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A Hybrid Model for Chinese Word Segmentation

This paper describes a hybrid model that combines machine learning with
linguistic and statistical heuristics for integrating unknown word identifi-
cation with Chinese word segmentation. The model consists of two major
components: a tagging component that annotates each character in a Chi-
nese sentence with a position-of-character (POC) tag that indicates its po-
sition in a word, and a merging component that transforms a POC-tagged
character sequence into a word-segmented sentence. The tagging compo-
nent uses a support vector machine (Vapnik, 1995) based tagger to produce
an initial tagging of the text and a transformation-based tagger (Brill, 1995)
to improve the initial tagging. In addition to the POC tags assigned to the
characters, the merging component incorporates a number of linguistic and
statistical heuristics to detect words with regular internal structures, recog-
nize long words, and filter non-words. Experiments show that, without re-
sorting to a separate unknown word identification mechanism, the model
achieves an F-score of 95.0% for word segmentation and a competitive recall
of 74.8% for unknown word identification.

1 Introduction

Word segmentation is a prerequisite for all word-based Chinese language processing
systems. For example, for speech synthesis, many phonological rules depend on cor-
rect word segmentation, and text-to-speech systems need to compute boundaries be-
tween intonational phrases in long utterances and assign relative prominence to words
in those utterances (Sproat et al., 1996). For information retrieval, accurate word seg-
mentation has been shown to measurably improve retrieval performance (Palmer and
Burger, 1997; Foo and Li, 2004).

A Chinese word consists of one or more Chinese characters, or zi. In languages
where word boundaries are clearly delimited by whitespace and punctuation marks,
word segmentation is relatively straightforward. However, the absence of unambigu-
ous word boundary markers in real Chinese text makes Chinese word segmentation
a nontrivial challenge. The task is further complicated by the lack of a commonly
accepted definition of word in Chinese among theoretical linguists. In practice, the
Chinese language processing community adopts a pragmatic approach to this issue,
where the definition of word varies depending on the purpose of the natural language
processing system and the segmentation standard it adopts (Sproat et al., 1996; Wu,
2003; Gao et al., 2005).
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A primary source of difficulty for Chinese word segmentation comes from segmen-
tation ambiguities, including covering ambiguity and overlapping ambiguity (Liang,
1987). Covering ambiguity refers to the case where two segments may or may not be
combined to form a larger segment. For example, the string �3 may be segmented
into two units �/3 will/hurt ‘will hurt’ or one unit �3 ‘vitals’, depending on con-
text. Overlapping ambiguity refers to the case where a segment may combine with
either its preceding or following segment. For example, in the string Y�óá�¥�
ñ, the segment� can potentially combine with either the preceding segment¥ or the
following segment ñ, as shown in (1) and (2) respectively. In this case, however, only
the segmentation in (2) is acceptable.

∗ Y� ó á� ¥� ñ

Bush at talk middle-finger out (1)

Y� ó á� ¥ �ñ
Bush at talk middle point-out
‘Bush pointed out in his talk’

(2)

Unknown words constitute a second source of difficulty for Chinese word segmen-
tation. These are words that are not registered in the dictionary used by the word seg-
menter and/or are not found in the training data used to train the segmenter. While
the size and domain specificity of the dictionary and training data may well affect the
proportion of unknown words in real texts, unknown words will always exist, both
because any dictionary creation effort has limited resources and because new words
are constantly created. Chen and Bai (1998) report that 3.11% of the words in the Sinica
Corpus (Chen et al., 1996), one of the largest word-segmented and POS-tagged Chi-
nese corpora, are not listed in the CKIP lexicon, a Chinese lexicon with over 80,000
entries used for processing the corpus. These include unknown words of the categories
of noun, verb, and adjective only, but not numeric type compounds or non-Chinese
words. Xue (2003) partitions the 250K-word Penn Chinese Treebank (Xue et al., 2002)
into training and test sets at a rather skewed ratio of 9.5:0.5 and finds that 4% of the
words in the test set are unknown. Meng and Ip (1999) partition a smaller 72K-word
corpus from Tsinghua University (Bai et al., 1992) at a 9:1 ratio, and report that 13% of
the words in the test set are unknown.

