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Do LLMs fail in bridging generation?

Abstract

In this work we investigate whether large language models (LLMs) ‘understand’ bridging
relations and can use this knowledge effectively. We present the results obtained from
two tasks: generation of texts containing bridging and filling in missing bridging spans.
We show that in most of the cases LLMs fail to generate bridging in a reliable way.

1 Introduction

Bridging resolution is the task of linking mentions, which are text spans typically
representing entities or events, based on some associative relation, such as part-whole,
set-member, object-attribute, etc. (Clark, 1975; Poesio, 2004; Poesio, Vieira, & Teufel,
1997). E.g., in the sentence “The only indication it is a motel is a sign with a faded
picture of a locomotive.” the parts in bold represent the whole (a motel) and its part
(a sign ... locomotive), and are called an antecedent and an anaphor, respectively.

Bridging resolution is a challenging task - the current state-of-the-art end-to-end
bridging resolution model by Kobayashi, Hou, and Ng (2023) reaches maximum 26.2 F1
score on the ISNotes dataset (Markert, Hou, & Strube, 2012). One of the reasons for
such a poor performance is a lack of training data - manual annotation of bridging is
difficult and costly (Poesio et al., 2018). A potentially promising alternative would be
to create more data using an LLM. In this paper we investigate how much LLMs ‘know’
about bridging and whether they can apply this knowledge to generate new data. Our
contributions are two-fold.

• We prompt the text-davinci-003 model (OpenAI, 2023) to generate 1,000 texts
with bridging, and manually investigate in how many of them the relation holds.
We show that the model fails to generate texts with bridging in a reliable way.

• We use 13 LLMs to fill in missing bridging antecedents, anaphors, or both of them,
and compare the generated spans with the gold ones using a semantic similarity
metric. We provide evidence that LLMs have some knowledge of bridging, but
often fail to apply it correctly, or ‘avoid’ using it. We also demonstrate that
bridging knowledge contained in LLMs is difficult to extract and quantify.

2 Related Work

Investigation of LLMs’ capabilities of language ‘understanding’, as well as estimation of
the amount of knowledge they possess, are active research areas. There is evidence that
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LLMs have commonsense knowledge (Bubeck et al., 2023; X. L. Li et al., 2022), can infer
latent concepts from textual pre-training (Jin & Rinard, 2024) and capture structural
semantics (Cheng et al., 2024). On the other hand, Bian et al. (2023); Z. Li et al.
(2024); Zhu et al. (2023) and Saba (2024) show that the reasoning and ‘understanding’
capabilities of LLMs are often exaggerated. While to the best of our knowledge there
are no studies on LLMs and bridging relations, there exist some works focusing on the
ability of LLMs to capture related phenomena. Dos Santos and Leal (2024), apply
different models to assess the strength of semantic similarity between the word pairs,
and come to the conclusion that LLMs’ predictions correlate with the scores from human
annotators. A similar study is conducted by De Deyne, Liu, and Frermann (2024)
who use GPT-4 (OpenAI, 2025) to infer semantic relations for human-produced word
associations. They find out that the model is good at identification of broad relations,
but struggles with more fine-grained ones. Hu, Mahowald, Lupyan, Ivanova, and Levy
(2024) investigate the extend to which LLMs can differentiate between grammatical
and ungrammatical sentences. They provide evidence that the models’ grammaticality
judgments align with human intuitions across a range of linguistic phenomena, including
anaphora.

3 Data

For our study, we use the ARRAU 2 RST corpus (Poesio et al., 2018), as it is one of the
largest corpora annotated with bridging relations, and is often used for benchmarking
bridging resolution systems. ARRAU 2 RST is a subset of the Penn Treebank (Marcus,
Santorini, & Marcinkiewicz, 1993) and belongs to the news domain. Dataset statistics
and examples of bridging relations can be found in Appendix A.1.

