
66 LDV FORUMLDV FORUM

Abstract
Th is paper discusses a software design approach
to allow interchange of linguistic data. It focu-
ses on the modelling of the linguistic concepts
represented in the data and describes the trans-
fer between exchange formats as a multi-tier in-
terpretation/generation. Th ese concepts are imp-
lemented in Smalltalk, a programming environ-
ment enabling fl exible conversion of data bet-
ween formats supported by Terminology Ma-
nagement Systems (TMS).

1 What is the Issue?
Most of today’s software suff ers from being ina-
dequate in its innermost part. It is constructed
from bits and algorithms.

Many papers in the workshop which have
been documented in this issue of LDV Forum
describe the tedious tasks to transfer contents
from one terminology system to another. Th is
issue is perceived as diffi cult because the do-
main of transfer requires an understanding of
diff erent domains at the same time.

Th is paper describes the use of Smalltalk
to understand these diff erent domains and
to provide an implementation of the trans-
fer problem at the same time. For Smalltalk,
the key task is modelling instead of program-
ming, and thus Smalltalk closes the gap bet-
ween human thinking and its implementation in
software.

Th e main question shifts from “How shall a
particular feature be executed?” to “Who is re-
sponsible for a particular task?”

2 Modelling vs. Programming
2.1 Modelling in the Good Old Days
Before computers were invented in the mid 20th
century, all computing was done by people, all
algorithms were executed manually and it was
important to represent knowledge in terms un-
derstandable to humans.

Where formalisms were needed, forms had
been developed which resembled the thinking
and terminology of the domain in question.

To give an example, assume you had a tootha-
che in those days before computers were installed
in dental practices. So you walked to your favou-
rite dentist. She looked at you from her professi-
onal point of view and she recognized you as her
patient. Additionally, she had a form which con-
tained all her terminology produced by professi-
onal dentist publishers whose primary goal was

“ease of use”. Th is was realized by a good mapping
of dentists’ concepts on paper (see Fig. 1).
Th e fi le which is essentially the fi lled form repre-
sented the patient’s phenomena of interest to the
dentist in an adequate and understandable form.

Flexible Technologies to Visualize and Transform Terminological Representations
Modelling Representations instead of Programming using Smalltalk

Georg Heeg

Fig. 1: Traditional modelling

67Band 21(1) – 2006

2.2 Modelling in the Computer Days
After computers were invented in the 1940s they
were extremely expensive. In the 1970s, mainfra-
me computers were 100 times slower and larger
than today’s PCs. One hour of usage of such a
mainframe amounted to one monthly salary for
a programmer. In this spirit most of computer
technology was developed. Th e common mind
set was and is that computers are expensive and
thus it is mostly important to represent all infor-
mation and procedures the computer way. And
computers have two major components: CPU
and Memory.

Th is mind set infl uences still today many soft-
ware projects and starts from the analysis pha-
se. Figure 2 illustrates the traditional computer
modelling process. From the very beginning the
question is diff erent: Instead of looking at the
ontology of a domain, the viewpoint uses a fi l-
ter to search for data and procedures. Th e follo-
wing examples illustrate the limitations of this
approach:

Example 1
1. Wooden body in the form of a cylin-

der with approx. 20 cm (8 inch) height
and 6 mm, (1/4 inch) in diameter.

2. The centre of the cylinder contains
a drilling of 1 mm filled with pressed
graphite.

3. At one end, the cylinder is conically ta-
pered.

4. The graphite can be transferred to other
bodies by rubbing.

Example 2
1. Plastic tube in the form of a cylinder

with approx. 20 cm (8 inch) height and
6 mm (1/4 inch) in diameter.

2. Inside is another plastic tube with 2 mm
(1/12 inch) in diameter and at the top
there is a metal ball.

3. The inner tube is filled with a viscous
liquid.

4. The liquid can be transferred to other
media with the help of the ball.

In both examples the fi rst three issues describe
state/information while the last one describes
process/procedural aspects.

Common Sense
Reading above descriptions a normal (non-
computer) person will easily recognize that the
fi rst is a strange description of a pencil while
the latter is a not less strange description of a

ball pen.
When I ask a normal person (or even better a

child) they will come up with a totally diff erent
description of pencil and ball pen: Th ey serve to
draw and write and the main diff erence is that
using a pencil you can easily use an eraser to rub
out.

Visualizing and Transforming Terminological Representations

Fig. 2: Traditional computer modelling

Fig. 3: Object-Oriented modelling

68 LDV FORUM

2.3 Modelling like in the Old Days
Th e basic idea of the programming language
Smalltalk is to go back to this “naïve” understan-
ding and to map concepts directly into software
(see Fig. 3). Th e key idea resembles the strategy
in the pre-computer times: understandability and
adequacy.

