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On Semantic Spaces

1 Introduction

This contribution gives an overview about different approaches to semantic
spaces. It is not a exhaustive survey, but rather a personal view on different
approaches which use metric spaces for the representation of meanings of
linguistic units. The aim is to demonstrate the similarities of apparently different
approaches and to inspire the generalisation of semantic spaces tailored to the
representation of texts to arbitrary semiotic artefacts.

I assume that the primary purpose of a semiotic system is communication. A
semiotic system S̃ consists of signs s. Signs fulfil a communicative function f (s)
within the semiotic system in order to meet the communicative requirements of
system’s user. There are different similarity relations between functions of signs.
In its most general form a semantic space can be defined as follows:

Definition 1.1 Let S̃ be a semiotic system, (S, d) a metric space and r : S̃ → S a
mapping from S̃ to S. A semantic space (S, d) is a metric space whose elements are
representations of signs of a semiotic system, i.e. for each x ∈ S there is a s ∈ S̃ such
that r(s) = x. The inverse metric (d(x, y))−1 quantifies some functional similarity of
the signs r−1(x) and r−1(y) in S̃.

Semantic spaces can quantify functional similarities in different respects. If the
semiotic system is a natural language, the represented units are usually words
or texts — but semantic spaces can also be constructed from other linguistic
units like syllables or sentences. The constructions of Semantic spaces leads to a
notion of semantic distance, which often cannot easily be made explicit. Some
constructions (like the one described in section 6) yield semantically transparent
dimensions.

The definition of a semantic space is not confined to linguistic units. Anything
that fulfils a function in a semiotic system can be represented in a semantic
space. The calculation of a semantic space often involves a reduction of dimen-
sionality and the spaces described in this paper will be ordered with decreasing
dimensionality and increasing semantic transparency. In the following section
the basic notations will be introduced, that are used in the subsequent sections.
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Section 3 roughly outlines the fuzzy linguistic paradigm. Sections 4 and 5
describe shortly the methods of latent semantic indexing and probabilistic latent
semantic indexing. In section 6 I show how previously trained classifiers can be
used in order to construct semantic spaces.

2 Notations

In order to harmonise the presentation of the different approaches I will use the
following notations: A text corpus C consists of a number of D different textual
units referred to as documents dj, j = 1, . . . , D. Documents can be complete texts,
such as articles in a newspaper, short news as e.g. in the Reuters newswire
corpus, or even short text fragments like paragraphs or text blocks of a constant
length.

Each document consists of a (possibly huge) number of terms. The entire
number of different term-types in C (i.e. the size of the vocabulary of C) is
denoted by W and the number of occurrences of a given term wi in a given
document dj is denoted by f (wi, dj). The definition of what is considered as
a term may vary, terms can be lemmas, words as they occur in the running
text (i.e. strings separated by blanks), tagged words as for instance in Leopold
& Kindermann (2002), strings of syllables as in Paaß et al. (2002), or even
a mixture of lemmas and phrases as in Neumann & Schmeier (2002). The
methods described below are independent from what is considered as a term
in a particular application. It is merely assumed that a corpus consists of a
set of documents and each of these documents consist of a set of terms1. The
term-document matrix A of C is a W × D matrix with W rows and D columns,
which is defined as

A = ( f (wi, dj))i=1,...,W,j=,...,D

or more explicitly

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1D
a21 a22 . . . a2D
...

. . .
...

aW1 aW2 . . . aWD

⎞
⎟⎟⎟⎠ , where aij := f (wi, dj) (1)

1 Actually the assumption is even weaker: the methods simply focus on the co-occurrences of
documents and terms, no matter if one is contained in the other.
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The entry in the ith row and the jth column of the term-document matrix
indicates how often term wi appears in document2 dj. The rows of A represent
terms and its columns represent documents. In the so-called bag-of-words
representation, document dj is represented by the jth column of A, which is also
called the word-frequency vector of document dj and denoted by �xj. The sum
of the frequencies in the j-th row of A is denoted by f (dj), which is also called
the length of document dj. The length of corpus C is denoted by L. Clearly

f (dj) =
W

∑
i=1

f (wi, dj) and L =
D

∑
j=1

f (dj) (2)

The ith row of A indicates how the term wi is spread over the documents in
the corpus. The rows of A are linked to the notion of polytexty, which was
defined by Köhler (1986) as the number of contexts in which a given term wi
occurs. Köhler noted that polytexty can be operationalised by the number of
texts the term occurs in i.e. the number of non-zero entries of the i-th row. The
ith column of A is therefore called vector of polytexty of term wi and the vector
of the respective relative frequencies is named distribution of polytexty. The sum
over the frequencies in the ith column, i.e. the total number of occurrences of
term wi in the corpus C, is denoted by

f (wi) =
D

∑
j=1

f (wi, dj).