In total, ARRAU 2 RST contains 3,777 bridging pairs. For our experiments, we
use the training partition of the dataset and construct the data as follows. We first
exclude cases in which the anaphor is part of the antecedent, as we assume that
nested spans would be particularly challenging both for the LLM to generate and for
us to explain in the prompt. This filtering step yields 2,721 pairs. This subset is
used for the first experiment with text-davinci-003. Second, for the sake of time and
computational efficiency - and to further simplify the task for the models - we limit
the number of bridging pairs used in the subsequent experiments. Specifically, we
exclude pairs in which the distance between the anaphor and its antecedent exceeds ten
whitespace-separated tokens. This results in a set of 554 bridging pairs, which are not
necessarily unique. The distribution of bridging relation types in this subset is provided
in Appendix A.1. Since each document (or sentence) in ARRAU 2 RST may contain
multiple bridging pairs, different pairs may share the same context. To reduce context
length, we truncate the text by removing all sentences to the left of the one containing
the antecedent and all sentences to the right of the one containing the anaphor. This
results in a maximum sequence length of 148 whitespace-separated tokens. Thus, in
the second experimental setting, we deliberately focus on bridging spans that occur
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close to each other in the text. We hypothesize that such spans are significantly easier
for LLMs to resolve compared to long-distance and/or nested spans.

Notably, 85 out of the 554 bridging pairs (15.34%) exhibit syntactic head overlap
between the antecedent and the anaphor, as in: “The Labor Department said wage
increases in manufacturing industries continue to be smaller than those in other
industries .”

We do not know whether ARRAU 2 RST was used in the training of any LLMs.
Therefore, we cannot rule out the possibility of data leakage.

4 Generating texts with bridging

Experiment. We start with an experiment, where we use text-davinci-003 to generate
short texts with bridging. To do the task, the model receives a definition of bridging, an
instruction, three demonstrations and a new bridging pair to construct a text with. The
demonstrations, as well as the target bridging pair are chosen randomly from the 2,721
ARRAU 2 RST pairs/texts. To identify both antecedent and anaphor in the text, we
ask the model to mark them with the "*" symbol on both sides. The prompt is shown in
Example 4.1. During text generation, we filter out all texts not following the specified
pattern, namely those that have too many or too few "*" symbols. The generation
process is executed until we collect 1,000 well-formed texts. Next, we manually check if
a bridging relation holds in each text.

Example 4.1. "Bridging is a relation of anaphoric references to non-identical associ-
ated antecedents. Bridging covers, for example, part-of, subset, set membership, and
possession relations. Make a short text in the style of news with the given words keeping
the bridging relation between them.
Words: * 40 people , or about 15 % * and * the personnel *.
Text: Telxon Corp. said its vice president for manufacturing resigned and its Houston
work force has been trimmed by * 40 people , or about 15 % * . The maker of
hand-held computers and computer systems said * the personnel * changes were
needed to improve the efficiency of its manufacturing operation .
{two more examples}
Words: * Federal Reserve banks * and * branches *.
Text:"

