
Elena Volkanovska

A Study of Errors in the Output of Large Language Models for
Domain-Specific Few-Shot Named Entity Recognition

Abstract

This paper proposes an error classification framework for a comprehensive analysis of
the output that large language models (LLMs) generate in a few-shot named entity
recognition (NER) task in a specialised domain. The framework should be seen as
an exploratory analysis complementary to established performance metrics for NER
classifiers, such as F1 score, as it accounts for outcomes possible in a few-shot, LLM-
based NER task. By categorising and assessing incorrect named entity predictions
quantitatively, the paper shows how the proposed error classification could support a
deeper cross-model and cross-prompt performance comparison, alongside a roadmap for
a guided qualitative error analysis.

1 Introduction

The advent of generative large language models (LLMs) created an increased interest
in experimenting with few-shot methods for named entity recognition (NER). With
LLMs, NER can be defined as a question-answering task, where a model is prompted to
identify1 named entities based on a named entity definition and named entity examples
provided in the prompt. In real-world scenarios, the need for few-shot NER is driven
by scarcity of resources, legal constraints for sharing annotated data, and the cost of
annotation (Moscato, Postiglione, & Sperlí, 2023). However, the success of few-shot
NER techniques is not consistent. Some studies using known NER datasets and LLMs
have reported promising results (Ashok & Lipton, 2023; Epure & Hennequin, 2022; Wang
et al., 2023).2 At the same time, experiments using more specialised NER datasets, such
as the one described in Section 3, do not achieve the same degree of success. Moscato
et al. (2023) also mention that the success of few-shot NER in real-world deployment
scenarios is yet to be proven.

This study investigates the possible causes of such inconsistencies by analysing LLMs’
output in experiments that yielded F1 scores that were substantially below the task
baseline. Rather than discarding the output as noise, the paper aims to identify what

1An effort was made to refrain from using anthropomorphising terms when describing LLMs (see
Inie, Druga, Zukerman, and Bender (2024) for more information on this topic); nevertheless, this
type of language is common in the context of generative language models and, in some cases,
difficult to evade.

2Some authors acknowledge that data contamination i.e. the likelihood of the used LLMs having
been previously exposed to the NER datasets might affect the outcome.
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lessons can be learned by proposing a draft framework for a descriptive error analysis.
To do so, the study first reviews existing approaches to error analysis in few-shot NER in
Section 2, followed by a brief description of the experiments underpinning the analysed
data in Section 3. The proposed error classification and the insights it provides into
LLM performance are discussed in Sections 4 and 5 respectively.

2 Related Work

Generative pre-trained language models employed in some studies exploring few-shot
methods for in- and cross-domain NER include the Pretrained Conditional Generation
Model of Flan-T5-XXL (11B) (Chung et al., 2024), GPT-3.5 (Brown et al., 2020), and
GPT4 (Achiam et al., 2023), all of which have been used in the study by Ashok and
Lipton (2023); GPT-3 (davinci-003) used by Wang et al. (2023), and a medium-sized
GPT-2 model used in few-shot NER experiments by Epure and Hennequin (2022).

These studies showed that the named entities (NEs) identified by LLMs can lead to
valuable insights. Ashok and Lipton (2023) conduct a human survey of errors, where
they (1) create a list containing 20 randomly selected examples of predicted named
entity instances, (2) create a ground truth list containing NEs from the same sentences
used to create list (1), and (3) ask three different human annotators to evaluate each
entity of lists (1) and (2). The human annotators are given a definition of the NER
problem relevant to the dataset from which the lists are created. The results from this
evaluation show that many of the predictions could be acceptable NE candidates and
were not considered errors by the human annotators.

The evaluation approach adopted by Epure and Hennequin (2022) for NER in a
few-shot setting is case-insensitive and accommodates for output where the model
generates an NE with a different spelling or when it fails to follow the instruction for
sentences containing no entities. The study dubs as confusion patterns cases when the
LM fails to generate the correct entity type, conflating, for example, corporation or
group with location. The study’s authors provide a brief overview of NE categories that
perform well and categories that do not. Wang et al. (2023) also find that the LLM
conflates location and geographical entities in a nested NER scenario.

While it is evident that language models’ output is manually inspected, with re-
searchers working in few-shot NER performing an error analysis in order to compare
the effects of various prompt designs and task requirements, the insights that come from
the manual inspection are mostly captured in the recommendations for prompt design
in future studies. In other words, such analyses have not amounted to a systematic
classification of errors identified in models’ output.