The polytexty measured in terms of non-zero entries in a row of the term-
document matrix is also called document-frequency denoted as d f . The so-called
inverse document frequency, which was defined by Salton & McGill (1983) as
id f = (log d f )−1, is widely used in the literature on automatic text processing
in order to tune term-frequencies according to the thematic relevance of a term.
Other term weighting schemes like e.g. the redundancy used by Leopold &
Kindermann (2002) consider the entire vector of polytexty rather than solely the
number of non-zero elements. An overview about different weighting schemes
is given in Manning & Schütze (1999).

Matrix transposition, subsequently indicated by a superscript ·T , exchanges
columns and rows of a matrix. So the transposed term-document matrix is

2 It should be noticed here that in many cases the term-document matrix does not contain the
term-frequencies f (w, d) themselves but a transformation of them like e.g. log f (w, d) or tfdif.
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defined as

AT = ( f (wj, di))i=1,...,D,j=1,...,W =

⎛
⎜⎜⎜⎝

at
11 at

12 . . . at
1W

at
21 at

22 . . . at
2W

...
. . .

...
at

D1 at
W2 . . . at

DW

⎞
⎟⎟⎟⎠ ,

where at
ij := f (wj, di)

It is easy to see that the matrix transposition is inverse to itself, i.e. (AT)T = A.
All algorithms presented below are symmetric in documents and terms, i.e. they
can be used to estimate semantic similarity of terms as well as of documents
depending on whether A or AT is considered.

There are various measures for judging the similarity of documents. Some
measures — the so-called association measures — disregard the term frequencies
and just perform set-theoretical operations on the document’s term sets. An
example for an association measure is the matching coefficient, which simply
counts the number of terms that two documents have in common (van Rijsbergen
1975).

Other measures take advantage from the vector space model and consider
the entire term-frequency vectors of the respective documents. One of the most
often used similarity measure, which is also mathematically convenient, is the
cosine measure (Manning & Schütze 1999; Salton & McGill 1983) defined as

cos(�xi,�xj) =
∑W

k f (wk, di) f (wk, dj)√
∑W

k f (wk, di)2 ∑W
k f (wk, dj)2

=
�xi ·�xj

‖�xi‖‖�xj‖ , (3)

which can also be interpreted as the angle between the vectors �xi and �xj or,
up to centering, as the correlation between the respective discrete probability
distributions.

3 Fuzzy Linguistics

[. . .] the investigation of linguistic problems in general, and that
of word-semantics in particular, should start with more or less pre-
theoretical working hypotheses, formulated and re-formulated for
continuous estimation and/or testing against observable data, then
proceed to incorporate its findings tentatively in some preliminary
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theoretical set up which finally may perhaps get formalised to be-
come part of an encompassing abstract theory. Our objective being
natural language meaning, this operational approach would have to
be what I would like to call semiotic. (Rieger 1981)

Fuzzy Linguistics (Rieger & Thiopoulos 1989; Rieger 1981, 1999) aims at a
spatial representation of word meanings. I.e. the units represented in the
semantic space are words as opposed to documents in the other approaches.
However from a mathematical point of view there is no formal difference
between semantic spaces that are constructed to represent documents and those
which are intended to represent terms. One can transform one problem into the
other by simply transposing the term-document matrix i.e. by considering AT

instead of A.
Rieger has calculated a semantic space of word meanings in two steps of

abstraction, which are also implicitly incorporated in the other constructions of
semantic spaces described in the sections (4) to (6). The first step of abstraction is
the α-abstraction or more explicitly syntagmatic abstraction which reflects a term’s
usage regularities in terms of its vector of polytexty. The second abstraction
step is the δ-abstraction or paradigmatic abstraction, which represents a word’s
relation to all other words in the corpus.

3.1 The Syntagmatic Abstraction

For each term wi a vector of length W is calculated, which contains the correla-
tions of a term’s vector of polytexty with all other terms in the corpus.

αi,j =
∑D

k=1( f (wi, dk) − E( f (wi) | dk))( f (wj, dk) − E( f (wj) | dk)√
∑D

k=1( f (wi, dk) − E( f (wi) | dk))2 ∑D
k=1( f (wj, dk) − E( f (wj) | dk))2

(4)

where E( f (wi) | dk) = f (wi)
f (dk)

L is an estimator of the conditioned expectation
of the frequency of term wi in document dj, based on all documents in the
corpus. The coefficient αi,j measures the mutual affinity (αi,j > 0) or repugnancy
(αi,j < 0) of pairs of terms in the corpus (Rieger & Thiopoulos 1989).

Substituting yi,j = f (wi, dk)− E( f (wi) | dk) the centralised vector of polytexty
of term wi is defined as �yi = (yi,1, . . . , yi,D)T . Using this definition equation (4)
can be rewritten as
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αi,j =
∑D

k yi,kyj,k√
∑D

k y2
i,k ∑D

k y2
j,k

=
�yi ·�yj

‖�yi‖‖�yj‖ , (5)

which is the definition of the cosine distance as defined in equation (3). The
difference between the α-abstraction and the cosine distance is merely that in
equation (4) the centralised vector of polytexty is considered instead of the
word-frequency vector in (3). Using the notion of polytexty one might say more
abstractly that αi,j is the correlation coefficient of the polytexty distributions of
the types wi and wj on the texts in the corpus.