Results. Our analysis shows that only 24.4% of all the texts include correct examples
of bridging. Another 22.1% represent cases, where the boundaries of the original
bridging pairs need to be modified for the bridging relations to hold. The rest (53.5%)
do not contain any bridging relations, despite the fact that the given bridging pairs are
present in the generated texts. Example 4.2 is a good illustration of the most common
problems that occur when using text-davinci-003 for the task. First, instead of an
associative relation between the spans, we have an explicit one (cf. gold text in the
same example). Second, the spans’ boundaries need to be corrected.
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Example 4.2. Gold vs generated texts
GOLD: Tenders for the bills , available in minimum $ 10,000 denominations , must
be received by 1 p.m. EST Monday at the Treasury or at Federal Reserve banks or
branches .
GENERATED: The United States’s * Federal Reserve Banks * are divided into 12 *
branches * , each of which holds assets and liabilities of the original Federal Reserve
Bank and serves to influence the nation’s growth by controlling monetary production
and circulation.
Discussion. Although the model’s failure in more than half of the cases may be
attributed to factors such as suboptimal prompting, inadequate demonstrations, or
the inherent difficulty of the task, we hypothesize that the primary reason is that
text-davinci-003 struggles to genuinely ‘understand’ bridging. As a result, it cannot
reliably use bridging in context, even if it may be capable of explaining how two
bridging spans are related. As text-davinci-003 is currently deprecated, we conduct an
experiment using Falcon-40B to assess whether this may be the case. We extend the
prompt in Example 4.1 with an additional instruction requiring the model to provide an
explanation of why a bridging relation holds in the generated text. The results indicate
that while the model knows the definition of bridging and can explain the relation
between two spans, it still frequently fails to generate text that correctly instantiates
this relation. The full prompt, along with representative examples of generated texts
and explanations, is provided in Appendix A.2. Although Falcon-40B cannot be directly
compared to text-davinci-003, we hypothesize that the latter would likely exhibit similar
behavior.

5 Fill-in-the-gap task

Experiments. To evaluate how well LLMs utilize their knowledge of bridging, we
design the following task. For each of the 554 short texts, we successively mask the
antecedent, the anaphor, and both spans simultaneously. The LLM is then prompted
to process each of the three resulting texts with different types of gaps and to recover
the missing spans.

The prompt (see Example 5.1), which is identical across all models, includes four
demonstrations. While some LLMs exhibit strong zero- or one-shot capabilities, others
may require additional examples to effectively ‘understand’ the task and produce the
desired answer format. Based on our experiments, we found that four demonstrations
are optimal for this task. For each masked span or pair, the demonstrations are selected
from the remaining 553 gold instances, prioritizing those with the highest semantic
similarity to the target spans. To ensure diversity, the spans to be recovered are never
identical to those in the demonstrations. Semantic similarity between spans is computed
using Sentence-BERT (Reimers & Gurevych, 2019), with similarity scores calculated
exclusively on the spans themselves, excluding surrounding context. Notably, the
prompt omits both the definition of bridging and any explicit instruction to generate it,
as we aim to evaluate how often an LLM can independently infer bridging relations.
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Example 5.1. "You are a helpful AI assistant for filling in the gaps in the text.
You are given a text containing [MASK] tokens. Replace each [MASK] token with a
suitable word.
Text with gaps: She also frequently invites directors , producers , actors , [MASK]
and [MASK] [MASK] [MASK] [MASK] for coffee and clips .
Recovered phrases:
writers
other show business people
Recovered text: She also frequently invites directors , producers , actors , writers and
other show business people for coffee and clips.
{three more examples}
Text with gaps: The show , one of five new [MASK] series , is the second casualty of
[MASK] [MASK] [MASK] so far this fall .
Recovered phrases: "

We experiment with publicly available instruct/chat LLMs from different model
families and of different sizes, such as Command (35B and 104B) (Cohere, 2024), Falcon
(7B and 40B) (Almazrouei et al., 2023), Llama3 (8B and 70B) (Grattafiori et al., 2024),
Mistral (7B and 123B) (Jiang et al., 2023), Qwen (7B, 32B and 72B) (Qwen et al.,
2025) and Yi (9B and 34B) (Young et al., 2025). The full versions are specified in
Appendix A.6.

As an exact string match is not suitable for our task, we compare the LLM-generated
spans with the original masked spans using a modified version of the BERTScore seman-
tic similarity metric (Zhang, Kishore, Wu, Weinberger, & Artzi, 2020). The rationale
for this choice, along with details of the modification, is provided in Appendix A.4.
To obtain the lower bounds/baselines, we replace the original bridging pairs with the
random, least and most similar pairs (spans) taken from the whole ‘pool’ of gold bridging
pairs in the dataset. Additionally, to assess whether LLMs possess more knowledge
about bridging than smaller pre-trained language models, we perform the same recovery
task using the encoder-decoder model T5-large (Raffel et al., 2020) and the masked
language model DeBERTa-large (He, Liu, Gao, & Chen, 2021).