Most previous studies treat word segmentation and unknown word identification
as two separate problems, using a mechanism to identify unknown words in a post-
processing step after word segmentation is done. However, determining where word
boundaries are necessarily involves understanding how characters relate to and interact
with each other in context, and it is desirable to capture this dynamic interaction by in-
tegrating unknown word identification with word segmentation. Several recent studies
have taken a unified approach to unknown word identification and word segmentation
(e.g., Sproat et al., 1996; Xue, 2003; Gao et al., 2005)

We describe a hybrid model that combines machine learning with linguistic and
statistical heuristics for integrating unknown word identification with Chinese word
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segmentation. We adopt the notion of character-based tagging (Xue, 2003) to directly
model the combinatory power of Chinese characters, i.e., the tendency for characters
to combine with adjacent characters to form words, either known or unknown, in dif-
ferent contexts. The model consists of two components. First, a tagging component
tags each character in a Chinese sentence with a position-of-character (POC) tag that
indicates its position in a word. This component uses a support vector machine based
tagger (Vapnik, 1995) to produce an initial tagging of the text and a transformation-
based tagger (Brill, 1995) to improve the initial tagging. Second, a merging component
transforms a POC-tagged character sequence into a word-segmented sentence, using
a number of linguistic and statistical heuristics to detect words with regular internal
structures, recognize long words, and filter non-words. Without resorting to a sophis-
ticated mechanism for unknown word identification or additional resources other than
a word-segmented training corpus, the model achieves an F-score of 95.0% for word
segmentation and a recall of 74.8% for unknown word identification.

The rest of the paper is organized as follows. Section 2 reviews previous approaches
to Chinese word segmentation. Section 3 describes the two components of the proposed
model. Section 4 reports the experiment results of the model. Section 5 concludes the
paper and points to avenues for future research.

2 Previous Approaches

Previous approaches for word segmentation generally fall into the following four cat-
egories: dictionary-based approaches, statistical approaches, statistical and dictionary-
based approaches, and machine learning approaches.

In dictionary-based approaches, only words listed in the dictionary are identified.
Most studies in this tradition use some variation of the maximum matching algorithm
(e.g., Liang, 1987; Nie et al., 1995; Feng, 2001). Simply put, a maximum matching al-
gorithm starts at the beginning of a sentence and inserts a word delimiter after the
longest character string that matches a dictionary entry; it then moves to the character
after the word delimiter and repeats the process until it reaches the end of the sentence.
The algorithm can also start from the end of a sentence and search backwards. As the
algorithm always favors the longest word, it in effect ignores segmentation ambiguities.
To address this problem, some methods produce all possible segmentations first and
then use certain criteria to select the best segmentation, e.g., using syntactic and se-
mantic constraints (Yeh and Lee, 1991), favoring the segmentation in which each word
has about the same length (Chen and Liu, 1992), etc. The performance of dictionary-
based approaches is heavily dependent on the size and domain specificity of the dictio-
nary used. These approaches also require the application of a separate unknown word
identification mechanism in a post-processing step.

Relatively few studies have adopted purely statistical approaches to Chinese word
segmentation. These studies use information-theoretical or probabilistic measures to
determine whether adjacent characters form words or which segmentation is most
likely for a sentence (e.g., Sproat and Shih, 1990; Ge et al., 1999). One advantage of
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statistical approaches is that they do not require any dictionary or word-segmented
training data, but only a large raw corpus, which is relatively easy to obtain. However,
they incorporate little linguistic knowledge and generally perform worse than other
approaches. As Sproat et al. (1996) point out, such statistical methods can work as
good unknown word identification mechanisms and can be used to augment existing
electronic dictionaries and boost the performance of other word segmenters.

Statistical and dictionary-based approaches attempt to benefit from both worlds, us-
ing both information about words in the dictionary and statistical information derived
from corpora to compute the most likely segmentation of a sentence. A good example
of these approaches is Sproat et al. (1996). They represent a dictionary as a weighted
finite state transducer, where weights or costs for word-strings are estimated based on
their frequency in a large corpus. For each input sentence, they choose the path with
the lowest cost as the best segmentation. This model requires separate mechanisms to
estimate the probabilities of different types of unknown words. The authors recognize
that the quality of the base lexicon is more important than the model and that unknown
words constitute the greatest challenge.