Syntagmatic abstraction realised by equation (4) refers to usage regularities in
terms of co-occurrences in the same document. Documents in Rieger’s works
were in general short texts, like e.g. newspaper texts (Rieger 1981; Rieger &
Thiopoulos 1989) or small textual fragments (Rieger 2002). This means that
the syntagmatic abstraction solely relies on the distribution of polytexty of the
respective terms.

In principle however the approach can be generalised regarding various
types of generalised syntagmatic relations. Note that documents were defined
as arbitrary disjoint subsets of a corpus. The underlying formal assumption
was simply that there is a co-occurrence structure of documents and terms,
which is represented in the term-document matrix. Consider for instance a
syntactically tagged corpus. In such a corpus documents might be defined e.g.
as a set of terms that all carry the same tag. The corresponding “distributions of
polytexty” would describe how a term is used in different parts-of-speech and
the syntagmatic abstraction αi,j would measure the similarity of wi and wj in
terms of part-of-speech membership.

3.2 The Paradigmatic Abstraction

The α-abstraction measures the similarities of the distribution of polytexty over
all terms in the corpus. The absolute value of the similarities, however, is not
solely a property of the terms themselves, but also of the corpus as a whole.
That is if the corpus is confined to a small thematic domain, the documents will
be more similar than in the case of a corpus that covers a wide range of themes.
In order to attain a paradigmatic abstraction, which abstracts away from the
thematic coverage of the corpus, the Euclidean distances to all words in the
corpus are summed. This is the δ-abstraction (Rieger 1981; Rieger & Thiopoulos
1989) given by:
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δ(yi, yj) =

√√√√ W

∑
n=1

(αi,n − αj,n)2; δ ∈ [0; 2
√

W] (6)

The δ-abstraction compensates the effect of the corpus’ coverage on α. The
similarity vector of each term is related to the similarity vectors of all other
terms in the corpus. In this way the paradigmatic structure in the corpus is
evaluated in the sense that every term is paradigmatically related to each other
since every term can equally be engaged in a occurs-in-document relation.

So the vector yi, is mapped to a vector (δ(i, 1) . . . δ(i, W)), which contains
the Euclidean distance of xi’s α to all other αs generated by the corpus and
is interpreted as meaning point in a semantic space (Rieger 1988). Rieger
concludes that in this way a semantic representation is attained that represents
the numerically specified generalised paradigmatic structure that has been
derived for each abstract syntagmatic usage regularity against all other in the
corpus (Rieger 1999).

Goebl (1991) uses another measurement to anchor similarity measurements of
linguistic units (in his case dialectometric data sets) for the completely different
purpose of estimating the centrality of dialects in a dialectal network. Let αi,j
denote the similarity of dialect xi and xj, and let W denote the number of
dialects in the network. The centrality of xi is given by:

γ(xi) =
W

∑
n=1

(
αi,n − 1

W

W

∑
k=1

αi,k

)3
(7)

He argues

The skewness of a similarity distribution has a particular linguis-
tic meaning. The more symmetric a similarity distribution is, the
greater the centrality of the particular local dialect in the whole
network.(Goebl 1991)

Goebl uses (7) in order to calculate the centrality of a local dialect from the matrix
(αi,j)i,j of similarity measures between pairs of dialects in the network. These
centrality measures are employed to draw a choropleth map of the dialectal
network. Substituting the delta abstraction in (6) by the skewness in (7) would
result in a measure for the centrality of a term in a term-document network:
the more typical a term’s usage in the corpus the larger the value of γ. Such a
measure could be used as a term-weighting scheme.
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Rieger’s construction of a semantic space does not lead to a reduction of di-
mensionality. This was not his aim. The meaning of a term is represented by
a high-dimensional vector and thus demonstrates the complexity of meaning
structures in natural language. Rieger’s idea to compute semantic relations from
a term-document matrix and represent semantic similarities as distances in a
metric space has aspects in common with pragmatically oriented approaches
like e.g. latent semantic analysis. The measures of the αi,j can be written in a
more condensed way as

B∗ = A∗(A∗)T = (αi,j)i,j=1,...W (8)

B∗ is a W × W-matrix which represents the similarity of the words wi and wj in
terms of their distribution of polytexty. The semantic similarity between words
is calculated here in a way similar to the semantic similarity between words in
latent semantic indexing, which is described in the next section. The similarity
matrix B∗ = A∗(A∗)T however is calculated in a slightly different way. The
entries of A∗ are yi,j = f (wi, dk)− E( f (wi) | dk) rather than the term frequencies
f (wi, dj) themselves, as can be seen from equation (4).

