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Abstract

This paper deals with methods for estimating fre-
quencies of concepts in wordnets from corpus
data. In particular, it addresses issues which mul-
tiple inheritance structures in wordnets raise re-
garding this task. One of the discussed approa-
ches (tree cut) is problematic in this respect, be-
cause it requires a pure tree hierarchy. Applying
this approach to a wordnet requires that its DAG
structure is transformed into a tree. I propose a
mathematically sound method for that purpose
and compare this method to a commonly used
ad-hoc strategy. This strategy leads to biases in
the estimated frequencies which are avoided by
the approach proposed here. Experiments with
GermaNet demonstrate that these biases have si-
gnificant impacts.

1 Introduction

Wordnets, i.e. lexical-semantic hierarchies in
the style of WordNet (cf. FELLBAUM 1998), have
commonly been employed in NLP applications
which involve quantitative methods. In particu-
lar, within the paradigm of statistical corpus lin-
guistics, approaches have been proposed which
combine the quantitative evidence provided by
word frequencies obtained from a corpus with
the symbolic knowledge provided by a wordnet.
To establish this combination, the frequencies
of words in the corpus are propagated to the re-
spective concepts that subsume these words. In
this way, concept frequencies are estimated from
word frequencies. For example, the frequency
of the word ‘person’ in the corpus plays a role
for the frequency estimates for the concepts
<person>, <life_form>, and <entity> in the se-
mantic hierarchy. Concept frequencies, in turn,
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are used to estimate concept probabilities, which
then can be employed for the NLP task in ques-
tion.

A fundamental issue in this context is how
concept frequencies can be adequately estimated
from word frequencies. This paper is concerned
with this issue. In principle, there are several pos-
sible ways to achieve that goal. In section 2, I
will sketch three basic methods and discuss sui-
tability conditions for their application by con-
sidering approaches to a particular NLP task. It
turns out that different acquisition approaches

— even if they serve the same task — demand diffe-
rent methods of estimating concept frequencies.

The rest of the paper focuses on a general in-
compatibility that arises if one of the methods
described in section 2 is applied to a wordnet.
This method requires that the concept hierar-
chy has a pure tree structure. However, a word-
net generally has the structure of a DAG, i.e. a
concept may have more than one parent (imme-
diate hyperonym). To overcome this conflict, a
simple ad-hoc strategy to (virtually) convert the
DAG structure into a tree structure has been lar-
gely used. In section 3, I will point out that this
strategy introduces undesirable biases into the
frequency estimations. Treating multiple inhe-
ritance in an ad-hoc manner has been justified
(if at all) by the fact that multiple inheritance
(multiple parents) in WordNet is rare: Less than
1% of the noun concepts in WordNet have more
than one parent, most of which are very speci-
fic, i.e. located at low levels of the hierarchy (cf.
McCartHY 2001). However, for other word-
nets, the situation is different. For example, for
GermaNNet (cf. HamP & FELDWEG 1997; KUNZE
& WAGNER 2000), cross-classification of con-
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cepts has been a major design principle, and thus
multiple inheritance is common; 11.5% of the
GermaNet concepts have more than one parent.
Hence, when applying a frequency estimation
method which requires a tree-shaped hierarchy
to a hierarchy like GermaNet, a principled so-
lution to that conflict is highly desirable. There-
fore, I propose a more sophisticated method for
propagating word frequency counts to concepts.
This method converts a wordnet DAG structure
into a tree structure, but avoids the drawbacks
mentioned above.

Finally, in section 4, I report some experi-
ments performed with GermaNet. These experi-
ments show that the biases introduced by the
abovementioned ad-hoc strategy have significant
impacts.

2 Basic Methods

2.1  An Exemplary Task

In order to exemplify the use of different ways to
estimate concept frequencies, I will discuss their
role in a particular task: learning selectional pre-
ferences. Selectional preferences are semantic pre-
ferences that a predicate (e.g. a verb) exhibits for
its arguments. For example, the verb ‘eat’ prefers
a subject referring to a human being or animal
and an object denoting food. Such preferences
can be represented by wordnet concepts. Stati-
stical approaches for acquiring selectional prefe-
rences using WordNet retrieve for each concept
a preference value which quantifies the degree
of preference (or dispreference) of that concept
(with regard to a certain argument slot of a cer-
tain verb). The computation of such preference
values is based on concept probabilities, which
are derived from concept frequencies.