With the availability of word-segmented training corpora, a number of supervised
machine learning algorithms have been applied to Chinese word segmentation, includ-
ing, for example, transformation-based learning (e.g., Hockenmaier and Brew, 1998;
Florian and Ngai, 2001), maximum entropy (e.g., Xue, 2003; Low et al., 2005), condi-
tional random fields (e.g., Tseng et al., 2005; Zhou et al., 2005), and linear mixture mod-
els (Gao et al., 2005). These approaches integrate unknown word identification with
word segmentation and have achieved fairly competitive results.

3 Proposed Approach

This section describes a hybrid model that integrates unknown word identification
with Chinese word segmentation. The major hypothesis tested in this study is that it
is possible to directly model the combinatory power of individual characters, i.e., the
tendency for individual characters to combine with adjacent characters to form words,
either known or unknown, in different contexts. Furthermore, such modeling should
have good potential for integrating unknown word identification with Chinese word
segmentation. To this end, we adopt the notion of character-based tagging that has
been employed for Chinese word segmentation and/or unknown word identification
in a few recent studies (Zhang et al., 2002; Goh et al., 2003; Xue, 2003).

The proposed model consists of two major components. First, a tagging component
annotates each character in a character sequence with a position-of-character (POC)
tag that indicates the position of the character in a word. This component is based on
the transformation-based learning (TBL) algorithm , using a tagger based on support
vector machines (SVMs) to produce an initial tagging of a character sequence. Second,
a merging component transforms the output of the tagging component, i.e., a POC-
tagged character sequence, into a word-segmented sentence. In addition to the POC
tags assigned to the character sequence, the merging component also makes use of
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a number of linguistic and statistical heuristics generalized from the training data to
detect words with regular internal structures, recognize long words, and filter non-
words. The overall architecture of the system is represented in Figure 1. An input
Chinese sentence is first segmented into a character sequence, with a boundary marker
after each character. The segmented character sequence is then processed by the POC-
tagging component, where it is tagged first by the SVM-based initial tagger and then
by the TBL tagger. Finally, the POC-tagged character sequence is transformed into a
word-segmented sentence by the merging component.

Character
segmenter

SVM
POC tagger

TBL
POC tagger

Merger

Unsegmented
Chinese sentence

Segmented
character sequence

Initial POC-tagged
character sequence

Final POC-tagged
character sequence

Word-segmented
Chinese sentence

Figure 1: System architecture.

3.1 The POC Tagging Component

Table 1 summarizes the tagset defined for the POC tagging component. The tagset
consists of four tags: L, M, R, and W, each of which indicates that the character is in a
word-initial, word-middle, or word-final position or is a monosyllabic word.

A TBL Tagger. The transformation-based learning algorithm is adopted for the POC
tagging component. This is done because, as Brill (1995) argues, it captures linguistic
knowledge in a more explicit and direct fashion without compromising performance,
an advantage over other promising, statistical machine learning algorithms. The imple-
mentation of the algorithm used in this task is fnTBL (Ngai and Florian, 2001), which
is more efficient than Brill’s original implementation.

The TBL algorithm requires a POC-tagged training corpus (the truth) and its corre-
sponding raw version. A POC-tagged corpus can be converted from a word-segmented

Band 22 (1) – 2007 75



Lu

Tag Description
L Character in word-initial position
M Character in word-middle position
R Character in word-final position
W Monosyllabic word

Table 1: POC tagset.

corpus by assigning each character a POC tag based on its position in the word con-
taining it. The conversion process is illustrated by the following example, where the
word-segmented sentence in (3) is converted into a POC-tagged character sequence in
(4).

�� 4 hÏ� .
Today is Monday .
‘Today is Monday.’

(3)

�/L�/R4/Wh/LÏ/M�/R ./W (4)

In addition to the POC-tagged training corpus and its corresponding raw corpus,
the algorithm requires three crucial components. The first is some initial tagging of
the raw training corpus produced by an initial tagger. The algorithm itself places no
requirement on the initial tagger. For example, it could assign the tag W (monosyllabic
word) to each character in the corpus; or it could tag each character with its most
likely tag derived from the training corpus. However, there is nothing that prevents
one from using a more sophisticated tagger, and previous studies have shown that
a better initial tagger leads to better final results and shorter learning time for the
algorithm (Hockenmaier and Brew, 1998). For this reason, this study uses a more
sophisticated initial tagger, an SVM-based tagger. A second initial tagger based on the
hidden Markov model (HMM) is used as a comparison. Both of the two initial taggers
are discussed in detail below.