We formulate the following hypotheses. If an LLM possesses some knowledge about
bridging and is able to use it, then 1) the BERT score between the generated spans
and the gold ones should be higher than the scores achieved by the baselines and 2) it
should be easier for the model to recover one missing span (antecedent or anaphor),
than both, i.e. the semantic similarity score should be lower in the latter case.

Importantly, LLMs sometimes produce outputs that do not conform to the format
specified in the prompt. For example, a model may generate additional text, return only
a single recovered span when two are expected, or omit the recovered spans entirely.
When the generated spans cannot be reliably extracted, we insert a dummy span marked
as “. . . ” to fill the gap. The number of such invalid outputs produced by each model is
reported in Table 5 in Appendix A.5.

JLCL 2025 – Band 38 (2) 81



Skachkova, Ostermann, van Genabith, Kiefer

Results. Figure 1 presents the BERT scores (F1) between predicted and gold spans
for three types of gaps. As expected, larger models typically achieve better results.
Interestingly, Qwen and Yi seem to do the task better than other models of similar
sizes, with Qwen-32B achieving results comparable to those of larger models. All LLMs
beat the DeBERTa-large, Random and Least-sim baselines easily, but only really large
ones (70B-123B) surpass T5-large and can compete with Most-sim, especially in the
case where both spans are to be restored. The paired t-test shows that while 70B-123B
LLMs, as well as Qwen-32B, reach significantly higher BERT scores than Most-sim
when recovering missing antecedents and anaphors, the difference to this baseline when
restoring both spans is not statistically significant. Thus, our first hypothesis is only
partially supported.

Figure 1 shows stronger evidence for the second hypothesis. Namely, for all the
LLMs, except Mistral-7B, it is more difficult to restore two spans, rather than one,
and the difference between the scores is statistically significant. Also, most LLMs tend
to struggle more with recovering antecedents, rather than anaphors, which was also
confirmed by the paired t-tests. More details can be found in Table 5 in Appendix A.5.

Figure 1: BERT scores between gold and predicted spans

To assess model confidence, we compute average perplexity scores for each LLM
across 554 texts, evaluating five span types (predicted, gold, most/least similar, random)
and three masked slot types (antecedent, anaphor, both). Detailed results appear in
Appendix A.7. Perplexity patterns support prior findings: models are less confident when
recovering both slots, with random spans yielding the highest perplexities. Predicted
and gold spans are rated more probable than others, with predicted spans generally
having lower perplexity. Larger models (except Llama and Qwen) tend to demonstrate
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lower perplexities than smaller ones in the same family. However, lower perplexity
does not always align with higher semantic similarity - for instance, Yi-9B has higher
perplexity than Falcon-7B but achieves better BERT scores.

Discussion. While Figure 1 provides evidence that LLMs (at least very large ones)
may ‘know’ what bridging is, and can use this knowledge to some extent, it is also
important to note that a high similarity score between generated and gold spans does
not necessarily guarantee that the bridging relation is preserved or that the generated
text is coherent and grammatically correct. Conversely, a low similarity score does not
definitively indicate the absence of a bridging relation in the generated pair.

To investigate whether a high BERT score corresponds to correctly generated bridging
pairs, we ask two annotators to manually evaluate 100 randomly selected pairs generated
by Qwen-72B (one of the best-performing models) and 100 randomly selected pairs
produced by Llama3-8B (lower-scoring). The annotators assess the number of text
sequences in which the bridging relation was preserved. Manual inspection reveals that
despite relatively high BERT scores, Qwen-72B generates bridging only in 35% of cases
on average. Another 9% can be classified as bridging, but have incorrect boundaries
(see Example A.10 in Appendix A.3). The performance of Llama3-8B is notably lower:
bridging relations are found in only 16% of generated pairs, with another 7% potentially
classifiable as bridging if the span boundaries were predicted correctly. Inter-annotator
agreement, measured by Cohen’s Kappa (Cohen, 1960), is 0.41 (moderate) and within
the typical range for bridging annotation; for example, Poesio and Vieira (1998) report
Cohen’s Kappa values between 0.31 and 0.59 for the annotation of definite noun phrases
as being in bridging relation or not.

