-

ent text. How can we automatically recognize them? The motivation for doing this is 

that in almost all cases this seems imperative in order to understand a text.  

Natural language technology has devoted increasingly more work to rhetorical 

analysis. There are good reasons for this interest. Rhetorical structure influences both 

natural language generation and analysis. Rhetorical parsing is an important precursor 

to selecting and evaluating information, as in summarization or semantic indexing. 

Linguistic accounts for rhetorical structure have the luxury to assume the availabil-

ity of world knowledge and inference in rhetorical analysis. Automated systems resort, 

with quite some success, to a combination of little linguistic knowledge and a lot of 

shallow processing. How far can this carry us in rhetorical analysis? How can such an 
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analyzer be built and optimized? Which rhetorical clues are hidden in text? How much 

can the clues help to improving recognition performance? 

A contribution to an answer to these questions will not only provide better docu-

ment analysis techniques. It might also clarify our intuitions about style and the rhe-

torical tricks in natural language communication.  

2 Accounts for Rhetorical Structure 

My approach is informed from various fields in rhetorical analysis, parsing and ma-

chine learning. In the following, I will describe the foundations of rhetorical text ana-

lysis.

2.1 Rhetorical Structure 

The work on Rhetorical Structure Theory (RST; Mann&Thompson, 1988) builds on 

tree-like structures that represent rhetorical relationships within the text. Among the 

children of each tree node, rhetorical relations hold. The theory defines a set of rela-

tions that can hold between given spans of text. Common relations include ELABORA-

TION, which is defined as one span that gives additional information regarding the facts 

presented in the other, and CONTRAST, which is defined as the contents of two or more 

spans being presented as incompatible (Fig. 1). 

Since the relations were defined to reflect coherence phenomena, their definitions 

are not constrained to refer to properties from classical linguistic or computational 

processing levels. Constraints based on meaning of discourse segments and on world 

knowledge interact with the presumed writer's or speaker's intentions. In RST, each 

text span takes on one of two roles in a relation: it may be a nucleus or a satellite.

Nuclei are considered essential to the understanding of the text. Satellites contribute 

additional information. The relations that hold between spans may be either paratactic 
or hypotactic. Paratactic relations connect two or more equally weighted spans of text 

and assign the same role to each of them. Hypotactic relations hold between one nu-

cleus span and one satellite span. The idea of relations to hold between text spans has 

become a paradigm. Trees of relations are also a common observation in texts. Re-

garding the relations, the theory never claimed that this set be closed. 

The tree-structured analysis seems to build on prevalent rhetorical relations: this 

suggests there is, even though many analyses can be drawn from a text, only one struc-

ture that is faithful to the writer's intentions. It may be questioned whether there is a 

“primary rhetorical intention” (Grosz&Sidner, 1986). In the approach shown here, we 
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derive a rhetorical interpretation that most likely matches the writer's intention. How-

ever, the algorithm can output several interpretations, along with their score. 

Fig. 1: An example analysis, translated from the German corpus. 

2.2 Rhetorical parsing 

The Rhetorical Structure Theory Analyzer RASTA (Corston-Oliver, 1988) identifies 

rhetorical relations in text. It looks at various clues from syntactic and partial semantic 

analyses. Syntactic analysis is used to eliminate ambiguities, where the discourse func-

tion of a phrase depends on its syntactic context. RASTA defines necessary and con-
tributing criteria for each discourse relation.  

Marcu (2000) discusses several methods of parsing. His method is driven by auto-

matically derived or manually defined rules. For each discourse marker, these rules 

state the distribution of nucleus and satellite (left/right of marker), the relations that 

can be signaled, and the size of textual unit. Relations are, alternatively, also hypothe-

sized according to word co-occurrence. Marcu&Echihabi (2002) investigate the unsu-

pervised learning of classification decisions. Large quantities of sentences are ex-

tracted automatically by applying search patterns to corpora.  