The second component required by the TBL algorithm is the space of transformations
allowed. The training process produces an ordered list of rules that can be applied to
new text for tagging, but the kinds of transformations that can be learned need to be
specified. Each transformation consists of a rewrite rule and a triggering environment.
The set of transformations used in this study is similar to the set Ngai and Florian
(2001) define for the task of base noun phrase chunking. In this case, however, the
triggering context is defined over characters and POC tags instead of words and part-
of-speech (POS) tags. The triggering context considered include the character and tag
in the current position and the characters and tags in the three positions immediately
preceding or following the current position. The specific rule templates defined are
given in (5), where t0 and c0 denote the current tag and character respectively; t−i
and ti denote the ith tag preceding or following t0; c−i and ci denote the ith character
preceding or following c0; x, y, and z are tag variables; l, m, and n are character
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variables. The templates are categorized into three groups, depending on whether they
require the identity of the current tag or character.

(5)Change t0 to Tag j if

1. t0 = x, c0 = l, and one of the following is true:

a) c−1 = m
b) c1 = m
c) c−2 = n
d) c2 = n
e) c−1 = m and c−2 = n
f) c1 = m and c2 = n
g) c−1 = m and c1 = n
h) t−1 = y
i) t1 = y
j) t−2 = z

k) t2 = z
l) c−1 = m and t−1 = y

m) c1 = m and t1 = y
n) c−1 = m and t1 = y
o) c1 = m and t−1 = y

2. t0 = x and one of the following is true:

a) c0 = l
b) c−1 = m
c) c1 = m
d) c−2 = n
e) c2 = n
f) c−1 = m or c−2 = m
g) c1 = m or c2 = m
h) c−1 = m or c−2 = m or c−3 = m
i) c1 = m or c2 = m or c3 = m
j) t−1 = y

k) t1 = y
l) t−2 = z

m) t2 = z
n) t−1 = y or t−2 = y
o) t1 = y or c2 = y
p) t−1 = y or t−2 = y or t−3 = y
q) t1 = y or t2 = y or t3 = y
r) t−1 = y and t1 = z
s) t−1 = y and t−2 = z
t) t1 = y and t2 = z
u) c1 = m and t1 = y and t2 = z
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3. c0 = l and one of the following is true:

a) t−1 = y and t−2 = z
b) c−1 = m and t−1 = y
c) c1 = m and t1 = y

The third component of the algorithm is a scoring function, which is used to compare
the corpus to the truth and determine which transformation should be learned. In
this study, the scoring function used is the number of POC tagging error reductions
achieved after applying a transformation.

Once all the components are in place, the training process is iterative and takes place
as follows. At each iteration, the learner applies each possible instantiation of the
transformation templates to the text (starting with the text tagged by the initial tag-
ger), counts the number of tagging error reductions each transformation achieves, and
chooses the transformation that achieves the greatest number of tagging error reduc-
tions. That transformation is then applied to the text, and the learning process repeats,
until no more transformations reduce errors beyond a pre-determined threshold. The
output of the algorithm is a ranked list of transformations. Once the system is trained,
a new sentence is tagged by first applying the initial tagger and then by applying the
learned transformations to the sentence in the right order.

An SVM-Based Initial Tagger. SVMs (Vapnik, 1995) are binary classifiers on a fea-
ture vector space RL. Given a set of training data, {(xi ,yi)|xi∈RL, yi∈{±1}, 1≤i≤l},
where xi is the ith sample in the training data and yi is the label of xi, a hyperplane,
given in (6), separates the set into two classes in such a way that the constraints in (7)
are satisfied:

w · x + b = 0, w ∈ RL, b ∈ R (6)

yi · (w · xi + b) ≥ 1 (7)