Prompt Antecedent Anaphor Both
no bridging 70.84 75.13 67.05
bridging 72.42 76.32 67.53

Table 1: BERT scores (F1) for 3 types of slots.

To some extent, the low proportion
of bridging among the generated spans
can be explained by the fact that many
masked spans do not necessarily require
bridging for the text to be coherent
and correct (see Example A.11 in Ap-
pendix A.3). Since the prompt does not

explicitly instruct the model to generate bridging relations, a model may tend to choose
‘easier’ candidates to fill in the gaps. To verify this assumption, we repeat the fill-in-the-
gap experiment with Qwen-72B, augmenting the prompt with a definition of bridging
and an explicit instruction to generate bridging. As shown in Table 1, this yields slight
improvements; however, the differences are statistically insignificant. Consequently, we
conclude that an explicit directive to produce bridging relations does not effectively
guide Qwen-72B toward the desired behavior. Similar experiments with other models
are left for future work.

The models’ difficulty in recovering bridging relations may also be influenced by
characteristics of the dataset, such as the frequent presence of personal names and
numerical expressions as markables, which are challenging for models to reproduce
accurately. Additionally, bridging markables and relation types are not consistently
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defined and vary across datasets (Kobayashi & Ng, 2020). Therefore, we hypothesize
that our results may have limited generalizability.

The low number of recovered bridging pairs may also reflect the inherent difficulty of
the task. It is well-known that annotating bridging relations is challenging (Poesio et
al., 2018; Poesio & Vieira, 1998). However, to our knowledge, no prior studies have
investigated human performance on tasks involving filling in missing bridging spans
or composing texts based on bridging pairs. For a more rigorous evaluation of LLM
capabilities, it would be valuable to compare their performance on these tasks with
that of human participants.

Finally, employing the same prompt - albeit concise and simple - for all models
may be suboptimal and could contribute to less accurate results. As Mizrahi et al.
(2024) highlight, model performance can vary significantly across different instruction
paraphrases. Therefore, we plan to conduct a multi-prompt evaluation in future work
to ensure robustness.

6 Conclusion

In this paper, we investigated to what extent LLMs ‘understand’ bridging and whether
we can use this knowledge for data generation. As our analysis covers only a very
small portion of the spans generated by LLMs, it is difficult to draw simple and clear
conclusions. Based on the experiments’ results, we observe the following trends.

First, bridging remains a highly challenging phenomenon for LLMs, including those
with 70B to 123B parameters. Our experiments demonstrate that while such models
possess some degree of ‘understanding’ of bridging, they frequently fail to apply this
knowledge effectively. Consequently, their use for reliably generating texts with bridging
relations is limited.

Second, measuring bridging is inherently difficult. We observed that many masked
gaps can be plausibly filled with non-bridging spans, making it challenging to determine
whether an LLM fails due to lack of knowledge or simply opts for simpler candidates.
The absence of reliable metrics for identifying bridging further complicates evaluation.