  41 On rhetorical analysis with rich-feature support vector models

3 URML, an XML-based standard for rhetorical annotations 

3.1 Motivation 

With the rise of machine learning and parsing algorithms that detect rhetorical struc-

ture and evaluate the results of manual or automatic annotation, it became clear that 

corpus data should be easy to read by machines and humans. For this reason, the 

SGML class of annotation formats (a super class of XML) has become increasingly 

popular in linguistics and, in particular, in rhetorical theory (Rehm, 1998; Lobin, 1999; 

O’Donnell, 2000). 

Systems that perform rhetorical analysis often employ a tool-chain architecture. 

Step-by-step, they add information, narrowing down search-space. An underspecified 

representation is needed as interface between the tools. Similarly, manual annotation is 

not necessarily uniform. Several valid analyses may be drawn for a text and need 

eventually to be represented in a corpus. 

Our solution to these issues is Underspecified Rhetorical Markup Language (Reit-

ter&Stede, to appear). It is an XML based data format that is extensible, readable and 

writable with standardized methods. It makes few, yet well-defined assumptions about 

a rhetorical theory that predicts relations to hold between spans of text, but allows for 

disjunctive and under-specified analyses.  

3.2 Rhetorical annotation in URML 

Individual documents consist of minimal discourse units, followed by relation nodes 

explained below. When analysis information is added to the raw data, we want to 

preserve the original information wherever possible (especially in the light of the in-

cremental rhetorical parsing we are developing; see below). Thus, all information used 

in the analysis process is stored in the corpus in a persistent fashion. 

URML uses a referential annotation system instead of in-situ markup, which would 

not separate segmentation and relations, and which would impose a specific theory on 

all tools involved. Every node of a discourse tree represents one relation: either a hy-

potactic one (one nucleus, one satellite) or a paratactic one (several nuclei). Nodes are 

indexed and reference each other to express references to the according text spans. In 

the following example, the identifiers 7B, 7C, 7D refer to minimal discourse units (cf. 

Fig. 1). 
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<hypRelation type="concession" id="7L"> 
 <satellite id="7B" /> 
 <nucleus id="7C" /> 
</hypRelation>
<parRelation type="contrast" id="7M"> 
 <nucleus id="7L" /> 
 <nucleus id="7D" /> 
</parRelation>

This syntax provides an elegant way to underspecify annotations by leaving out tree 

nodes or by stating possible disjunctive alternatives as sets of nodes. Also, scores may 

be mentioned for a node to indicate a preference or the result of some heuristics. If the 

specific relation between two spans is unknown, a relation tag can be used without 

the type attribute.1

In contrast to semantics-based representations (Schilder, 2002), URML refers to 

textual data. It implicitly states linear precedence. Tree nodes in an analysis state im-

mediate dominance; underspecified dominance situations have to be explicitly stated 

with concurrent tree nodes. This keeps annotations simple enough to work with them 

both manually and automatically. 

3.3 Binary relations 

Our annotation scheme represents binary relations and assumes that only each nucleus 

is connected to only one nucleus. This departure from the original theory is not such a 

major step as it may appear, since the nucleus is known to contribute the essential 

meaning in comparison to the satellite, and that the nuclearity of a multi-satellite 

schema can be preserved in a hierarchical binary-branching structure.  

Empirical evidence we gained in the collection of the Potsdam Corpus supports this 

restriction. Annotators could always find a sufficient binary interpretation. The choice 

between the two binary possibilities for a two-satellite-one-nucleus schema was usu-

ally made from referential clues. In the LDC corpus, only 9 out of 17962 relations 

share a nucleus with others of different type. 

Our format defines a symbolic system that may represent ambiguities. The axioms 

that define a well-formed tree analysis are left open to the client application. At the 

end of a typical analysis process, we would like to represent such a well-formed struc-

ture. It can be identified as such in URML. 