2.4 Objects and Data
Objects in object-oriented languages like Small-
talk primarily care about the services they provi-
de. Data are encapsulated inside the objects and
are not visible from the outside.

3 Applying Objects to Transfer Problems
Now let us start to apply this approach to the ex-
change of lexical and terminological resources.

To do so, we fi rst analyse the problems in this
area and categorize them into diff erent kinds of
problems.

Similarly to communication levels in general,
one can observe in our domain three diff erent
types of problems: Syntactic, structural and con-
tent mismatches.

3.1 Syntactic Mismatch
Some systems produce exchange fi les in plain
text fi les, one line per entry, separated by spe-
cial delimiters like “@@@”. If this delimiter is
a comma, these text fi les are often called CSV
fi les (comma separated values); if it is a tabula-
tor character these fi les are called TSV fi les (tab
separated values). As these two fi le types can be
read with Microsoft Excel, they are often called
Excel fi les.

Another fi le format, which has become very
common recently, is XML (eXtensible Mark-up
Language). XML fi les are annotated trees rep-
resented in a linear fashion. Obviously, this ap-
proach off ers more fl exibility than plain text or
Excel fi les, as entries with diff erently structured
information can be stored in the same fi le.

3.2 Structural Mismatch
Let us assume we have a match in the syntactic
form of a fi le, we can still have strong incompati-
bilities. Th e structures of the fi les do not match.

Examples are: Excel fi le columns do not
match; XML fi les have diff erent DTDs (DTDs
and schemata describe the structure of XML
fi les).

3.3 Semantic Mismatch
File contents do not necessarily match even if all
structures match. Th ere is still room for incom-
patibilities. Examples are: Some systems allow
importing language pairs only; others allow im-
porting many languages at the same time. Some
allow multiple entries to represent homonymic
terms, other require special entries.

4 SSS-TTT
As we found three levels of problems we will also
start with three levels (also called tiers) of solu-
tions: our architecture implements a syntactic,
structural, semantic three-tier transfer (SSS-
TTT).

Additionally, we have the desire to get a uni-
versal converter which can convert any input
form to any output form. Universal converters
are much easier to design in a so-called star ar-
chitecture which consists of a common internal
representation which can be fi lled by any input
converter and can output to any destination for-
mat.

In this particular case of a layered problem
description universal converters can be develo-
ped for each tier reducing the number of con-
verters even further providing standardized in-
terfaces between the tiers.

Th e syntactic tier converter reads the fi les and
maps keys to values. Keys can be column num-
bers, column headers or XML entity labels, va-
lues normally are strings, for inner XML nodes
values are trees.

Heeg

69Band 21(1) – 2006

Converters of the structural tier map logical
attributes onto (potentially multiple keyed) va-
lues.

Th ese values are transformed in the semantic
tier into “meaningful” objects.

If needed, transformation and fi ltering is
done on the level of meaningful objects, the re-
sult of the semantic layer.

For each converter there is a generator which
operates in the opposite direction.

4.1 Implementation in Smalltalk
For the syntactic tier Smalltalk provides predefi -
ned classes. in particular an XML Parser/Genera-
tor and a CSV/TVS Reader/Writer.

Additionally, there is a bunch of technolo-
gies available to communicate directly to langu-
age software. COM Connect and .NET Con-
nect use Microsoft inter-process communication,
WebServices and Corba over IIOP connect into
the Java world.

In Smalltalk, everything is in source and eve-
rything can be enhanced, it can be changed and
adapted whenever needed.

Th e structural and semantic tiers map linguis-
tic theories easily into software artefacts.

4.2 Smalltalk Development Process
Smalltalk always gives you immediate feedback,
thus it fully supports agile programming. Th us
it is good practice to interleave programming
and testing all the time: “Make it work half way”,

“Try it out”, “Make it work a little bit more”, “Try
it out again”.

A well known development strategy in Small-
talk is:

1. Make it work
2. Make it right
3. Make it fast (if needed)

Th e main technique in steps 2 and 3 is called ref-
actoring. “Refactoring is the process of rewriting

a computer program or other written material
to improve its readability or structure with the
explicit purpose of keeping its meaning or beha-
viour” (Wikipedia 2006).