Finally, our preliminary findings require validation on additional bridging datasets,
preferably focusing on better-defined subsets of bridging relations. Furthermore, multi-
prompt evaluations and comparisons with human performance are necessary to support
or refute the trends observed in our initial experiments.
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A Appendix

A.1 ARRAU 2 RST

All noun phrases in the ARRAU 2 RST dataset are considered markables, which can
be referring or non-referring (expletive, quantificational, or predicative), see Table 2 for
statistics. Bridging relations are annotated between referring markables and classified
into five types, as shown in Table 3. Four of them, namely possessive, subset, element
and other also have inverse variants. The undersp-rel relation is for cases that do not
fit into the previous four categories. Examples A.1-A.5 illustrate all five relation types.

documents 413
tokens 228,901
avg. doc length (tok) 554.2
markables 72,013
avg. markables per doc 174.4
non-referring markables 9,552 (13.3%)

Table 2: ARRAU 2 RST corpus statistics
(from Poesio et al. (2018)).

poss / poss-inv 87 / 25
subset / subset-inv 1,092 / 368
element / element-inv 1,126 / 152
other / other-inv 332 / 7
undersp-rel 588
total 3,777

Table 3: Distribution of bridging in ARRAU
2 RST (from Poesio et al. (2018)).

element 177 (31.95%)
other 124 (22.38%)
subset 101 (18.23%)
undersp-rel 64 (11.55%)
subset-inv 37 (6.68%)
poss 18 (3.25%)
element-inv 16 (2.89%)
unknown 11 (1.99%)
poss-inv 5 (0.90%)
other-inv 1 (0.18%)

Table 4: Distribution of bridging rela-
tions in the ARRAU 2 RST
subset for the filling-in-the-
gap task.

Table 4 presents the distribution of bridging
relation types among the 554 pairs selected for
the fill-in-the-gap task. The distribution broadly
reflects that of the full dataset, with the notable
exception of a higher proportion of relations la-
beled as other. Interestingly, some pairs are an-
notated with an unknown relation, which is not
documented in the dataset paper by Poesio et al.
(2018).

Example A.1. ‘Possessive’ relation
Shearson Lehman Hutton Inc. said it applied to
Taiwanese securities officials for permission to
open brokerage offices in Taipei . Shearson
’s application is the first since the Taiwan Secu-
rities and Exchange Commission announced June
21 that it would allow foreign brokerage firms to
do business in that country .

Example A.2. ‘Subset’ relation
Oil stocks escaped the brunt of Friday ’s selling and several were able to post gains ,
including Chevron , which rose 5 to 66 3 in Big Board composite trading of 2.4 million
shares .
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Example A.3. ‘Element’ relation
Elsewhere in the oil sector , Exxon rallied 7 to 45 3 ; Amoco rose 1 to 47 ; Texaco
was unchanged at 51 3 , and Atlantic Richfield fell 1 5 to 99 1 .

Example A.4. ‘Other’ relation
The precious metals sector outgained other Dow Jones industry groups by a wide
margin for the second consecutive session .

Example A.5. ‘Underspecified’ relation
Taiwan officials are expected to review the Shearson application later this year . The
new rules will allow investors to buy foreign stocks directly .

The following characteristics of the ARRAU 2 RST bridging markables are important
for our task, as they pose considerable challenges for bridging resolution. First, many
of the markables are personal names, e.g., ’Turner Broadcasting System Inc.’, ’Viacom
Pictures’ or ’NBC’. Some represent an amount of money, like ’53.1 million’ or ’the
$200 million portion of the offering’ or other numerical expressions, e.g., ’one brown
two-year-old filly’. Next, the average lengths of an antecedent and an anaphor in the
subset used for filling in the gaps task are 4.05 and 3.90 tokens, respectively. However,
about 11.01% of the antecedents and 8.84% of the anaphors are longer than 10 tokens.
Typically, they contain long relative clauses, e.g., ’Union Carbide, whose third-quarter
earnings dropped about 35% from a year earlier and fell short of analysts’ expectations’.

A.2 Generating texts with bridging using reasoning

To support the hypothesis that LLMs may ‘know’ the definition of bridging, be able to
‘explain’ the bridging relation between the two spans and still fail to generate a short
text where this relation would hold, we present three examples from our experiments
with Falcon-40B. The prompt we use is based on the prompt for text-davinci-003 and
is given in Example A.6.