                                                          
1

A “document-type definition” grammar describing the format of documents, rhetorical and 

morpho-syntactical annotations can be obtained from http://www.ling.uni-potsdam.de/cl/rst/.  
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4 Rhetorical Analysis 

The automatic detection of rhetorical structure poses a series of challenges. First and 

foremost, a deep semantic analysis with sufficient coverage seems unfeasible, so, as a 

design decision, we will concentrate on the integration of various surface cues. These 

rhetorical signals are found on various linguistic levels (morphosyntax, punctuation, 

lexical choice, discourse marker). Unfortunately, there is is no one-to-one mapping 

between signals and rhetorical relations. For instance, even though can signal either a 

CONCESSION or a CONTRAST
2 relation. Also, a dash between two segments is no clear 

sign for an ELABORATION; instead, a CONCESSION could hold.  

As a research hypothesis: language combines various surface cues to signal rhetori-

cal structure. We will determine how far these clues can be used to derive rhetorical 

relations and, indirectly, structure.  

Besides the cues, we need to define the analyzer architecture. We see parsing as a 

series of classification decisions. As the chart parser proceeds segment by segment, it 

tries to hypothesize rhetorical relations between the tree nodes that have been found. 

Here, we need to find one optimal or several good decisions, based on rhetorical sig-

nals. Classification instances (section 4.1) provide a uniform, local unit, in which 

signals can be observed. Potential signals are collected from each such unit as features

(section 4.2). We can then classify each classification instance through a mathematical 

machine learning model, support vector machines (section 4.3). We finally sketch out 

a parsing algorithm based on classifiers (section 4.4).   

4.1 Relations split up in classification instances 

The statistical classifiers observe linguistic properties that occur in the text spans. A 

feature is a function that assigns a scalar value to a linguistic pattern, which is a piece 

of text. Features need to be enumerable; the set of features must be finite. Features are 

always applied to a structurally equivalent context. We define this context with a sim-

ple intermediate data structure, the classification instance. Each paratactic relation 

node is split up in several classification instances; hypotactic relation nodes are con-

verted to one classification instance.  

A transformation function  maps each relation <i, r, , n> onto a set of classifica-

tion instances. i is a unique index, r is the relation, the list of indexes identifying 

satellites and nuclei and n identifies the nucleus in hypotactic relations. A classifica-

                                                          
2  In a hypotactic CONCESSION, the writer acknowledges an (apparently) incompatible fact in the 

satellite, but claims that the fact in the nucleus holds nevertheless. For items in a paratactic 

CONTRAST relation, the writer builds on the incompatibility of the facts. 
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tion instance <r, , g> holds a list of text span indexes and a single span g. The role 

of and g differs in hypotactic and paratactic relations. For hypotactic relations (as-

sumed to be binary)  contains the nucleus and g represents the satellite. (Note that the 

linear precedence of the text spans is encoded as feature.) For all hypotactic r:

for all paratactic r:

Nota bene: The classification instances can not only be derived from existing relations, 

but also from hypothetical parsing edges during analysis.  

4.2 Transforming classification instances into feature vectors 

In each classification instance, we check the same set of features. Remember that a 

feature is a function to check a single property of the classification instance. We dis-

tinguish local features, which hold only information that is available within a classifi-

cation instance, and non-local features, e.g. the depth of embedding or concept intro-

duction. In the following, we describe the different hard-coded templates for features, 

which are instantiated using the training corpus to form a finite set of features.  