Contribution This paper proposes a descriptive error analysis method for LLM output
in a few-shot NER task on two domain-specific NER datasets. It combines categories
from existing NER evaluation metrics, such as F1 scores, and error analyses encountered
in previous studies on few-shot NER into a single error classification framework for
model output analysis. This framework could be used to (1) gauge weak points in
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the task design and in the LLMs’ performance and (2) make informed decisions for
qualitative error analysis and iterative changes to the prompt design.

3 Data

LLMs and datasets The data analysed in this study is the LLM output from a series
of few-shot NER experiments, where 7762 prompts are run on four LLMs: OpenAI’s
gpt-4o-2024-05-13 and gpt-4o-mini (hereinafter: gpt-4o and gpt-4o-mini), and Meta’s
Meta-Llama-3.1-70B-Instruct and Meta-Llama-3.1-405B-Instruct (hereinafter: Llama-
70B and Llama-405B). The experiments are conducted on the test data splits of two
NER datasets comprising scientific texts: Climate-Change-NER (Bhattacharjee et al.,
2024) with 13 climate-change-relevant NE categories (climate-assets, climate-datasets,
climate-greenhouse-gases, climate-hazards, climate-impacts, climate-mitigations, climate-
models, climate-nature, climate-observations, climate-organisms, climate-organizations,
climate-problem-origins, and climate-properties), and BiodivNER (Abdelmageed et
al., 2022) with 6 biodiversity-relevant NE categories (organism, phenomena, matter,
environment, quality, and location). The LLMs’ output and dataset information are
available in a dedicated GitHub repository.3

Prompts The rationale behind the prompting methodology, the prompt design, and
the results for each prompt and language model are described in detail in Volkanovska
(2025). The prompt design was inspired by the study of Ashok and Lipton (2023), with
the final promts differing in three major ways: (1) the input/output requirement (either
a Python string or a tokenized sentence i.e. a Python list of word-based tokens and their
indices), (2) the number of NE categories tested, and (3) the method of selecting task
examples (TEs) in the prompt. Under (1), the prompts can have either string-based
or token-based input (TEs) and output (a requirement for the model to generate an
answer in a format that corresponds to the TEs). Under (2), there are full prompts,
where models are tested on the complete set of NE categories, and cluster prompts,
where the models are tested on subgroups of NE categories.

The category full prompts contains 6 prompt versions, which differ in the number
of TEs provided to the model (3, 4 or 5). Regarding cluster prompts, named entities
are divided into clusters of categories. For Climate-Change-NER, the clusters are:
(1) climate-hazards, climate-problem-origins, climate-greenhouse-gases; (2) climate-
impacts, climate-assets, climate-nature, climate-organisms; (3) climate-datasets, climate-
models, climate-observations, climate-properties, and (4) climate-mitigations, climate-
organisations. For BiodivNER, the three clusters are: (1) environment, location; (2)
organism, matter, and (3) phenomena, quality. Finally, under (3), TEs contained either
randomly selected sentences from the train data split, or sentences with a high semantic
similarity score to the sentence the model was to annotate. Semantic similarity scores
were calculated with the library sentence-transformers (Reimers & Gurevych, 2019)
and the model sentence-transformers/stsbdistilroberta-base-v2.

3https://github.com/volkanovska/NER-annotation-with-LLMs
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The different prompting scenarios showed that token-based prompts performed, on
average, slightly better than string-based prompts. For the former, LLMs’ averaged F1
scores4 ranged between 0.27 (lowest) and 0.41 (highest). For string-based prompts, the
averaged F1 scores ranged from 0.28 to 0.39. LLMs generally performed better when
there were more TEs, while the TEs’ similarity to the task sentence had a greater impact
on the result when the original dataset contained some noise, most likely introduced by
text extraction from PDF sources. As token-based prompts performed slightly better
than string-based prompts, the error analysis proposed in this paper is conducted on
the output from token-based prompts. See Appendix 7 for a prompt example.

4 Methodology

In the context of this study, error encompasses all instances where the model’s output
does not fully match the correct answer. For a candidate entity to be considered correct,
there must be a full span-and-category match between the candidate and the gold
standard named entity. Partial matches, as well as minor hallucinations, such as an
incorrectly spelled entity type, are considered errors.

The LLM output of named entity candidates is thus analysed as follows: first, a
count of all predicted entities is provided. Perfect and missed matches of (entity, entity
category) are counted by comparing the model’s predictions to the gold standard. Then,
predicted entities that are not perfect matches are divided into four error classes: (1)
LLM output where a valid NE instance5 is assigned the wrong category from the set
of valid NE categories6 (dubbed sources of confusion), (2) a valid NE category is
assigned to spans that have not been identified as named entities in the original dataset
(possible candidates), (3) a valid named entity is assigned a named entity category
that is not part of the original dataset (new categories) and (4) neither the named
entity span nor the assigned entity category is valid (pure noise).