Example A.6. "Bridging is a relation of anaphoric references to non-identical associ-
ated antecedents. Bridging covers, for example, part-of, subset, set membership, and
possession relations. Make a short text in the style of news with the given words keeping
the bridging relation between them. Explain why there is a bridging relation between the
given words in the text.
Words: * 40 people , or about 15 % * and * the personnel *.
Text: Telxon Corp. said its vice president for manufacturing resigned and its Houston
work force has been trimmed by * 40 people , or about 15 % * . The maker of
hand-held computers and computer systems said * the personnel * changes were
needed to improve the efficiency of its manufacturing operation .
Reasoning: There is a bridging relation between * 40 people, or about 15 % * and * the
personnel * because * the personnel * introduces a broader group from which the specific
subset * 40 people * is later identified.
{two more examples}
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Words: * Federal Reserve banks * and * branches *.
Text:"

As Examples A.7-A.9 illustrate, Falcon-40B typically generates a plausible explanation
for why the given spans are in a bridging relation. In Example A.7 the generated text
aligns with the explanation, although the span boundaries are slightly incorrect. In
Example A.8 the span * wall * is missing and bridging relation is not preserved. A
similar issue occurs in Example A.9 with the span * thigh *.

Example A.7.
Words: * leg * and * tripod *
Text: The chair was found to have a loose * leg *, causing the customer to trip when
they stood up. As a result, the company issued a recall for all * tripods * on the chair.
Reasoning: * Leg * and * tripod * are in a bridging relation because * leg * is a specific
example of a type of support, and * tripod * is a particular type of leg structure that has
three legs.

Example A.8.
Words: * wall * and * building *
Text: Due to the extreme weather conditions, several walls of the old building have
collapsed, causing significant damage. Engineers are currently working on plans for
repairing and rebuilding the * building *.
Reasoning: * Wall * and * building * are in a bridging relation because * wall * is a
specific element or part of a building that serves as a support for the structure, while *
building * refers to the entire structure.

Example A.9.
Words: * thighbone * and * thigh *
Text: Doctors recommend regular exercise to improve mobility and reduce pain in the *
thighbone * and the surrounding areas.
Reasoning: * Thighbone * and * thigh * are in a bridging relation, because * thighbone
* is a part of the body and * thigh * is a part of the leg, and both parts are identified by
their locations.

A.3 Fill-in-the-gap task: Typical mistakes

Examples A.10 and A.11 illustrate two typical types of mistakes made by LLMs when
performing the fill-in-the-gap task.

Example A.10. Wrong span boundaries
PREDICTED: Once inside , she spends nearly four hours measuring and diagramming
each room in the 80-year-old house , gathering enough information to estimate what
it would cost to rebuild * it from scratch * . She snaps photos of * the original
woodwork * and the plaster that has fallen away from the walls .
GOLD: Once inside , she spends nearly four hours measuring and diagramming each
room in the 80-year-old house , gathering enough information to estimate what it would
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cost to rebuild * it * from scratch . She snaps photos of * the original woodwork *
and the plaster that has fallen away from the walls .

Example A.11. Unrelated spans
PREDICTED: Early this century , diamond mining in the magnificent dunes where the
Namib Desert meets the Atlantic Ocean was a day at * the beach * . Men would crawl
in * on hands * looking for shiny stones .
GOLD: Early this century , diamond mining in the magnificent dunes where the Namib
Desert meets the Atlantic Ocean was a day at * the beach * . Men would crawl in *
the sand * looking for shiny stones .

A.4 BERT score

The original BERT score compares whole sequences and is not designed to compare
their parts. It is possible to extract gold spans and compare them with the predicted
ones, but in this case the context, i.e. the surrounding text, will be lost. And if we keep
the text, then in most of the cases two sequences will be almost identical and this would
lead to BERT score > 90% no matter what the model predicts. To avoid this problem,
we modify BERT score as follows. First, we calculate the contextual embeddings of
gold and predicted spans within the original text. Then, we provide span indices to
the model and calculate the BERT score only between the embeddings of the spans,
masking the embeddings of all the other tokens in the sequence.