In this section, I describe the basic approaches
for concept frequency estimation which have
been proposed in the literature that deals with
learning selectional preferences by combining
statistical corpus analysis and WordNet. Fur-
thermore, I sketch how these frequency counts
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are employed for preference acquisition. It turns
out that different ways to choose the concepts
that should represent the selectional preferences
of a verb (e.g. <food> for the object of ‘eat’) re-
quire different frequency estimation strategies.

The training data that are used by the approa-
ches discussed here are extracted from a parsed
corpus. They comprise pairs of the form (v, 7),
where v is a verb and 7 is the head noun of a
certain fixed argument type (e.g. the object) of
v. From these data, the verb—noun pair frequen-
cies freq(v,n) as well as the marginal frequencies
freq(v) and freq(n) (the overall frequencies of v
and 7 in the data) are extracted and employed
to estimate noun concept frequencies freg(ncpt)
and freq(v,ncpt), respectively, where ncpr is a
concept subsuming 7. Based on these concept
counts, concept probabilities are usually obtai-
ned by maximum likelihood estimation:

_ freq(v,nept) S

p(nept |v) = Jreq()
_ freg(nept) )

p(ncpt) = N

where [V is the size of the training data.

These probabilities are used to obtain the pre-
ference value of ncpr (w.r.t. v). There are sever-
al ways to quantify selectional preference. Here,
[ shortly mention the most common ones.
The simplest possibility is to immediately use
p(nept|v) (the probability that nept occurs as
complement of v) as preference score (pursued
e.g. in L1 & ABE 1998). An alternative possibility
(proposed in L1 & ABE 1996), is to compute the
preference value by the ratio

plncpt | v) 3)
p(nept)

This quantity measures the probability that ncpr
co-occurs with v relative to the general probabi-
lity of ncpr in the data. This definition offers an
obvious way to distinguish between preference
and dispreference: If the ratio is greater than 1,
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then v selects ncpr with higher probability than
by chance, and thus nepz is preferred by ». Con-
versely, a ratio smaller than 1 indicates disprefe-
rence.

A third possibility (proposed e.g.
RESNIK 1998 and RiBAs 1995a) combines the
above mentioned alternatives:

in

(4)

p(ncpt |v)

p(nept | v)log
p(ncpt)

Here, the logarithm of the ratio in (3) (which
corresponds to the mutual information bet-
ween v and ncpt) is weighted by p(ncpt|v). Due
to the factor log 242/
guishes between preferred concepts (preference

, this measure also distin-

value > 0) and dispreferred ones (preference va-
lue < o). In addition, the magnitude of the pre-
ference score is scaled by the probability that »
selects ncpt.

2.2 The Word-to-Concept Approach
The method I refer to as word-to-concept ap-
proach was proposed by REsNIK 1998. This me-
thod immediately divides the frequency count of
a noun 7 equally among all concepts which sub-
sume 7 (denoted as concepts(n)).

Figure 1 illustrates how the word-to-concept
approach works. There are four WordNet con-
cepts that subsume the word ‘person’: <person>,

<entity>
4

<life form> _<causal agent>

25
25

<person>

Figure 1: Frequency propagation by the word-to-concept
approach
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<life_form>, <causal_agent>, and <entity>. Thus,
each of these four concepts receives ¥ of the fre-
quency of ‘person’ in the corpus ( 1°% = 25 in the
example).’

Formally, the frequency of a concept ncpr is
calculated as

freq(n) )

concepts(n)

>

ne ordst(ncpt)

freq(nept) =

where words*(ncps) is the set of words which are
subsumed by ncpt, i.e. which are a member eit-
her of the synset of n¢pz or of the synset of one of
its hyponyms. (The joint frequency freq(vncpr)
of a verb » and a noun concept nc¢pt is computed
analogously; one just replaces freq(n) by freq(v,n)
in equation (5s).)