This error classification is a descriptive overview of the errors found in the models’
output and aims to complement established evaluation metrics. Missed and perfect
matches, as well as sources of confusion and possible candidates, are output categories
that have been accounted for in existing evaluation metrics.7 The classes new cate-
gories and pure noise are added to capture LLM-specific issues arising from LLMs’
“hallucinations”.

Counting error instances For cluster prompts, the counts of each error class
represent the number of unique error instances found in each error class per cluster. For
example, in cluster 1 of Climate-Change-NER (climate-hazards, climate-problem-origins,
climate-greenhouse-gases), errors of the class sources of confusion are counted for
this cluster only for each LLM. For full prompts, the reported counts per error class

4An average of the F1 scores calculated for each prompt.
5Valid NE instance is an instance that exists as a named entity span in the dataset.
6Valid NE category is a named entity category that is part of the dataset’s entity types.
7These include missed entity spans, hypothesised entity spans where there are none, entity spans

that are assigned the wrong category, entity spans with incorrect boundaries and correct NE
category, and entity spans with incorrect boundaries and incorrect NE category.
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represent the average from the six full-prompt versions. For example, the reported
count of the error class sources of confusion will be the sum of the error counts for
each of the six prompt versions8 divided by six. The Python script for classification of
error instances, and the tables with error counts for each error class and each model
are available in the GitHub repository.

Points of comparison In a supervised NE recognition task, a model’s output is only
compared to the test split of the gold dataset, given that the train and development
splits are used in the model’s training. In the few-shot scenario described in Section
3, however, the model had not been exposed to the development set at all and had
been exposed to a maximum of five sentences from the train set. For this reason,
the LLMs’ output is also compared to the combinations test and train and test and
development data splits of the gold standard dataset. Differences in the number of
missed matches between a model’s predictions and the gold standard across the three
points of comparison will show whether some of the candidates generated by the model
are valid entities in the development and the train data splits.

In terms of F1-score, comparative performance has been seen between the larger
models, gpt-4o and LLama-405B, and the smaller models, gpt-4o-mini and Llama-70B.
For this reason, error classes are further analysed per two groups of models: large
and small. The error class ranking for individual models is available in the GitHub
repository.

5 Results

Tables 1 and 2 summarize the error class counts per each prompt type and model,
shown as percentages: the missed column shows the percentage of missed unique gold
entities, while the other four columns show the percentage the respective error class
has in the total number of unique predicted entity candidates. The columns predicted
and gold capture the unique pairs of (named entity, named entity type) in a model’s
output and in the gold dataset, respectively. The recurrence of instances is not taken
into account for the calculation of percentages in the two tables, as the focus is on
the portion of unique instances in each error class; however, repeated occurrences are
accounted for in the rankings of most-frequently represented categories and named
entities in each error class; see the discussion under Zeroing in on error classes for more
details.

All models generate a substantially higher number of entity candidates in a cluster-
prompt scenario in Climate-Change-NER and across all prompt scenarios in BiodivNER.
In terms of model families, Llama models generate, on average, more entity candidates,
while OpenAI models tend to be more conservative.

A higher number of entity candidates does not necessarily translate into better
performance, as can be seen from the error count results for smaller models, which

8Prompts with random task examples with 3, 4 and 5 shots, and prompts with similar task examples
with 3, 4 and 5 shots.
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Table 1: Climate-Change-NER: Missed entities as % of gold entities and error class counts as % of
predicted entities.

Table 2: BiodivNER: Missed entities as % of gold entities and error class counts as % of predicted
entities.

generate more noise. Across all models and almost all prompt types, the number of
possible candidates drops once the spans from the train split of the gold dataset are
added to the comparison set. This means that the models generated spans that are
part of the train split - albeit not under the right category. This tendency is present, to
a lesser extent, in the comparison with the development set. The miscategorisation of
entity instances also explains why error counts of the category sources of confusion
slightly increase once the train data split is added to the comparison. Percentage-wise,
the error classes new categories and pure noise have generally very low values
across the two datasets and all models. This indicates that the models can “follow” the
guidance for identifying entities belonging to certain categories only.
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Zeroing in on error classes The top three categories of possible entity candidates
in Climate-Change-NER, identified by larger and smaller LLMs alike, albeit in
different order, are: climate-models, climate-nature, and climate-properties. Among the
most frequent candidates for climate-models are instances such as GCM or General
Circulation Models, which in the gold datasets are only sometimes annotated as climate-
models, usually when the term is more narrowly defined.9 This echoes some of the
findings by Epure and Hennequin (2022), who notice that in few-shot settings, pre-
trained models tend to prioritize named entity cues more than context cues. The fact
that the acronym GCM appears both as an entity and a non-entity adds a layer of
complexity in the recognition stage that the LLMs cannot resolve based on context cues
i.e. the term being narrowly-defined or not. All models identify spans such as random
forests as valid instances, which indicates that there seems to be no differentiation
between a climate-specific model and a general model that can be used in a climate
scenario. LLMs sometimes delete extra whitespaces found in the gold dataset. Models
would thus extract WRF-UCM instead of WRF - UCM as a climate model.