More advanced techniques within the fuzzy linguistic paradigm (Mehler
2002) extend the concept of the semantic space to the representation of texts.
The respective computations, however, are complicated and exceed the scope of
this paper.

Fuzzy linguistics aims at a numerical representation of the meaning of terms.
Thus the paradigmatic abstraction in equation (6) does not involve a reduction of
dimensionality, in contrast to the principal component analysis that is performed
in the paradigmatic abstraction step in latent semantic analysis. There is however
a close formal relationship.

4 Latent Semantic Analysis

In essence, and in detail, it [latent semantic analysis] assumes that
the psychological similarity between any two words is reflected in
the way they co-occur in small subsamples of language. (Landauer
& Dumais (1997); Words in square brackets added by the author.)

In contrast to fuzzy linguistics latent semantic analysis (LSA) is interested in the
semantic nearness of documents rather than of words. The method however is
symmetric and can be applied to the similarity of words as well.
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LSA projects Document frequency vectors into a low dimensional space calcu-
lated using the frequencies of word occurrence in each document. The relative
distances between these points are interpreted as distances between the topics
of the documents and can be used to find related documents, or documents
matching some specified query (Berry et al. 1995). The underlying technique of
LSA was chosen to fulfil the following criteria:

1. To represent the underlying semantic structure a model with sufficient
power is needed. Since the right kind of alternative is unknown the power
of the model should be variable.

2. Terms and documents should both be explicitly represented in the model.

3. The method should be computationally tractable for large data sets. Deer-
wester et al. concluded that the only model which satisfied all these
three criteria was the singular value decomposition (SVD), which is a well
known technique in linear algebra (Deerwester et al. 1990).

4.1 Singular Value Decomposition

Let A be a term-document matrix as defined in section (2) with rank3 r. The
singular value decomposition of A is given by

A = UΣV, (9)

where Σ = diag(σ1, . . . , σr) is a diagonal matrix with ordered diagonal elements
σ1 > . . . > σr,

U =

⎛
⎜⎜⎜⎝

u11 u12 . . . u1r
u21 u22 . . . u2r

...
. . .

...
uW1 uW2 . . . uWr

⎞
⎟⎟⎟⎠

is a W × r-matrix with orthonormal columns and

V =

⎛
⎜⎜⎜⎝

v11 v12 . . . v1r
v21 v22 . . . v2r

...
. . .

...
vr1 vr2 . . . vrr

⎞
⎟⎟⎟⎠

3 In practice one can assume r = D, since it is very unlikely that there are two documents in the
corpus with linear dependent term-frequency vectors
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is a r × r-matrix with orthonormal rows. The diagonal elements σ1, . . . , σr of
the matrix Σ are singular values of A. The singular value decomposition can
equivalently be written as an eigen-value decomposition of the similarity matrix

B = AAT (10)

Note that U and V are orthonormal matrices therefore UUT = I and VVT = I,
where I is the neutral element of matrix-multiplication. According to (9) the
singular value decomposition of the transposed term-document matrix AT is
obtained as AT = VTΣUT . Hence AAT = UΣVVTΣUT = UΣ2UT which is the
eigen-value decomposition of AAT with eigen-values σ2

1 , . . . , σ2
r . Term frequency

vectors are mapped to the latent space of artificial concepts by multiplication
with UΣ, i.e. �x → �xTUΣ. Each of the r dimensions of the latent space may
be thought of as an artificial concept, which represents common meaning
components of different words and documents.

4.2 Deleting the Smallest Singular Values

A reduction of dimensionality is achieved by deleting the smallest singular
values corresponding to the less important concepts in the corpus. In so doing
latent semantic analysis reduces the matrix A to a smaller K-dimensional (K < r)
matrix

AK = UKΣKVK, (11)

where UK and VK are obtained from U and V in equation (9) by deleting
respectively columns and/or rows K + 1 to r and the diagonal matrix is reduced
to ΣK = diag(σ1, . . . , σK). The mapping of a term-frequency vector to the
reduced latent space is now performed by �x → �xTUKΣK. It has been found that
K ≈ 100 is a good value to chose for K (Landauer & Dumais 1997).

LSA leads to vectors with few zero entries and to a reduction of dimensionality
(k instead of W) which results in a better geometric interpretability. This implies
that it is possible to compute meaningful association values between pairs of
documents, even if the documents do not have any terms in common.