Cue words and pronouns: The strongest clues consist of discourse markers. As 

discourse cues tend to be found at the beginning of a text span (“However,”, “Thus”) 

or at its end (“, too” and punctuation), the relative position of a cue within the segment 

considered is encoded in the feature value. For this feature template, we demonstrate 

its instantiation: We define a class of features CUEw,b,s(c) that return a positional indi-

cator for a cue word w within the first (b=0) or second (b=1) half of LEFT(c) (s=0) or 

RIGHT(c) (s=1). The w are automatically selected from the words in the training corpus 

according to the part-of-speech categories. The resulting cue features are the CUEw,b,s

for all w, b and s. Introduction of concepts: The way noun phrases occur is specific 

to discourse boundaries. In journalistic texts, definite noun phrases with a common 

noun (NN, “the chancellor”, “das Restaurant”) tend to refer to a concept that was in-

troduced before. In contrast, indefinite noun phrases do not refer in a strict semantic 

sense. Punctuation: The occurrence of a colon, a dash, a question mark and other 

punctuation marks is noted. Part-of-Speech categories: The part-of-speech categories 

of the words at the borders of segments may help disambiguate the type of relation 

(sentential). Lexical similarity: We use the similarity measure defined in topic chain-
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ing research (Hearst 1997) to reflect the semantic similarity of the two text spans con-

sidered. Span lengths: We hypothesize that some connectives have an argument-

length-dependent distribution. Intuitively, a CONTRAST relation will rather have a short 

satellite, at least, related to the total length of the text. Authors are expected to focus 

on their main argument, not on counter-arguments. Thus, the ratio of the text span 

lengths (in words) is used as feature. 

These feature templates are motivated by linguistic knowledge and, for some fea-

tures, simple corpus-based evaluations that showed a significant class distribution.  

4.3 Support Vector Machine learning 

The classifiers base their decisions on knowledge that is automatically acquired from a 

set of sample documents. During training, the machine-learning algorithm determines 

general characteristics of the samples that belong to each assigned category, in our 

case: the relations. Among the frameworks available for classification learning, sup-

port vector machines (SVM; Vapnik, 1995) have shown to deliver superior results in 

many applications. The following factors justify the use of SVMs in our case.  

– It’s a pattern recognition problem, so we deal with multi-class classification. 

– We observe features that are inter-related, and exact qualitative and quantitative 

feature inter-dependence is not known. Naïve Bayes-based algorithms, a stan-

dard in statistical language processing, can only approximate the ideal classifica-

tion solution in this case. SVMs are designed to solve highly non-linear prob-

lems. 

– We incorporate a large number of features (>5000). For SVMs, the dimensional-

ity of the feature space is not a variable in training time complexity.  

– Compared to other machine learning tasks, we train on a small to medium sized 

set of examples (<10000). State-of-the-art training algorithms handle small train-

ing sets within reasonable time. 

Support vector machines are based on two ideas. Large-margin separation: We posi-

tion all training samples xi, in feature space according to their assigned feature vectors. 

A (linear) classifier is defined as a hyper-plane w RN, b R (a plane of dimensional-

ity (N-1), if N features are defined) that separates data points. The hyper-plane should 

equally and orthogonally divide the shortest connection between the two hulls of the 

class-related data points (Fig. 2). Learning involves finding a solution to the following 

solvable optimization problem: 
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N.B.: only the vector product is used in the above formula and that the number of 

features is not a factor in the optimization problem. Choosing the i,  means identifying 

a subset of all data vectors that is closest to the hyper-plane. Collobert&Bengio (2001) 

report an efficient training algorithm for SVMs that is used in our approach. 

Fig. 2: Large-margin separation in the separable case. 

The kernel trick: Most data cannot be separated by means of a linear separation func-

tion. A kernel transforms the data from a non-linear into the linear feature space, whe-

re it can be separated by a hyper-plane. The kernel function we use is a radial basis 

function: 

The function maps the vectors x and y (from non-linear space) directly to a scalar 

value that represents the dot product of the vectors in the linear target space. We avoid 

calculating the dot product, which allows for an efficient implementation. 
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Solving means to calculate, which side of the hyper-plane a data point is located on as 

well as its distance to the hyper-plane (confidence). Since we need to solve a multi-

class problem, we train a binary SVM classifier for each class and chose the solution 

for which the according classifier assigns the highest confidence score.  