The word-to-concept approach yields a pro-
bability distribution over all concepts in the hie-
rarchy, i.e. the probabilities p(ncpz) of all con-
cepts sum to 1. The same holds for the condi-
tional probabilities p(ncpt|v). This property cor-
responds to Resnik’s approach to represent the
selectional preferences of a verb by a// WordNet
concepts (and their preference values), rather
than to retrieve a subset of ‘representative con-
cepts for that purpose. Moreover, he uses the
distributions p(ncpt|v) and p(ncpt) and to quan-
tify the overall preference strength of v. The selec-
tional preference strength quantifies how strong

<entity>

A

<life form> <causal agent>

7z

100

100 100

<person>

100

Figure 2: Frequency propagation by the word-to-sense
approach
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the predicate semantically constrains its argu-
ments. For example, ‘eat’ has a greater selectional
preference strength for its object then ‘have’, be-
cause ‘eat’ strongly prefers objects denoting food,
whereas ‘have’ can select almost any noun as
its object. Resnik’s approach of quantifying the
overall preference strength is to measure to what
extent the probability distribution p(ncpt|v) de-
viates from the general distribution p(n¢pz). The
larger the difference between the two distributi-
ons, the higher the preference strength. Resnik
calculates this difference by the well-known in-
formation-theoretic distance measure of relative
entropy. In fact, RESNIK 1998 reports a low prefe-
rence strength for ‘have’ (0.43) and a comparably
high preference strength for ‘eat’ (3.51).

2.3  The Word-to-Sense Approach

While Resnik divides the frequency count of a
noun 7 among all concepts concepts(n) which
subsume 7, Ribas (cf. RiBas 1995a) proposes a
different approach: He divides freg(n) among
the concepts which represent an immediate sen-
se of 7, i.e. those concepts whose synsets contain
n (denoted as senses(n)). I refer to this strategy as
the word-to-sense approach. However, as a noun
does not only provide evidence for its senses, but
also for the hyperonyms of these senses, the fre-
quency count obtained for a noun sense is com-
pletely propagated to each of its ancestors in the
hierarchy.

Figure 2 takes up the example in figure 1, this
time illustrating the word-to-sense approach.
The frequency of ‘person’ (100) is mapped to
the synset <person>, which represents the corre-
sponding word sense.” This count is completely
propagated to all concepts that subsume person.

In general, the frequency of a concept is esti-
mated as the sum of the counts of those word
senses which the concept subsumes. More for-
mally, let semesmpt(n) be the set of senses of n
which are subsumed by ncpz. Then, the frequen-
cy of a concept is estimated by the equation
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freqm) o

|sensesm,p ' (n)| |senses(n)|

freq(ncpt) = z

newords™ (ncpt)

The word-to-sense approach views the WordNet
hierarchy as an inventory of concepts with imp-
lication relations among each other. A hypony-
my/hyperonymy relation between two concepts
indicates that one concept (the hyponym) imp-
lies the other (the hyperonym). This means that
a concept inherits all the probability mass of its
hyponyms. In particular, since the root of the
hierarchy is implied by all concepts, its proba-
bility is 1. In contrast, the word-to-concept ap-
proach views the WordNet hierarchy as a pool
of concepts which represent a smaller or larger
set of nouns. In this model, hyponymy/hyper-
onymy relations between concepts indicate a
common (sub)set of nouns providing evidence
for these concepts. This model is required for
quantities which are based on probability dis-
tributions over the whole inventory of concepts,
like Resnik’s overall preference strength. A con-
sequence of this model which might be some-
what counterintuitive is that the probability of
the root concept is below 1. This is because pro-
bability mass is not completely inherited by, but
equally divided among hyperonyms.