In (6) and (7), w is a weight vector with one weight for each feature, and b is a bias,
which is the distance of the hyperplane to the origin. Among all hyperplanes that sep-
arate the training data into two sets, SVMs find the optimal hyperplane with maximal
margin, i.e., maximal distance between the hyperplane and the nearest positive and
negative samples, because it is expected to minimize expected test error. Giving a test
example x, its label y is determined by the sign of a discrimination function f (x) given
by the SVMs classifier as follows:

f (x) = sgn( ∑
zi∈SV

αiyiK(x, zi) + b) (8)

where b ∈ R, zi is a support vector, which receives a non-zero weight αi, K(x, zi) is
a polynomial kernel function of degree d given by K(x, zi) = (x · zi + 1)d, which maps
vectors into a higher dimensional space where all combinations of up to d features are
considered, and SV denotes the set of support vectors, i.e., the vectors that receive a
non-zero weight. The support vectors and the parameters are determined by quadratic
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Characters c−2, c−1, c0, c1, c2
POC tags t−2, t−1
Ambiguity class a0, a1, a2
Character bigrams (c−2, c−1), (c−1, c1), (c−1, c0), (c0, c1), (c1, c2)
POC bigrams (t−2, t−1), (t−1, a1), (a1, a2)
Character trigrams (c−2, c−1, c0), (c−2, c−1, c1), (c−1, c0, c1), (c0, c1, c2), (c1, c1, c2)
POC trigrams (t−2, t−1, a0), (t−2, t−1, a1), (t1, a0, a1), (t−1, a1, a2)

Table 2: Feature set for the SVM-based POC tagger.

programming. If f (x) = +1, then x is a positive member, otherwise it is a negative
member.

The implementation of the SVM classifier used in this study is SVMTool (Giménez
and Màrquez, 2004). As SVMs are binary classifiers, some adaptation is necessary to
make them suitable for multi-class classification tasks. Giménez and Màrquez use
a one-per-class binarization, where they train an SVM for each class to determine
whether an example is of this class or not. At classification time, the most confident
tag given by all SVMs is selected.

The features used for POC tagging include character and POC tag n-grams. The
two characters and POC tags preceding and following the current character and POC
tag are considered. At running time, the POC tags of the characters to the right of the
current character are not known. In SVMTool, a general ambiguity class tag, i.e., a label
that concatenates all the possible POC tags for a character, is used for the right context
characters. Table 2 summarizes the feature set used for POC tagging. For unknown
characters, i.e., characters that are not found in the training data, only the POC features
are used.

An HMM-Based Initial Tagger. To compare the impact of the initial tagger on the
performance of the TBL algorithm, we implement a simple first-order HMM tagger
(Charniak et al., 1993). This model computes the most likely tag sequence t1...tn for a
character sequence c1...cn, as follows:

arg max
t1 ...tn

n

∏
i=1

p(ti|ti−1)p(ti|ci) (9)

where ti and ci denote the ith tag in the tag sequence and the ith character in the
character sequence respectively, p(ti|ti−1) denotes the transition probability, i.e., the
probability of a tag given its previous tag, and p(ti|ci) denotes the lexical probability,
i.e., the probability of a tag given a character. The transition and lexical probabilities are
estimated from the training corpus. For unknown characters, the lexical probabilities
are uniformly distributed among the four POC tags defined in the tagset.
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The transition probabilities are not smoothed, as all unseen POC tag bigrams are
impossible combinations. Once the model is trained, the Viterbi algorithm (Rabiner,
1989) is used to tag new text.

3.2 The Merging Component

The output of the tagging component, i.e., a POC-tagged character sequence, be-
comes the input of the merging component. The merging component transforms the
POC-tagged character sequence into a word-segmented sentence. By default, it concate-
nates all the characters in the character sequence, inserting a word boundary marker
after each character tagged R (word-final position) or W (monosyllabic word). In ad-
dition to the POC tags assigned to the character sequence, the merging component
also makes use of a number of linguistic and statistical heuristics for 1) detecting vari-
ous types of unknown words with regular internal structures, i.e., numeric type com-
pounds and non-Chinese words, reduplicated and derived words, and transliterated
foreign names; 2) recognizing long words that have appeared in the training corpus;
and 3) filtering non-words. The specific heuristics used in the merging component are
detailed below.

Numeric Type Compounds and Non-Chinese Strings. The merging component
uses regular expressions to detect numeric type compounds and non-Chinese character
strings. The types of numeric type compounds handled using regular expressions in-
clude dates, times, percentages, fractions, numbers, etc. Non-Chinese character strings
include email addresses, words or acronyms in foreign alphabets, etc. The patterns
for each of these types of words are generalized from the training corpus. A character
string that fits one of these patterns is grouped into one segmentation unit, and a word
boundary marker is inserted after it. Gao et al. (2005) show that the performance of
detecting such words using their internal properties alone is comparable with that of
using contextual information.