In the top-three categories of the missed error class, the category climate-models
came in third for large and small models alike, following climate-nature and climate-
properties. It included instances of LLMs failing to extract acronyms separately from
the full name of a climate model, in situations where the acronym followed the name of
a climate model.10

Small models tend to generate more invalid categories than their larger counterparts,
especially in the error class pure noise. The invalid NE categories range from mis-
spellings (climate-greenhouse-gasses, climate-impats), labels that are seemingly correct
but contain a combination of Latin and Cyrillic letters, to categories that are not part of
the original label set at all (climate-projects, climate-regulations, climate-study-field...).

For BiodivNER, the top three categories of possible candidates identified by large
LLMs are: quality, organism, and environment; a slightly different frequency ranking
was noticed in smaller LLMs, namely: organism, quality, and phenomena. While some
of the candidates could be considered valid instances, such as guinea pig and termites
for organism, other candidates include names of organisations and people, which is not
in line with the NE class description.11

The top three entity types in the missed error class for large and small models are:
quality, matter, and organism. Some of the most frequently missed instances include
species, tree, and plant, which are found in the error class possible candidates as
parts of longer spans.

When it comes to “hallucinations”, models that are on the smaller side tend to
generate them more frequently and in greater variety. Large models did not have any
errors in the new categories error class, and generated only 4 invalid categories in the

9For example, in the span NASA / GIS GCM, GCM is annotated as a climate model.
10In the gold dataset, acronyms are annotated as separate entities. For example, in the span Coupled

Model Intercomparison Project Phase 5 (CMIP5), Coupled Model Intercomparison Project
Phase 5 and CMIP5 are two separate entities of the type climate-models.

11The class is defined as “All individual life forms such as microorganisms, plants, animals, mammals,
insects, fungi, bacteria etc.”
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pure noise error class. Smaller models, on the other hand, generated 6 new categories
for existing spans and identified 56 invalid spans across more than 15 invalid categories,
including combined labels such as organism (quality).

6 Conclusion and discussion

This paper proposes a methodology for classifying errors detected in the output of LLMs
following a few-shot NER task, where NER is defined as a question-answering task with
a specific output requirement. The proposed error classification provides a snapshot of
how LLMs fail and a systematic comparison of the output from multiple LLMs. The
descriptive error counts could serve as a basis for (a) additional quantitative and (b)
guided qualitative analyses. Under (a), one may explore what percentage of the errors
classified as possible candidates are partial matches with spans from the gold dataset.
Another useful information would be the average span lengths across entity instances
in different error categories, and possible variations in the lengths of sentences where
entities belonging to different error categories are found. This could help steer efforts
under (b), which might include a hands-on comparison of sentences where repeated
error instances are found.

In this study, the counts of errors in different prompt versions (random and similar
task examples with 3, 4, and 5 shots) were averaged due to the limited variations in the
F1 score achieved by different prompts and the primary focus being on the comparison
of the four models’ performance rather than prompt-specific variations. It would be
beneficial to conduct error comparison per prompt output, which might show if and
how each model’s generation had been affected by the prompt design.

Finally, the few-shot NER task might benefit from a (self)-verification step (Li et al.,
2024; Madaan et al., 2023), where either the same model or a different model “checks”
the errors classified as possible candidates by the annotator model and flags up valid
entity candidates. In addition, the prompt may include an instruction for the LLM
to not change the input text, which might help with cases where the model removes
whitespaces in the generated texts.
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Appendix A: Prompt example
The prompt included here is motivated by the prompt used by Ashok and Lipton

(2023). One major difference is that in this prompt, the LLM processes a task require-
ment comprised of natural language and Python code, and is instructed to generate
output as a Python list. The prompt in this Appendix contains three random task
examples from the dataset BiodivNER.

Figure 1: Prompt example: Three randomly selected task examples (question-answer pairs) from
BiodivNER’s training data.
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