A.5 Invalid generations and T-test statistics

Table 5 reports the proportion of invalid outputs generated by the LLMs. An output is
considered invalid if it fails to follow the format specified in the prompt (Section 5),
rendering it impossible to extract the recovered phrases.

The table also reveals whether differences in BERT scores achieved by different
models for different types of spans are statistically significant. Insignificant differences
(i.e. with p-value ≥ 0.05) are given in bold. Given two types of spans, the negative
statistic means that the score obtained for the first type is smaller than for the second
one, e.g., we see that the BERT scores for the recovered antecedents are smaller than
for anaphors across all the models. In most cases, these differences are significant. Next,
we compare the scores for antecedents with the scores for both spans. As Table 5 shows,
the former are larger than the latter, and the differences are also statistically significant.
Given that the scores for antecedents are smaller than for anaphors, we conclude that
the differences between the latter and the scores obtained for both spans are significant
as well. This supports our hypothesis that for all models it is easier to restore a single
bridging span rather than a pair.
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Model # invalid gen. antec. vs anaphor antec. vs both
statistic p-value statistic p-value

Falcon-7B 172 (10.35%) -4.25 2.52e-05 9.60 2.83e-20
Llama-8B 10 (0.60%) -1.35 0.18 4.35 1.62e-05
Mistral-7B 185 (11.13%) -3.89 1.10e-04 -0.11 0.91
Qwen-7B 39 (2.35%) -1.58 0.12 5.92 5.66e-09
Yi-9B 45 (2.71%) -4.33 1.76e-05 3.98 7.75e-05
Command-35B 31 (1.87%) -0.80 0.43 3.83 1.40e-04
Falcon-40B 239 (14.38%) -3.57 3.90e-04 7.39 5.34e-13
Qwen-32B 54 (3.25%) -1.75 0.08 4.53 7.16e-06
Yi-34B 148 (8.90%) -3.78 1.70e-04 2.56 0.011
Command-104B 42 (2.53%) -3.06 2.00e-03 4.58 5.82e-06
Llama-70B 21 (1.26%) -1.85 0.065 4.30 2.04e-05
Mistral-123B 98 (5.90%) -3.68 2.60e-04 4.09 5.02e-05
Qwen-72B 45 (2.71%) -3.46 5.90e-04 3.32 9.60e-04
T5-large 1 (0.06%) n/a n/a n/a n/a

Table 5: Number of invalid spans (out of 1,662) generated by LLMs and statistical significance of
differences in BERT scores (F1) for different types of spans.

A.6 Models’ versions

To save space and memory we use quantized variants of the models 1 from Hugging
Face (Wolf et al., 2020).

• TechxGenus/c4ai-command-r-v01-GPTQ (35B)

• alpindale/c4ai-command-r-plus-GPTQ (104B)

• tiiuae/falcon-7b-instruct

• tiiuae/falcon-40b-instruct

• TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ

• TechxGenus/Meta-Llama-3-70B-Instruct-GPTQ

• TechxGenus/Mistral-7B-Instruct-v0.3-GPTQ

• TechxGenus/Mistral-Large-Instruct-2411-GPTQ (123B)

• Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8

• Qwen/Qwen2.5-32B-Instruct-GPTQ-Int8
1We did not find working quantized Falcon models, therefore we use their standard versions.
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• Qwen/Qwen2.5-72B-Instruct-GPTQ-Int8

• LnL-AI/Yi-1.5-9B-Chat-4bit-gptq

• zgce/Yi-1.5-34B-Chat-GPTQ-Int8

A.7 Perplexities
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Figure 2: LLMs’ perplexities for different types of spans
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