As noted above, Ribas quantifies selectional
preference according to formula (4). In contrast
to Resnik, he does not keep all noun concepts,
but extracts a ‘representative set’ of concepts to
model the preferential behaviour of a verb. To
induce this set, he uses a greedy approach which
can be sketched as follows: Initially, consider all
noun concepts as ‘candidates’ for inclusion into
the representative set. Among them, select that
concept ncpt which has the highest preference
value and insert it into the target set. After that,
remove zcpt and all its hyponyms and hypero-
nyms from the set of candidates. (This is done
to avoid redundancy.) Repeat these steps until
the candidate set is empty. In this way, Ribas
yields a non-redundant set of highly preferred
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concepts. For example, R1BAs 1995a reports that
this approach acquired (among others) the follo-
wing concepts for the subject of ‘present’: <cau-
sal_agent> (4.15), organization (0.45), <adminis-
trative_district> (0.26), <and life_form> (0.14).
Ribas’ simple heuristic for retrieving a repre-
sentative set of concepts does not depend on a
particular approach for estimating concept fre-
quencies. All methods discussed in this paper are
compatible with it.

2.4 The Tree Cut Approach

The tree cut approach is a more sophisticated way
of retrieving a collection of ‘representative’ con-
cepts from a semantic hierarchy. It was developed
by Li and Abe (cf. ABE & L11996; L1 & ABE 1998)
for the task of acquiring selectional preferences.
Li and Abe represent the selectional preferences
of a verb by a tree cur model. Such a model provi-
des a horizontal cut through the noun hierarchy
so that the concepts which are located along this
cut form a partition of the noun senses covered
by the hierarchy. A tree cut model consists of the
concepts specified by a cut and the preference
values for these concepts. Figure 3 shows a porti-
on of the WordNet hierarchy—with preference
values attached to the individual concepts, com-
puted according to formula (3)—and two of the
possible cuts across the hierarchy (indicated by a
solid and a dashed line, respectively). The diffe-
rence between the corresponding models is that
one model contains the concept <animal>, whe-
reas the other model contains the more specific
concepts <bird>, <insectivore>, and <primate>.
This is an artificial example intended to illustrate
plausible preference values and tree cut models
for the subject of ‘fly’.

The tree cut approach aims at finding a cut
at the appropriate level of generalisation. In this
respect, the cut indicated by the solid line in
figure 3 is more appropriate than the more ge-
neral cut indicated by the dashed line, becau-
se the latter one does not capture the fact that
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some kinds of animals (birds, insects) normally
fly, while others do not. The cut at the adequa-
te abstraction level is selected by the Minimum
Description Length (MDL) Principle. I will not
go into details concerning this information-the-
oretic principle; cf. L1 & ABE 1998 and ABE & L1
1996 for its motivation and application for the
given task. In our context, it is important to note
that the MDL approach requires that every pos-
sible tree cut model exactly captures the probabi-
lity mass that represents the whole training data.
In other words, the sum of the frequency counts
of the concepts on the cut has to correspond to
the size of the data?

To ensure this requirement, the frequency of
a noun sense has to be completely propagated
to its superconcepts so that the frequency of a
concept on the cut (and hence its probability)
encompasses the frequencies (probabilities) of
all senses it subsumes. Therefore, concept fre-
quencies have to be estimated according to the
word-to-sense approach. However, there is a
further constraint: It is necessary that each noun
sense is subsumed by one and only one concept
on the cut. Therefore, the structure of the hie-
rarchy must exhibit two properties: Firstly, the
noun senses must be modelled by leaf nodes in
the hierarchy, while the inner nodes model more
abstract concepts. This is required to ensure that
all noun senses are below the cut and thus captu-
red by it. Secondly, the hierarchy must be a pure
tree, i.e. all concepts (except the root) must have
exactly one parent. This is necessary to guaran-

<life form>
0.

x}

imate>
<pr 0.0

v
<hird>
a0 3243

<insectivore>

Figure 3: Two possible tree cut models for the subject of ‘fly’
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tee that no noun sense is represented by multip-
le concepts on the cut.* Obviously, the structu-
re of wordnets deviates from these requirements.
Word senses are not only represented by leaves,
but by all nodes in the hierarchy. Furthermore,
as noted, a wordnet generally exhibits a DAG
structure with multiple inheritance.