Reduplicated and Derived Words. The merging component also uses heuristics to
detect reduplicated words that are three or more characters long and a few types of
derived words with predictable internal structures. In Chinese, many monosyllabic
and disyllabic words can reduplicate in various patterns, e.g., ÖV ‘read’ and ÖÖ
V ‘read a little’ (AAB pattern), and °l ‘happy’ and °°ll ‘very happy’ (AABB
pattern). If a string of characters fits one of the reduplication patterns in Chinese, it is
grouped as one word.

For derived words, many morphemes are ambiguous between an affix and a word.
For example, the morpheme� can be either an affix ‘-ist’ or a common noun ‘family’.
Detection of the correct use of such ambiguous morphemes can be especially hard
in disyllabic words. To avoid overgeneration, the heuristics only attempt to detect
derived words formed with a root word that is two or more characters long and an
unambiguous affix, such as¦� study-expert ‘-ist’. If an unambiguous prefix or suffix
is detected, it is attached to its following or previous word, if that word is at least two
characters long.
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Transliterated Foreign Names. Foreign names are usually transliterated using a se-
quence of Chinese characters, and most transliterated foreign names are three or more
characters long. The error analysis of the results of the default merger indicates that
these words pose a challenge to the POC tagger. Since only a subset of Chinese char-
acters are used in transliterations, it is possible to use heuristics to detect a substantial
part of transliterated names.

A list of characters used for transliterations is acquired from the wordlist generated
from the training corpus. The algorithm starts with a simple observation, i.e., there is a
dot used exclusively within transliterated foreign names to indicate different parts of a
name, such as first, middle, or last name. For example, ‘George Bush’ is transliterated
as �£·Y�, where the dot within the name indicates that �£ ‘George’ and Y�
‘Bush’ are different parts of the same name. Based on this observation, the algorithm
acquires a list of characters for transliterations in the following three steps:

1) Extract names with the dot from the wordlist and store all characters in these names
in a seed list.

2) Extract all candidate names that are four or more characters long with all but one
character from the seed list. For each candidate, add the one character not on the
seed list to the seed list. Repeat until no more characters can be acquired.

3) Filter out characters acquired in step 2 that have appeared only in one candidate.

In processing new text, the algorithm first uses the final character list to identify
candidate names and then filters candidates using contextual information, as follows:

1) Add characters immediately before or after the dot in the text to the final list of
characters, if they are not already included.

2) Identify character n-grams (n ≥ 3) whose component characters are all from the list.
For each n-gram, do steps 3-7.

3) Extract 5 characters to its left and right.

4) Strip the leftmost character of the n-gram if it forms a word with the 1, 2, 3, 4,
or 5 left context characters and add it to the left context. Iterate until the leftmost
character of the n-gram no longer forms a word with its left context characters.

5) Strip the leftmost 2 characters of the n-gram if they form a word with the 1, 2, 3, 4,
or 5 left context characters and add them to the left context. Iterate until the leftmost
2 characters of the n-gram no longer form a word with its left context characters.

6) Do steps 4 and 5 with the rightmost characters of the n-gram and the right context
characters.

7) If the final n-gram has three or more characters, it is considered a transliterated
foreign name.
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Long Words. In addition to the three types of heuristics used to detect unknown
words with regular internal structures discussed above, the merging component also
uses heuristics to detect known long words. One hypothesis tested in this research is
that longer words behave more consistently and introduce less ambiguity than shorter
words. In particular, we hypothesize that if a string of four or more characters has
appeared in the training corpus as a word, it is also likely to be a word in the test cor-
pus. Whereas there are foreseeable counterexamples for this hypothesis, its usefulness
will be empirically tested in the experiments. There is no dictionary that is adopted
across all segmentation standards and corpus annotation projects. Given the fuzzy line
between compounds and phrases in Chinese, a character string may be considered as a
compound in one segmentation standard but a phrase consisting of two or more words
in another segmentation standard. For example, the stringÇ|Äz{ ‘personal income
tax’ may be considered one word or three words, Ç| ‘personal’, Äz ‘income’, and
{ ‘tax’, depending on the definition of the word in the segmentation standard. Within
the same segmentation standard, however, such strings should be treated consistently.
To adapt to the segmentation standard following which the corpus is segmented, the
merging component uses the wordlist generated from the segmented training corpus
instead of any existing dictionary. If a string of four or more characters is found in the
wordlist, the merging component considers it as one word.