4.3 SVD Minimises Euclidean Distance

Truncating the singular value decomposition as described in equation (11)
projects the data onto the best-fitting affine subspace of a specified dimension K.
It is a well-known theoretical result in linear algebra, that there is no matrix X
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with rank(X) < K that has a smaller Frobenius distance to the original matrix
A i.e. AK minimises

‖A − AK‖F =
K

∑
i,j

(ai,j − aK
i,j)

2. (12)

Interestingly Rieger’s δ-abstraction in equation (6) yields a nice interpretation
of this optimality statement. The reduction of dimensionality performed by
latent semantic analysis is achieved in such a way that it optimally preserves the
inherent meaning (i.e. the sum of the δ(xi, xj)). That is the meaning points in the
Rieger’s δ-space are changed to the minimal possible extent. Another parallel
between fuzzy linguistics and LSA is that equation (4) and the corresponding
matrix notation of αi,j in equation (8) coincide withe the similarity matrix in
equation (10). The only difference is that the entries of A and A∗ are defined
in a different way. Using Rieger’s terminology one may call equation (10) a
syntagmatic abstraction, because it reflects the usage regularities in the corpus.
The singular value decomposition is then the paradigmatic abstraction, since it
abstracts away from the paradigmatic structure of the language’s vocabulary
which consists of synonymy and polysemy relationships.

One objection to latent semantic indexing is that, along with all other least-
square methods, the property of minimising the Frobenius distance makes
it suited for normally distributed data. The normal distribution however is
unsuitable to model term frequency counts. Other distributions like Poisson or
negative binomial are more appropriate for this purpose (Manning & Schütze
1999).

Alternative methods have therefore been developed (Gous 1998), which
assume that the term frequency vectors are multinomially distributed and
therefore agree with well corroborated models on word frequency distribution
developed by Chitashvili and Baayen (Chitashvili & Baayen 1993). Probabilistic
Latent Semantic Analysis has advanced further in this direction.

5 Probabilistic Latent Semantic Analysis

Whereas latent semantic analysis is based on counts of co-occurrences and uses
the singular value decomposition to calculate the mapping of term-frequency
vectors to a low-dimensional space, probabilistic latent semantic analysis (see
Hofmann & Puzicha (1998); Hofmann (2001)) is based on a probabilistic frame-
work and uses the maximum likelyhood principle. This results in a better lin-
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guistic interpretability and makes probabilistic latent semantic analysis (PLSA)
compatible with the well-corroborated multinomial model of word frequency
distributions.

5.1 The Multinomial Model

The assumption that the occurrences of different terms in the corpus are stochas-
tically independent allows to calculate the probability of a given term frequency
vector �xj = ( f (w1, dj), . . . , f (wW , dj)) according to the multinomial distribution
(see Chitashvili & Baayen (1993); Baayen (2001)):

p(�xj) =
f (dj)

∏W
i=1 f (wi, dj)!

W

∏
i=1

p(wi, dj)
f (wi ,dj)

If it is further assumed that the term-frequency vectors of the documents in
the corpus are stochastically independent, the probability to observe a given
term-document matrix is

p(A) =
D

∏
j=1

f (dj)
W
∏
i=1

f (wi, dj)!

W

∏
i=1

p(wi, dj)
f (wi ,dj) (13)

5.2 The Aspect Model

In order to map high-dimensional term-frequency vectors to a limited num-
ber of dimensions PLSA uses a probabilistic framework, called aspect model.
The aspect model is a latent variable model which associates an unobserved
class variable zk, k = 1, . . . , K, with each observation an observation being the
occurrence of a word in a particular document. The latent variables zk can be
thought of as artificial concepts like the latent dimensions in LSA. Like in LSA
the number of artificial concepts K has to be chosen by the experimenter. The
following probabilities are introduced: p(dj) denotes the probability that a word
occurrence will be observed in a particular document di, p(wi | zk) denotes
the conditional probability of a specific term conditioned on the latent variable
zk (i.e. the probability of term wi given the thematic domain zk), and finally
p(zk | dj) denotes a document-specific distribution over the latent variable space
i.e. the distribution of artificial concepts in document dj. A generative model
for word/document co-occurrences is defined as follows:
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(1) select a document dj with probability p(dj),

(2) pick a latent class zk with probability p(zk|dj), and

(3) generate word wj with probability p(wi|zk) (Hofmann 2001).

Since the aspects are latent variables which cannot be observed directly, the
conditioned probability p(wi | dj) has to be calculated as the sum of the possible
aspects:

p(wi|dj) =
K

∑
k=1

p(wi|zk)p(zk|dj) (14)

This implies the assumption, that the conditioned probability of occurrence of
aspect zk in document dj is independent from the conditioned probability that
term wi is used given that aspect zk is present (Hofmann 2001).