Thus, to be able to apply the tree cut approach
to a wordnet, its structure has to be adapted to
meet the two abovementioned properties. To ac-
count for the first requirement, a widely used
strategy is to create for each inner node an ad-
ditional node that represents the sense of those
words which belong to the synset corresponding
to that node. This additional node becomes a hy-
ponym of the original node. In this way, all word
senses are captured by leaf nodes. The second re-
quirement is much more complex, since it neces-
sitates a (virtual) transformation of the wordnet
DAG structure into a pure tree structure. The
core of such a transformation is propagating fre-
quency counts upwards in the hierarchy in a way
which ‘mimics’ a tree structure. The next section
addresses this issue.

3 Transforming the Wordnet DAG
Structure

One crucial part of the virtual transformation of
the wordnet structure can be performed as a side
effect of processing the hierarchy. If a wordnet is
processed top-down (as is done by the tree cut
acquisition algorithm developed by Li and Abe),
then its DAG structure is ‘resolved’ into a tree
structure. Nodes that have multiple parents are
processed multiple times, once for each parent.
For example, as <person> is a hyponym of both
<life_form> and <causal_agent>, this concept
(and thus its hyponyms) is processed twice, once
as a child of <life form>, and once as a child
of <causal_agent>. In this way, a ‘virtual copy’
of such a node (and its descendants) is created
for each of its parents, and the DAG is ‘broken
into a tree’ (cf. figure 4; virtual copies are indica-
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ted by a dashed link). Thus, if the task in ques-

tion involves top-down processing, a tree struc-
ture is virtually simulated. Otherwise, the word-
net structure (i.e. the database) has to be altered
accordingly.

In any case, one has to ensure that the esti-
mated concept frequencies are consistent with
that tree structure. As mentioned in section 2.4,
the tree cut approach employs the word-to-sen-
se method to obtain concept frequencies, i.e. the
frequency of each word sense is propagated to all
its ancestors in the hierarchy, and for each con-
cept, the frequencies accumulated at it add up to
its count. In fact, there are several possibilities
of how to perform this propagation. Following
Ribas” approach explained in section 2.3, the fre-
quency of a concept is the sum of the frequencies
of the word senses which are subsumed by that
concept (cf. equation (6)). If the hierarchy is a
tree structure, then this frequency is equivalent
to the sum of the frequencies of the immediate
hyponyms (i.e. the children) of the concept:

freq(nept) = )

Z freq(nept.)

neptcEchildren(nept)

However, if the hierarchy is a DAG, then equati-
on (7) might yield different values than equation
(6). For example, in figure 2, <entity> would re-
ceive the count of <life_form> plus the count of
<causal_agent>, i.e. the count of <entity> would
be 200 instead of 100.

A straightforward way to obtain frequency
counts consistent with the tree structure is to
employ equation (7) instead of equation (6) for
frequency estimation. Li and Abe as well as other
researchers adopted this solution. Here, the dup-
lication of subtrees is reflected by the correspon-
ding counts. The drawback of this approach is
that multiplying certain subtrees corresponds to
multiplying that portion of the data which is co-
vered by the concepts in that subtree.
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Figure 4 shows an example. Here, as the concept
<person> is processed twice, all instances in the
data denoting a person are counted twice. Thus,
the relative proportion of these instances is incre-
ased. In particular, the frequency of the top node
<entity> contains the count of <person> twice.

In order to avoid such biases, I propose a dif-
ferent approach for retrieving concept frequen-
cies. The general idea of this approach is as fol-
lows: As in the work of Li and Abe, the count of
a concept is directly determined by the counts of
its children. This simulates a tree structure. Ho-
wever, a concept does not necessarily inherit the
total count from each of its children. If a con-
cept has multiple parents, then the count of that
concept is divided among its parents. In this way,
counts are not duplicated, and thus no bias to-
wards certain parts of the sample is created. The
frequency portion that a child concept ncpz, pas-
ses to each of its parents is determined by a pro-
bability distribution p(ncptp|ncptc) where nept),
is a parent of ncpt,. Thus, the frequency of a con-
cept is given by

(8)

freq(nept,) =

>

neptcEchildren(nepty)

req(ncpt.)p(nept,|ncpt,
freq(nepte)p(nepty|nept.)