4.4 Parsing algorithm 

The classifiers described are already able to make different kinds of useful decisions: 

Rhetorical relation: this decision comes directly out of running the multi-class classi-

fier on a classification instance. Nuclearity (which text span is the nucleus?): For hy-

potactic relations, we run each polychotomizer twice, once for each possible distribu-

tion of roles (satellite/nucleus).  Finally, we can determine attachment preference for a 

text span by scoring alternate hypotheses. Those decision types are all integrated when 

it comes to rhetorical parsing.  

Statistical-based rhetorical parsing borrows some ideas from rule-based chart pars-

ing. We store all analyzed constituents (i.e. relation nodes) in a chart in URML repre-

sentation, thus avoiding double work. Because we examine the use of non-local fea-

tures, we need to deal with non-compositionality during parsing. The theoretical 

solution to this is to generate all possible trees and evaluate each of them as a whole. 

To speed things up, our parsing algorithm employs first local optimization and beam-

search, then global optimization. 

5 Evaluation

The evaluation demonstrates the performance of support vector classifiers as used in 

the parsing process. As training and test data, we use two rhetorical corpora in English 

and German.    

5.1 Corpora  

5.1.1 The LDC discourse treebank 

The RST annotated collection of 385 English language newspaper articles presented 

by Carlson et al. (2001) is, as of this writing, the most extensive RST corpus. To pre-

pare for rhetorical analysis, the corpus was converted to URML and part-of-speech 

tagged. All relations were converted to 16 more general relations according to a hier-

archy used during corpus collection. The notion of nuclearity in the LDC corpus is 
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more explicitly defined than in original RST, making additional relations necessary, 

including ones that occur in hypotactic and paratactic form. These were converted to 

paratactic ones in order to make evaluation possible. 

5.1.2 Collecting the Potsdam Corpus 

We chose a series of German language news commentaries, published recently in a 

local newspaper, the Märkische Allgemeine Zeitung. Most of the texts concern local 

issues, some address national and international issues. Average document length is 

28.6 sentences. We had good reasons for that choice because of the following general 

design decisions. Texts should... 

– expose a clear argumentative structure, 

– be short enough to allow annotators to quickly comprehend their overall struc-

ture of a document and their argumentative goals, while also long enough to 

expose the kinds of relations that possibly hold between larger spans of texts, 

– be coherent, 

– belong to the same genre of text, 

– be written in a language that complements efforts in other languages. 

We decided to automatically segment the documents into minimal discourse units, 

based on shallow syntactic features. Clause borders are recognized by punctuation and 

finite verbs. Automatic segmentation maintains a clear standard for segmentation and 

allows us to examine pure rhetorical relations and rhetorical structure. The two annota-

tors received training with focus on the original relation definitions as given by 

Mann&Thompson (1988). After 30 texts were annotated, annotations were reviewed 

and, after a new training session, re-annotated. Annotation was carried out using the 

graphical annotation tool RSTTool 3.1 (O’Donnell, 2000). We chose 15 hypotactic 

and 5 paratactic relations along the lines of traditional RST. They can be grouped into 

11 more general classes. The annotators completed 173 documents. As a first step 

towards validation of the data, annotators, they switched datasets and cross-validated 

all documents.  
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Table 1: Performance for English and German. 

5.2 Performance analysis 

The rhetorical analysis algorithm was subject to extensive evaluation on several levels. 

In the following, we focus on a singular task that is crucial to rhetorical analysis: The 

assignment of a relation to hold between known spans of text.  

Classifiers were trained on 240 documents and evaluated on 50 documents from the 

LDC corpus. The tests are 2-fold cross-validated. In this respect, the multi-class accu-

racy of our implementation is 61.8 percent. Semi-automatic regression tests for pa-

rameter estimation of the SVM training algorithm and the SVM kernel were carried 

out on different test partitions. For the Potsdam corpus, accuracy is significantly lower 

(39.1 percent, Table 1). This can be explained by the fact that the training partition of 

the LDC corpus yielded an average of 7976 classification instances, while only 1943 

training samples were derived from the Potsdam Corpus. With this amount of data, 

classification accuracy for the LDC corpus is 56 percent (Fig. 3). 