5 Linguistic Smalltalk Experiences
In cooperation between the Software Localizati-
on Group of Anhalt University of Applied Sci-
ences and Georg Heeg eK (http://www.heeg.de/)
several Smalltalk projects have been successfully
developed. Th ey fall into three categories: Small
transfer tools to get data into professional MT,
CAT and TMS systems, tools for Software Loca-
lization education and Software Localization re-
search. One of these projects, which consisted of
making Microsoft glossaries accessible for Soft-
ware tools, demonstrates typical problems and
their solutions. Th erefore, we want to describe
this project in more detail.

Microsoft provides its products in many lan-
guages. As described on the web page http://www.
lai.com/microsft.html Microsoft provides its trans-
lation catalogs in 24 languages on ftp server ftp://
ftp.microsoft. com/developr/msdn/newup/glossary.

When you unzip all fi les you will get 5.8 GB
*.csv fi les. Most of them are too big to open them
in Microsoft Excel. So other tools are needed to
get access to this very rich resource.

When you try to import these glossaries you
will see additional problems: From language to
language the number of columns diff ers; several
fi les contain no headers at all.

Mostly the fi lename of the glossary fi les in-
dicates the language and country of the transla-
tions, but some language codes are represented
with 3 characters, as German in “deu-deu-Ac-
cess2003.csv”, others with 2 characters, as Czech
in “cz_vb50.csv”, which are diff erent ISO stan-
dards.

All of these problems have two things in com-
mon: Th ere is no description at all and you step
over them just by accident. So it is excellent to

Visualizing and Transforming Terminological Representations

70 LDV FORUM

have an open fl exible tool like Smalltalk with full
control for the developer.

To read the fi les we started with subclassing
CSVReader. In some of the CSV fi les the entries
are separated by commas, in others by tabulators.
We made CSV Reader doing the right guess.

Th en we saw that the number of columns
ranges from 8 to 255; we looked at the data and
guessed the intention.

Some of the fi les had no columns headers at
all, so we added guessing the column structure in
CSVReader subclass.

Some of the fi les have a comment in the fi rst
line; our guess was easy: if the number of co-
lumns is 1, it is a comment.

As already mentioned, languages are indi-
cated in fi lenames using diff erent standards for
the language codes, like in “deu-deu-Access2003.
csv” or “cz_vb50.csv”, so that the codes had to be
transferred to homogeneous representations.

All fi les for the largest language pair (English
-German) could be made available in a Small-
talk system, but all fi les for all languages (5.8
GB) cannot be loaded into current 32 bit Visual-
Works systems. Th is requires a 64 bit version or
an object database.

After reading you have a collection of objects
representing the contents of all fi les read. Th ese
objects can be sorted by any sorting criteria, fi l-
tered anyhow, or matched against any input in a
translation memory manner.

Last but not least these objects can be expor-
ted to any desired format. Th is allows loading
subsets of the Microsoft glossaries into any trans-
lation memory or terminology management sys-
tem. Examples are TMX and TBX fi les.

Certainly, the glossary tools can also be used
in VisualWorks language tools developed at Ge-
org Heeg eK and Anhalt University like L10N
(Localizer for VisualWorks applications, see
Lannatewitz 2003 and Haase 2005) and Web-
TCM (Localizer for HTML-Pages; see Seewald-
Heeg 2001).

6 Conclusion
Smalltalk serves as an ideal technology for lin-
guistic tasks. It enables to create transformations
between diff erent terminological representations
and modify them to get ad-hoc problems solved
instantaneously. It is easy to try out new ideas
and to observe the execution in graphic user in-
terfaces immediately.

Th e main thing is “modelling instead of pro-
gramming” to keep the entire software totally
understandable.

References
Haase, C. (2005). “Lokalisierung einer

Entwicklungsumgebung mit einem Nicht-
Standard-System am Beispiel von L10N”.
Diploma Th esis, Anhalt University of Applied
Sciences. http://www.heeg.de/downloads/
vortraege/Di plomArbeit-ClaudiaHaase-2005.
pdf.

Lannatewitz, D. (2003). “ Entwicklung und
Implementierung eines Lokalisierungswerk zeuges
für VisualWorks”. Diploma Th esis, Anhalt
University of Applied Sciences, manuscript.

Seewald-Heeg, U. (2001). “Entwicklung und Einsatz
von Lokalisierungswerkzeugen. Informatik-,
Computerlinguistik-, Fachsprachenkompetenz”.
http://www.heeg.de/~uta/PPT/ Web-TCM/
LokalisierungmitWeb-TCM.ppt.

Wikipedia:Refactoring (2006). Refactoring –
Wikipedia, Th e Free Encyclopedia, http://
en.wikipedia.org/wiki/Refactoring, accessed
May 2006.