The crucial question is how to estimate the distri-

bution p(ncptp|ncptc)in this equation. I decided

to guide this estimation by the frequencies of the

parents: The count of a concept is apportioned
305

<entity>

200 105
<life form? <causal agent>

100 100
<person> 10 <person>
<person>

100

5
<animal> <fate>

Figure 4: Breaking a DAG into a tree structure
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among its parents according to their respective
frequency, relative to the frequencies of the other
parents. Formally, for a concept ncpt,, the distri-
bution p(ncpz;i,|ncptc) is estimated by the ratio of
the frequency of nepz, and the sum of the fre-
quencies of all parents of n¢pz, :

9
p(nept,|nept.) = ©)

freq(nepty)
chpt’ parents(neptc) freq(ncpt’)

In the trivial case in which ncpz, has only one pa-
rent, p(ncptp|ncptc) is 1, i.e. the complete concept
frequency is propagated to that parent.

The equations (8) and (9) depend on each
other. The probability of the parent given a child
concept in equation (8) is estimated by equati-
on (9), whereas the parent frequencies in equa-
tion (9) are obtained by equation (8). Therefore,
to make these equations applicable, it is neces-
sary to assume certain initial values. It is quite
straightforward to initialise the parent probabili-
ties by assuming uniform distributions:

1 (10)
|parents(ncpt.)|

p(nept,|nept.)

In this way, the count of a concept is equally ap-
portioned to its parents in the initial iteration.
As the parents of a concept have different (ad-
ditional) children, this iteration yields different
counts for them. Thus, in the following iterati-
ons, equation (9) will estimate differing probabi-
lities for the parents of a concept. In general, an
iteration step changes the counts and probabili-
ties. The approach proposed here can be viewed
as an instance of the EM algorithm: equation (8)
corresponds to the E-step and equation (9) to
the M-step.

For example, in figure s, the initialisation step
equally apportions the count of <person> to its
two parents; each parent inherits the count 1992
= 50. Then, in the reestimation step, the person
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count is divided relative to the frequencies of the
parents:

<life_form> gets 100 x 150 / (150+55) = 73.13,
while <causal_agent> receives
100 x 150 / (150+55) = 26.83 from <person>.

(The counts for <animal> and <fate> are comple-
tely propagated to their respective parents.) Note
that the count for the top node <entity> does
not change. It corresponds to the unbiased total
frequency of the data.

In addition, the count of a child concept ncpr,
has to be apportioned among the different (vir-
tual or real) copies of it which emerge from bre-
aking the DAG into a tree. In the tree structure,
each copy of ncpz, has exactly one parent ncpz,
and receives that portion of the original frequen-
cy freq(nept,) that has been propagated to ncpt),
ie. ﬁeq(ncptc)p(ncp%ncptc). Likewise, the corre-
sponding copies of the descendants of n¢pz, have
to be scaled by p(ncptp|7chtc). Figure s illustrates
this adjustment for the copies of <person>.

A possible intuitive access to the general idea
that the count of a concept is divided among its
parents might be to understand hyperonymy in
a more ‘subjective’ manner than usual: Instead
of ,is a kind of', a hyperonymy relation could be
interpreted as ‘is perceived / referred to as’. This
means that multiple hyperonyms represent diffe-
rent aspects of a concept which might have dif-
ferent salience. For example, a person might be
primarily referred to as a life form in some situ-

205
<entity>

150 ——> 173.17

b 55 -——>31.83
<life form>

<causal agent>

50 ——>26.83
<person>

50 ——>73.17

<person> 100

<person>

100
<animal>

5
<fate>

Figure 5: Reestimating frequencies
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ations (e.g. in an utterance like ‘How many per-
sons died? ’), and as a causal agent in other situa-
tions (e.g. in “This person caused the accident.’).
The probabilities p(<life_form>|<person>) and
p(<causal_agent>|<person>), together with the
corresponding split of the count of <person>,
model the relative salience of these two aspects
w.r.t. <person>. The way proposed here to esti-
mate these probabilities employs the only empi-
rical quantitative information about the parent
concepts that is available: their overall frequency.
A parent that has a high frequency (compared to
the other parents) gets a high probability, while a
parent with a (comparably) low frequency is as-
signed a low probability. The count of a parent
concept reflects its ‘global’ salience (w.r.t. the
training data); the comparison with the counts
of the other parents reflects peculiarities of their
common child.