In order to find the optimal probabilities p(wi|zk) and p(zk|dj), maximizing
the probability of observing a given term-document matrix, the maximum
likelihood principle is applied. The multinomial coefficient in equation (13)
remains constant when the probabilities p(wi, dj) are varied. It can therefore be
omitted for the calculation of the likelihood function, which is then given as

L =
D

∑
j=1

W

∑
i=1

f (wi, dj) log p(wi, dj)

Using the definition of the conditioned probabilities p(wi, dj) = p(dj)p(wi | dj)
and inserting equation (14) yields

L =
D

∑
j=1

W

∑
i=1

(
f (wi, dj) log

(
p(dj) ·

K

∑
k=1

p(wi | zk)p(zk | dj)
))

Using the additivity of the logarithm and factoring in f (wi, dj) gives

L =
D

∑
j=1

(
W

∑
i=1

f (wi, dj) log p(dj) +
W

∑
i=1

f (wi, dj) log
K

∑
k=1

p(wi | zk)p(zk | dj)

)
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Since ∑i f (wi, dj) = f (dj) factoring out f (dj) finally leads to the likelihood
function

L =
D

∑
j=1

f (dj)

(
log p(dj) +

W

∑
i=1

f (wi, dj)
f (dj)

log
K

∑
k=1

p(wi | zk)p(zk | dj)

)
(15)

which has to be maximised with respect to the conditional probabilities involving
the latent aspects zk. Maximisation of (15) can be achieved using the EM-
algorithm, which is a standard procedure for maximum likelihood estimation
in latent variable models (Dempster et al. 1977). The EM-algorithm works in
two steps that are iteratively repeated (see e.g. Mitchell (1997) for details).

Step 1 In the first step (the expectation step) the expected value E(zk) of the
latent variables is calculated, assuming that the current hypothesis h1
holds.

Step 2 In a second step (the maximisation step) a new maximum likelihood
hypothesis h2 is calculated assuming that the latent variables zk equal their
expected values E(zk) that have been calculated in the expectation step.
Then h1 is substituted by h2 and the algorithm is iterated.

In the case of PLSA the the EM-algorithm is employed as follows (see Hofmann
(2001) for details): To initialise the algorithm generate W · K random values
for the probabilities p(wi | zk) and D · K random values for the probabilities
p(zk | dj) such that all probabilities are larger than zero and fulfil the conditions
∑i,k p(wi | zk) = 1 and ∑j,k p(zk | dj) = 1 respectively. The expectation step can
be obtained from equation (15) by applying Bayes’ formula:

p(zk | wi, dj) =
p(wi | zk)p(zk | dj)

∑K
k=1 p(wi | zk)p(zk | dj)

(16)

In the maximization step the probability p(zk | wi, dj) is used to calculate the
new conditioned probabilities

p(wi | zk) =
∑N

j=1 f (wi, dj)p(zk | wi, dj)

∑K
k=1 ∑D

j=1 f (wi, dj)(zk | wi, dj)
(17)

and
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p(zk | dj) =
∑W

i=1 f (wi, dj)p(zk | wi, dj)
f (dj)

, (18)

Then the conditioned probabilities p(zk|dj) and p(wi|zk) calculated from equa-
tion (17) and (18) are inserted into equation (16) to perform the next iteration.
The iteration is stopped when a stationary point of the likelihood function is
achieved. The probabilities p(zk | dj), k = 1, . . . , K, uniquely define for each
document a K − 1-dimensional point in continuous latent space.

It is reported that PLSA outperforms LSA in terms of perplexity reduction.
Notably PLSA allows to train latent spaces with a continuous increase in per-
formance, in contrast to LSA where the model perplexity increases when a
certain number of latent dimensions is exceeded. In PLSA the number of latent
dimensions may even exceed the rank of the term-document matrix (Hofmann
2001).

The main difference between LSA and PLSA is the optimisation criterion
for the mapping to the latent space, which is defined by UΣ and p(zk | dj)
respectively. LSA minimises the least square criterion in equation (12) and
thus implicitly assumes an additive Gaussian noise on the term-frequency data.
PLSA in contrast assumes multinomially distributed term-frequency vectors
and maximises the likelihood of the aspect model. It is therefore in accordance
with linguistic word frequency models. One disadvantage of PLSA is, that the
EM-algorithm like most iterative algorithms converges only locally. Therefore
the solution need not be a global optimum, in contrast to LSA which uses an
algebraic solution and ensures global optimality.

6 Classifier Induced Semantic Spaces

[. . .] problems, in which the task is to classify examples into one of a
discrete set of possible categories, are often referred to as classification
problems.(Mitchell 1997)

The main problem in PLSA approach was to find the latent aspect variables zk
and calculate the corresponding conditioned probabilities p(wi|zk) and p(zk|dj).
It was assumed that the latent variables correspond to some artificial concepts. It
was impossible however to specify these concepts explicitly. In the approach de-
scribed below, the aspect variables can be interpreted semantically. Prerequisite
for such a construction of a semantic space is a semantically annotated training
corpus. Such annotations are usually done manually according to explicitly
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defined annotation rules. An example of such a corpus is e.g. the news data of
the German Press Agency (dpa) which is annotated according to the categories
of the International Press Telecommunications Council (IPTC). These annota-
tions inductively define the concepts zk, or the dimensions, of the semantic
space. A classifier induced semantic space (CISS) is generated in two steps: In the
training step classification rules �xj → zk are inferred from the training data. In
the classification step these decision rules are applied to possibly unannotated
documents.