We turn to a comparison of the results to a state-of-the-art approach. The relevant 

measure used Marcu (2000) is labeled recall (57.9) & labeled precision (56.3) for 

parsing results with assumed perfect segmentation. Our tests looked at structurally 

correct relations only, thus, labeled precision is the relevant figure to compare to. 

To put the accuracy figures into perspective, we calculate a baseline value. The 

baseline is established by having the classifier ensemble always chose the most com-

mon relation, ELABORATION. It is 33.6 percent for the corpus used. As a theoretical 
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upper bound for analysis performance, we can consider inter-annotator agreement in 

corpus collection efforts. Carlson et al. (2001) report kappa coefficients ranging from 

0.62 to 0.80. Here, a kappa value of 0 indicates random agreement, 1 perfect agree-

ment. The agreement was reached only after rigorous training and at the end of their 

corpus collection effort. Even then, as the kappa value indicates, there were several 

instances of disagreement among human annotators. 

Our analyzer achieves its accuracy with a well-defined classification method based 

on large-margin separation and a sufficiently large data-set. Our English evaluation 

corpus is, though presumably similar, not the corpus used in Marcu’s experiments. As 

the density of rhetorical signals and the distribution of rhetorical relations differ 

greatly between text genres and corpora, quantitative comparison seems difficult. 

Nevertheless, the accuracy rate indicates excellent performance. 

Examining the classification results for specific relations (Table 1), we found that 

some harder problems, such as detecting the less frequent and ambiguously signaled 

CAUSE/RESULT relations, are not solved well by the classifier ensemble. Other rhetori-

cal relations, however, are recognized with relatively high precision/recall, e.g. 

ELABORATION/SPECIFICATION and ATTRIBUTION. Little surprisingly, these are high-

frequent relations in both corpora. More important than that, cue phrases are unlikely 

to signal these relations. ATTRIBUTION and ELABORATION can be distinguished with 

information from the punctuation feature. 

Indeed, an experiment leaving out single features shows that punctuation is, after 

cue phrases, the feature that contributes most to overall classification accuracy. Pro-

vided that support vector classifiers do a good job integrating relevant features and that 

we use a broad variety of heuristics, the findings call for a more informed detection of 

features. We have not examined the computationally expensive use of a semantic net 

to achieve a better topic similarity measure. Even better decisions might be drawn 

from a general model that sees the choice of connectives as result of a represented 

underlying structure of referents.  

The learning curve (Figure 3) shows how the performance of the relation assign-

ment algorithm increases with the number of training samples (classification in-

stances). It converges with the maximum number of training samples used, thus the 

corpus seems to be large enough for this kind of training task. The 18 binary SVM 

classifiers can be trained on 150 documents in reasonable time (216 min on 1 Mhz G4-

CPU).
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Fig. 3: Learning curve of the rhetorical classifiers: number of training samples vs. classification 

accuracy.  

6 Conclusion

Most importantly, we have shown a framework for the rhetorical analysis of texts. In 

this task, support vector classifiers perform exceptionally well. An analysis of the 

performance of the features shows that many of the clues, commonly assumed to be 

correlated to rhetorical relations, cannot not significantly contribute to the detection of 

rhetorical relations. The algorithms shown are able to output several likely analysis in 

a compact representation. 

Underspecified Rhetorical Markup Language is a flexible, XML based format that 

provides interfacing between tools in rhetorical analysis and corpus annotation. Data 

can be visualized using a separate package for LaTeX. As a stand-alone data format, it 

URML applied in the collection of a novel corpus of news commentaries.  
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