More formally, the approach described here
can be viewed as performing a soft classification
of noun senses. The concepts can be regarded as
soft classes of senses, and multiple hyperonymy
corresponds to graded membership. For examp-
le, all instances of <person> are graded mem-
bers of both classes <life form> and <causal
agent>. The degree of membership is represen-
ted by p(<life_form>|<person>) and p(<causal_
agent>|<person>), respectively.

= Experiments

This section describes experiments I carried out
to test the effect of employing the two frequen-
cy estimation methods sketched in section 3 for
acquiring selectional preferences using the tree
cut approach. As mentioned, the method using
equation (7) (henceforth called ’Simple’) mul-
tiplies frequency counts of noun senses which
are covered by duplicated concepts, while the
approach using equations (8)—(10) (henceforth
called "Reestimation’) avoids such a bias. For the
experiments, I used GermaNet as semantic hier-
archy. As noted in section 1, multiple inheritance
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Reestimation Simple

concept pref. value| prob. concept pref. value | prob.
<?kognitives_Objeke> | 1.25 0.21 o

<Entitic> 0.69 0.32
<Objeke> 0.42 0.13
<Verhiltnis#Relation> | 0.94 0.02 <Verhiltnis#Relation> | 0.61 0.03
<Stelle#Ort#Stitte> 0.36 0.02 <Stelle#Ort#Stitte> 0.42 0.02
<Motiv#Intention> 0.43 0.004 <Motiv#Intention> 0.45 0.003
<Menge> 0.66 0.02 <Menge> 0.50 0.03
<Situation> 0.65 0.16 <Situation> 0.83 0.20
<Besitz> 0.02 0.0006 <Besitz> 0.04 0.001
<Zustand> 0.51 0.009 <Zustand> 1.13 0.02
<Attribut#Eigenschaft> | 5.10 0.40 <Attribut#Eigenschaft> | 4.77 0.37

is a common structural property in this resour-
ce. This suggests that the bias which the Simple
approach imposes on the frequency estimates is
significant when applied to GermaNet. The ex-
periments described below aim at verifying this
hypothesis.

4.1  Setting

The experiments acquired selectional preferences
for the object of several verbs. The training data
I used were extracted from parsed relative clau-
ses and verb-final clauses originating from a large
German newspaper corpus. This parsed corpus
was created at the IMS, University of Stuttgart.
From these sentences, I extracted verb—noun
(object) pairs (666,831 altogether). To avoid the
problem of data sparseness, I acquired selectio-
nal preferences for those verbs which occur at
least 500 times in the training set (261 verbs). For
preference acquisition, I used a modified version
of the tree cut approach described in ABE & L1
1996.” This modification involves an additional
parameter that can be varied to influence the ge-
neralisation level of the induced cut (cf. WAGNER
2000 or WAGNER 2002) for details of this modi-
fied approach). With this parameter, I forced the
algorithm to select the cut at or close to the high-
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Table 1: Tree cut models for ‘wissen’

est possible level of abstraction, which comprises
the top concepts of GermaNet. This is a conser-
vative proceeding, since differences in tree cuts
are much more likely if they tend to be located
at low levels in the hierarchy, capturing peculia-
rities of very specific concepts.

Concerning frequency estimation, I carried
out the experiments once using the Simple ap-
proach and once using the Reestimation ap-
proach (after the initial iteration using equation
(10), I performed one reestimation iteration).

4.2  Results

The results show considerable differences bet-
ween the selectional preferences acquired using
the Simple and the Reestimation approach, re-
spectively. First of all, it turned out that Simp-
le yielded significantly higher total frequency
counts at the hierarchy root for each verb than
Reestimation: The average total count per verb
was 1300.35 for Simple vs. 1149.55 for Reestimati-
on. This means that Simple artificially increased
the total count of the data by 13%. A more inte-
resting question is to what extent the preferences
acquired with the two approaches are different.
Comparing the individual concepts which are
classified as being preferred (preference value > 1),
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the difference is considerable. For the whole set
of 261 test verbs, Simple acquired 1085 preferred
concepts, Reestimation 1087 preferred concepts
altogether. Of these, 924 concepts were equal.
This amounts to a difference of 15%. At first
glance, this does not seem too much. But taking
into account that the cuts comprise concepts at
a very high generalisation level, the difference is
remarkable. Looking at the complete preference
profiles acquired for each verb, the picture beco
mes much more clear-cut. Only for 99 verbs, i.e.
38% of the test verbs, the two methods yielded
the same set of preferred concepts.