This construction of a semantic space is especially useful for practical appli-
cations because (1) the space is low-dimensional (up to dozens of dimensions)
and thus can easily be visualised, (2) the space’s dimension possesses a well
defined semantic interpretation, and (3) the space can be tailored to the special
requirements of a specific application. The disadvantage of classifier induced
semantic spaces (CISS) is that they rely on supervised classifiers. Therefore
manually annotated training data is required.

Classification algorithms often use an internal representation of degree of
membership. They internally calculate how much a given input vector �x belongs
to a given class zk. This internal representation of degree of membership can be
exploited to generate a semantic space.

A Support Vector Machine (SVM) is a supervised classification algorithm
that recently has been applied successfully to text classification tasks. SVMs
have proven to be an efficient and accurate text classification technique (Dumais
et al. 1998; Drucker et al. 1999; Joachims 1998; Leopold & Kindermann
2002). Therefore Support Vector Machines appears to be the best choice for the
construction of a semantic space for textual documents.

6.1 Using an SVM to Quantify the Degree of Membership

Like other supervised machine learning algorithms, an SVM works in two steps.
In the first step — the training step — it learns a decision boundary in input
space from preclassified training data. In the second step — the classification
step — it classifies input vectors according to the previously learned decision
boundary. A single support vector machine can only separate two classes — a
positive class (y = +1) and a negative class (y = −1). This means that for each
of the K classes zk a new SVM has to be trained separating zk from all other
classes.

In the training step the following problem is solved: Given is a set of training
examples S� = {(�x1, y1), (�x2, y2), . . . , (�x�, y�)} of size � ≤ W from a fixed but
unknown distribution p(�x, y) describing the learning task. The term-frequency
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class +1

class -1

margin

separating hyperplane
w*x+b=0

w*x+b<-1

w*x+b>1
 ξ 

kv

Figure 1: Generating a CISS with a support vector machine. The SVM algorithm
seeks to maximise the margin around a hyperplane that separate a positive
class (marked by circles) from a negative class (marked by squares). Once
an SVM is trained, vk = �wk�x + b is calculated in the classification step. The
quantity vk measures the rectangular distance between the point marked by a
star and the hyperplane. It can be used to generate a CISS.

vectors �xi represent documents and yi ∈ {−1, +1} indicates whether a document
has been annotated as belonging to the positive class or not. The SVM aims to
find a decision rule hL : �x → {−1, +1} based on S� that classifies documents as
accurately as possible.

The hypothesis space is given by the functions f (�x) = sgn(�w�x + b), where �w
and b are parameters that are learned in the training step and which determine
the class separating hyperplane. Computing this hyperplane is equivalent to
solving the following optimisation problem (Vapnik 1998; Joachims 2002):

minimise: V(�w, b,�ξ) =
1
2
�w�w + C

�

∑
i=1

ξi

subject to: ∀�
i=1 : yi(�w�x + b) ≥ 1 − ξi

∀�
i=1 : ξi ≥ 0
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The constraints require that all training examples are classified correctly allowing
for some outliers, symbolised by the slack variables ξi. If a training example
lies on the wrong side of the hyperplane, the corresponding ξi is greater or
equal to 0. The factor C is a parameter that allows one to trade off training error
against model complexity. Instead of solving the above optimization problem
directly, it is easier to solve the following dual optimisation problem (Vapnik
1998; Joachims 2002).

minimise: W(�α) = −
�

∑
i=1

αi +
1
2

�

∑
i=1

�

∑
j=1

yiyjαiαj�xi�xj

subject to:
�

∑
i=1 0

≤ αi≤C

yiαi = 0 (19)

All training examples with αi > 0 at the solution are called support vectors. The
support vectors are situated right at the margin (see the solid squares and the
circle in figure (1)) and define the hyperplane. The definition of a hyperplane
by the support vectors is especially advantageous in high dimensional feature
spaces because a comparatively small number of parameters — the αs in the
sum of equation (19) — is required.

In the classification step an unlabeled term-frequency vector is estimated to
belong to the class

ŷ = sgn(�w�x + b) (20)

Heuristically the estimated class membership ŷ corresponds to whether �x be-
longs on the lower or upper side of the decision hyperplane. Thus estimating
the class membership by equation (20) consists of a loss of information since
only the algebraic sign of right-hand term is evaluated. However the value of
v = �w�x + b is a real number and can be used in order to create a real valued
semantic space, rather than just to estimate if �x belongs to a given class or not.

6.2 Using Several Classes to Construct a Semantic Space

Suppose there are several, say K, classes of documents. Each document is
represented by an input vector �xj. For each document the variable yk

j ∈ {−1, +1}
indicates whether �xj belongs to the k-th class (k = 1, . . . , K) or not. For each
class k = 1, . . . , K an SVM can be learned which yields the parameters �wk and
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bk. After the SVMs have been learned, the classification step (equation (20)) can
be applied to a (possibly unlabeled) document represented by �x resulting in
a K-dimensional vector �v, whose kth component is given by vk = �wk · �x + bk

The component vk quantifies how much a document belongs to class k. Thus
the document represented by the term frequency vector �xj is mapped to the
K-dimensional vector in the classifier induced semantic space. Each dimension
in this space can be interpreted as the membership degree of the document to
each of the K classes.