Non-Word Filtering. The last type of heuristics is for filtering non-words, i.e., false
new word candidates. The first of these is used to detect bisyllabic non-words. If
the POC tagger tags two adjacent characters as L (word-initial) and R (word-final), the
string is a candidate new word, if it has not occurred in the training data. The candidate
is filtered in two steps.

First, it is checked against two short lists of characters that contain frequent, un-
productive morphemes that do not occur in 1) word-initial position of new bisyllabic
words, e.g., 
 ‘but’, or 2) word-final position of new bisyllabic words, e.g., Y ‘this’,
respectively. If the first or second character of the candidate is on the first or second
list, respectively, the candidate is split into two words.

Second, the probability for a character to appear in word-initial or word-final position
is estimated from the training data as in (10):

P(C, Pos) =
F(C, Pos)

F(C)
(10)

where C denotes a character, Pos denotes a position in a word, P(C,Pos) denotes the
probability that C occurs in Pos, F(C,Pos) denotes the number of times C occurs in Pos,
and F(C) denotes the number of times C appears in any position of any word. Given
a candidate new word, the probability for it to be a word is computed as the joint
probability of P(C,Pos) for both of its component characters. If the joint probability is
below a pre-determined threshold, then the candidate is considered a non-word and is
split into two words.

Finally, the following two rules are used to merge or split character strings of certain
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patterns, based on the error analysis in the development stage. First, if two adjacent
characters are both tagged W (monosyllabic word) but have always occurred in the
training data as a word, they are merged into a word. Second, if three adjacent char-
acters are tagged W (monosyllabic word), L (word-initial), and R (word-final) respec-
tively, but the first two characters form a known word and the last two characters do
not, then the first two are grouped into a word and the last one is left as a monosyllabic
word.

4 Results

The model is developed and tested using the Contemporary Chinese Corpus developed
at Peking University in mainland China (Yu et al., 2002). This corpus contains all the
news articles published in January, 1999 in People’s Daily, a major newspaper in main-
land China. The corpus has a total of over 1.12 million tokens and is word-segmented
and POS-tagged. The corpus is randomly partitioned into three sets, with 80% used for
training, 10% used for development, and 10% reserved for testing. The final model is
trained on the union of the training and development sets and results are reported on
the test set.

4.1 POC Tagging Results

As discussed earlier, two initial taggers are used to compare the impact of the initial
tagger on the TBL algorithm, namely, a first-order HMM tagger and an SVM-based
tagger. In both cases, the same rule templates described in section 3.1 are used. The
threshold for the scoring function of the TBL algorithm is set to 1, i.e., all rules that
achieve two or more tagging error reductions are learned. In addition, fnTBL makes
it possible to learn rules that, at the end of the training process, result in no negative
application but a number of positive applications greater than a pre-determined thresh-
old. This threshold is set to 1 as well, i.e., all rules that achieve two or more positive
applications with no negative application at the end of the training process are also
learned. Both thresholds are set empirically in the development stage. The results of
the two initial taggers as well as the improved results achieved by the TBL algorithm
over their output are summarized in Table 3.

POC Tagger Accuracy
HMM tagger 0.814
HMM + TBL 0.936
SVM tagger 0.931
SVM + TBL 0.946

Table 3: POC tagging results.
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The HMM tagger achieves an accuracy of 81.4%, which is improved to 93.6% by the
TBL algorithm. This amounts to an absolute accuracy improvement of 12.2%, which
equals to an impressive tagging error reduction rate of 65.6%. The SVM-based tagger
achieves a much better initial tagging than the HMM tagger, with an accuracy of 93.1%.
The TBL algorithm achieves an absolute accuracy improvement of 1.5%, or a tagging
error reduction rate of 21.7%. The better initial tagging achieved by the SVM-based
tagger results in less improvement for the TBL algorithm, but better overall tagging
accuracy.

4.2 Segmentation Results

The output of the merging component is evaluated using the scoring algorithm adopted
for the SIGHAN Chinese segmentation bakeoffs (Sproat and Emerson, 2003; Emerson,
2005). This algorithm evaluates word segmenters in terms of recall, precision, F-score,
recall for out-of-vocabulary (OOV) words (i.e., unknown words), and recall for in-
vocabulary (IV) words.