As an example, table 1 shows the tree cut mo-
dels acquired for ‘wissen’ (to know). Both models
classify the concept <Attribut#Eigenschaft > (at-
tribute, property) as preferred. The Reestimati-
on cut also models <?kognitives_Objeket> (cog-
nitive object) as preferred concept, which is in
accordance with human intuition. The Simple
cut does not contain this concept, since it is loca-
ted one level higher, at <Entitit> (entity), which
subsumes <?kognitives_Objekt> and <Objekt>
(object). However, the Simple model classifies
<Zustand> (state) as preferred, which is much
less intuitive. The probability distributions
p(nept|wissen) of the concepts on the two cuts are
rather similar, though some differences (e.g. 0.16
versus 0.20 for <Situation>) might matter when
employed for a particular application.

Altogether, the experiments verify that the
Simple results differ significantly (though not
dramatically) from the Reestimation results.

5 Conclusion

In this paper, I discussed different methods for
estimating frequencies of concepts in wordnets
from corpus data. Based on an example NLP
task (selectional preference acquisition), I illus-
trated that the selection of an appropriate fre-
quency estimation method largely depends on
the statistical methods that employ the indu-
ced frequencies. In particular, this paper focus-
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ed on the problems which multiple inheritance
in wordnets impose on concept frequency esti-
mation. Two of the discussed methods, word-to-
concept and word-to-sense, are suitable for mul-
tiple inheritance hierarchies without modificati-
on. These approaches rest on the subsumption
relation between words and concepts rather than
the immediate hyperonymy relation and thus are
compatible with DAG structures. However, the
tree cut approach requires a concept hierarchy
that exhibits a pure tree structure. To apply this
approach to a wordnet requires a transformati-
on of the wordnet’s DAG structure. I discussed
the most commonly used ad-hoc strategy for this
transformation. This strategy leads to biases of
the estimated frequency counts, which are evo-
ked just by the multiple inheritance structure.
Therefore, I proposed a more sophisticated EM-
style strategy which involves the adjustment and
reestimation of frequency counts. Experiments
showed that the bias imposed by the ad-hoc ap-
proach is significant.

For future work, it will be interesting to test
the performance of the different frequency esti-
mation approaches w.r.t. particular NLP tasks.
For example, selectional preferences acquired by
the two approaches tested in section 4 could be
employed for lexical or structural disambiguati-
on. A priori, it is not clear whether the mathe-
matically sound approach which I proposed per-
forms better than the simple ad-hoc approach.
This has to be examined empirically. In any case,
the issue of concept frequency estimation should
not be disregarded.
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Frequency Counts of Concepts

Notes

' 'This is a simplification because it does not take
into account that ‘person’ is ambiguous. The
example only takes the ‘human’ sense of the word
into account. If the data are not lexically
disambiguated, which is mostly the case, then the
frequency of “person” has to be equally divided
among all concepts which subsume any sense of
the word.

> Again, this simplified example does not take
ambiguity into account. If a word is ambiguous
(in fact, ‘person’ is) and the data are not disam-
biguated, then the count of a word is equally
divided among its senses.

> This requirement follows from the peculiarity
that the MDL approach employs tree cut models
for efliciently encoding the training data, in
order to compare the performance of alternative
models w.r.t. data compression. This only works
properly if all possible tree cut models capture
the whole amount of data.

+  For example, if the cut contained <life_form>
and <causal_agent>, then, assuming the
WordNet structure depicted in figures 1 and 2,
the senses subsumed by <person> would be
represented twice.

’  As mentioned, this approach employs equation
(3) to compute preference values.
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