−2 −1 0 1 2 3
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2
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−2 −1 0 1 2 3
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Figure 2: A classifier induced semantic space. 17 classifiers have been trained
according to the highest level of the IPTC classification scheme. The projection
to two dimensions “culture” and “disaster” is displayed on the right, and the
projection to “culture” and “justice” on the left. The calculation is based on
68778 documents from the “Basisdienst” of the German Press Agency (dpa)
July-October 2000.

The relation between PLSA and CISS is given by the latent variable zk. In the
context of CISS the latent variable zk is interpreted as the thematic domain, in
accordance with semantic annotations in the corpus. Statistical learning theory
assumes, that each class k is learnable because there is an underlying conditional
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distribution p(�xj | zk), which reflects the special characteristics of the class zk.
The classification rules that are learned from the training data minimise the
expected error. In PLSA the aspect variables are not previously defined. The
conditioned probabilities p(wi | zk) and p(zk | �xj) are chosen in such a way that
they maximise the likelihood of the multinomial model.

6.3 Graphical Representation of a CISS

Self-organising Maps (SOM) were invented in the early 80s (Kohonen 1980).
They use a specific neural network architecture to perform a recursive regression
leading to a reduction of the dimension of the data. For practical applications
SOMs can be considered as a distance preserving mapping from a more than
three-dimensional space to two-dimensions. A description of the SOM algorithm
and a thorough discussion of the topic is given by Kohonen (1995).

Figure 3 shows an example of a SOM visualising the semantic relations of
news messages. SVMs for the four classes ’culture’, ’economy’, ’politics’, and
’sports’ were trained by news messages from the ’Basisdienst’ of the German
Press Agency (dpa) April 2000. Classification and generation of the SOM was
performed for the news messages of the first 10 days of April. 50 messages
were selected at random and displayed as white crosses. The categories are
indicated by different grey tone. Then the SOM algorithm is applied (with
100 × 100 nodes using Euclidean metric) in order to map the four-dimensional
document representations to two dimensions admitting a minimum distortion
of the distances. The grey tone indicates the topic category. Shadings within the
categories indicate the confidence of the estimated class membership (dark =
low confidence, bright = high confidence).

It can be seen that the change from sports (15) to economy (04) is filled by
documents which cannot be assigned confidently to either classes. The area
between politics (11) and economy (04), however, contains documents, which
definitely belong to both classes. Note that classifier induced semantic spaces
go beyond a mere extrapolation of the annotations found in the training corpus.
It gives an insight into how typical a certain document is for each of the classes.
Furthermore Classifier induced semantic spaces allow one to reveal previously
unseen relationships between classes. The bright islands in area 11 on Figure 3
show, for example, that there are messages classified as economy which surely
belong to politics.
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Figure 3: Self-organising map of a classifier induced semantic space. 4 classi-
fiers have been trained according to the highest level of the IPTC classification
scheme. The shadings and numbers indicate the “true” topic annotations of
the news messages. 01: culture, 04: economy, 11: politics, 15: sports. (The
figure was taken from Leopold et al. (2004)).

7 Conclusion

Fuzzy Linguistics, LSA, PLSA, and CISS map documents to the semantic space
in a different manner. Fuzzy Lintuistics computes a vector for each word
which consists of the cosine distances to every other word in the corpus. Then
it calculates the Euclidean Dinstances between the vectors which gives the
meaning point. Documents are represented by summing up the meaning points
of the document’s words.

Band 20 – 2005 83



Leopold

In the case of LSA the representation of the document in the semantic space
is achieved by matrix multiplication: dj → �xT

j UKΣK. The dimensions of the
semantic space correspond to the K largest eigen-values of the similarity matrix
AAT . The projection employed by LSA always leads to a global optimum in
terms of the Euclidean distance between A and Ak.

PLSA maps a document to the vector of the conditional probabilities, which
indicate how probable aspect zk is, when document dj is selected: dj → (p(z1 |
dj), . . . , p(zK | dj)). The probabilities are derived from the aspect model using
the maximum likelihood principle and the assumption of multinomially dis-
tributed word frequency distributions. The the likelihood function is maximised
using the EM-algorithm, which is an iterative algorithm that leads only to a
local optimum.

CISS requires a training corpus of documents annotated according to their
membership of classes zk. The classes have to be explicitly defined by the human
annotation rules. For each class zk a classifier is trained, i.e. parameters �wk and bk

are calculated from the training data. For each document dj the quantities vk =
�wk ·�x + bk are calculated, which indicate how much dj belongs the previously
learned classes zk. The mapping of document dj to the semantic space is
defined as dj → (v1, . . . vK). The dimensions can be interpreted according to the
annotation rules.
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