The results for word segmentation and unknown word identification are summarized
in Table 4. As shown in the second row of the figure, the default merger, which uses
the POC tags assigned to the character string alone without resorting to any heuris-
tics, achieves an F-score of 93.5% along with a recall rate of 73.8% for unknown word
identification. Rows three through five indicate the improvement achieved with each
of the three types of heuristics incorporated in the merging component. Row three
shows that the heuristics for identifying unknown words with regular internal struc-
tures (UWI) improve the recall rate for unknown words (ROOV) by 2.2%; row four
shows that the heuristics for long word identification (LWI) slightly boost performance
on known words; and row five shows that the heuristics for non-word filtering (NWF)
improve performance on known words, although the recall rate for unknown word
identification is brought down by 1.2%. When all the heuristics are used together with
the POC tags, the F-score for word segmentation is improved by 1.5% to 95.0%, and the
recall rate for unknown word identification is also improved by 1% to 74.8%.

Merger R P F ROOV RIV
Default 0.932 0.938 0.935 0.738 0.944
+UWI 0.933 0.939 0.936 0.760 0.944
+LWI 0.933 0.940 0.937 0.737 0.945
+NWF 0.942 0.944 0.943 0.726 0.955
+ALL 0.947 0.952 0.950 0.748 0.959

Table 4: Word segmentation results.

Since the model uses no additional resources other than the training data, the results
are directly comparable with the results of the systems that participated in the closed
track of the Peking University Corpus in the second SIGHAN Chinese Segmentation
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Bakeoff. Table 5 summarizes the results of our model and the top three systems in
the bakeoff, namely, Chen et al. (2005), Tseng et al. (2005), and Zhang et al. (2005). As
these results indicate, without a complicated unknown word recognition mechanism,
the final model performs at the state of the art for word segmentation along with a
competitive recall rate for unknown word identification.

System R P F ROOV RIV
Ours 0.947 0.952 0.950 0.748 0.959
Chen 0.953 0.946 0.950 0.636 0.972
Tseng 0.946 0.954 0.950 0.787 0.956
Zhang 0.952 0.945 0.949 0.673 0.969

Table 5: Comparison of word segmentation results.

5 Discussion and Conclusion

This paper presents a new hybrid model that integrates unknown word identification
with Chinese word segmentation using the notion of character-based tagging. The
major hypothesis tested in this model is that character-based tagging has good potential
for integrating the two, as it allows one to directly model the tendency for individual
characters to combine with adjacent characters to form words in different contexts,
regardless of whether the words formed are known or unknown. This hypothesis is
confirmed by the results. With the default merger, the model achieves a competitive
rate for unknown word identification without resorting to any complicated unknown
word recognition mechanism.

One advantage of the use of the notion of character-based tagging is that since it is
essentially a classification problem, it can directly benefit from improvements in clas-
sifiers. A second advantage of the two-component setup of the model is that it al-
lows easy integration of additional linguistic insights as well as statistical heuristics in
the merging stage. The current merging component of the model incorporates three
types of linguistic and statistical heuristics. The heuristics for the recognition of un-
known words with regular or predictable internal properties, including numeric type
compounds, reduplicated words and certain derived words, and transliterated foreign
names, prove useful for enhancing the performance on unknown words. The heuris-
tics for the recognition of known long words tests the hypothesis that long words be-
have more consistently and introduce less segmentation ambiguity than shorter words.
The hypothesis is supported by the improvement achieved by the heuristics. Finally,
the heuristics for non-word filtering successfully catch a substantial portion of false
unknown words detected by the POC tagger.

The current model does not make use of any additional resources other than the
training data. Various lexical resources have been used in different word segmenta-
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tion systems. For example, some of the resources used in Gao et al. (2005), which is
by far the most sophisticated word segmentation system with access to the richest re-
sources, include a 98,668-entry lexicon, a semi-automatically compiled morpho-lexicon
that contains 59,960 morphologically derived words with information about morpho-
logical patterns and stems for each entry, a list of 373 family name characters, a list
of 30,000 location names, a list of 1,355 organization names, a list of 618 transliterated
name characters, a list of 151 characters for single-character person names, and a list of
177 single-character location names. Such lexical resources can be used to improve the
tagging component by enriching the feature set used for POC tagging. They can also
be used to improve and enrich the heuristics used in the merging component.
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