
Ekaterina Ovchinnikova, Kai-Uwe Kühnberger

Automatic Ontology Extension: Resolving Inconsistencies

Ontologies are widely used in text technology and artificial intelligence. The
need to develop large ontologies for real-life applications provokes researchers
to automate ontology extension procedures. Automatic updates without the
control of a human expert can generate potential conflicts between original
and new knowledge. As a consequence the resulting ontology can yield
inconsistencies. We propose a procedure that models the process of adapting
an ontology to new information by repairing several important types of
inconsistencies.

1 Introduction

There is an increasing interest in augmenting text technological and artificial intelligence
applications with ontological knowledge. Since the manual development of large ontolo-
gies has been proven to be time-consuming, many current investigations are devoted to
automatic ontology learning methods (Perez and Mancho, ).

The most important existing markup language for ontology design is the Web Ontology
Language (OWL), with its popular versions (OWL Lite and OWL DL) based on the
logical formalism called Description Logic (DL). DL was designed for the representation
of terminological knowledge and reasoning devices (Baader et al., ). Although most
of the tools extracting or extending ontologies automatically output the knowledge
in the OWL-format, they usually use only a small subset of the corresponding DL
representation. The core ontologies generated in most practical applications contain the
subsumption relation defined on concepts (taxonomy) and a few general relations (such
as part-of and other). At present complex ontologies making use of the full expressive
power and advances of the various versions of DL can be achieved only manually or
semi-automatically. However, several recent approaches not only attempt to learn
taxonomic and general relations, but also state which concepts in the knowledge base
are equivalent or disjoint (Haase and Stojanovic, ).

The storage of ontological information within a logical framework entails inconsistency
problems, because pieces of information can contradict each other, making the given
ontology unsatisfiable and therefore useless for reasoning purposes. The problem
of inconsistency becomes even more important with regard to large-scale ontologies:
resolving inconsistencies in large ontologies by hand is time-consuming and tedious,
therefore automatic procedures to debug ontologies are required.
The approach presented in this paper focuses on logical inconsistencies in termino-

logical knowledge base: after a rough sketch of DLs (Section ), we discuss informally

A documentation can be found at http://www.w3.org/TR/owl-features/.

LDV-Forum 2007 – Band 22 (2) – 19-33

Ovchinnikova, Kühnberger

inconsistencies in ontologies (Section ) and related work (Section ). In addition to
extending some existing ontology debugging methods, we provide formal criteria to
distinguish different types of logical inconsistencies (overgeneralization and polysemy)
in Section  and present an adaptation algorithm resolving logical inconsistencies that
may appear in ontology extensions (Section ). Section  adds some remarks concerning
the order of the update and Section  concludes the paper.

2 Description Logic

In this section, we define description logics (DL) underlying the ontology representation
considered in this paper (cf. Baader et al., , for an overview). A DL ontology
contains a set of terminological axioms (called TBox), a set of instantiated concepts
(called Assertion or ABox), and a set of role axioms (called RBox). In the present paper,
we focus on the TBox, leaving the ABox and the RBox aside for further investigation.

A TBox is a finite set of axioms of the form A1 ≡ A2 (equalities) or A v C (inclusions),
where A stands for a concept name and C (called concept description) is defined as
follows (R denotes a role name, A denotes an atomic concept): C → A | ¬A | ∀R.A.
The semantics of concepts and axioms is defined in the usual way in terms of a

model theoretic interpretation function I = (∆I , ·I), where ∆I is a non-empty set of
individuals and the function ·I maps every concept name A to AI ⊆ ∆I and every
role name R to RI ⊆ ∆I ×∆I . Negation and universal restriction is defined as usual:
(¬A)I = ∆I\AI and (∀R.A)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ AI}. An interpretation
I is a model of a TBox T , if for every inclusion A v C in the TBox, AI ⊆ CI and
for every equality A1 ≡ A2 in the TBox, AI1 = AI2 holds. A concept description D
subsumes C in T (T |= C v D), if for every model I of T : CI ⊆ DI . A concept C
is called satisfiable towards T , if there is a model I of T such that CI is nonempty.
Otherwise C is unsatisfiable towards T . The algorithms for checking satisfiability of
concept descriptions are described in Baader et al. () and implemented in several
reasoners. A TBox T is called unsatisfiable iff there is an atomic concept A defined in
T that is unsatisfiable.

An important DL concept for this paper is the least common subsumer (lcs) (cf. Baader
and Küsters, ) for the definition and algorithms for computing lcs). Intuitively, the
lcs for concept descriptions C1 and C2 is a concept description that collects all common
features of C1 and C2 and is most specific towards subsumption.

Definition  A concept description L is a least common subsumer (lcs) of concept
descriptions C1, ..., Cn towards a TBox T iff it satisfies the following two conditions:

. ∀i ∈ {1, ..., n} : T |= Ci v L and
. ∀L′: if ∀i ∈ {1, ..., n} : T |= Ci v L′ and L′ 6= L then T 6|= L′ v L.

In the following definitions, we closely follow Haase and Stojanovic () who present an approach
using one of the most powerful DL-versions for ontology learning.

Hereinafter concept descriptions are referred to as concepts.
Some of the DL reasoners are listed at http://www.cs.man.ac.uk/∼sattler/reasoners.html.

20 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

3 Inconsistent Ontologies

The notion of an inconsistent ontology has several meanings. For example, three types
of inconsistencies are distinguished in Haase and Stojanovic ():

• Structural inconsistency is defined with respect to the underlying ontology lan-
guage. An ontology is structurally inconsistent, if it is syntactically inconsistent,
i.e. if it contains axioms violating syntactical rules of the representation language
(e.g. OWL DL).

• Logical inconsistency of an ontology is defined on the basis of formal semantics:
An ontology is logically inconsistent, if it has no model.

• User-defined inconsistency is related to application context constraints defined by
the user.

In this paper, we consider logical inconsistencies only. In particular, we focus on
unsatisfiable terminologies. Notice that an ontology can become logically inconsistent
only if its underlying logic allows negation. Ontologies share this property with every
logical system. For the approaches concerned with core ontologies (lacking negation)
contradictions in the ontological knowledge base cannot arise. But for approaches using
more powerful logics, the problem of inconsistency becomes important (Haase and
Stojanovic, ).

Terminological unsatisfiability can have several reasons: first, errors in the automatic
ontology learning procedure or mistakes of the ontology engineer, second, polysemy of
concept names, and third, generalization mistakes. The polysemy problem is particularly
relevant for automatic ontology learning. If an ontology is learned automatically, then
it is hardly possible to distinguish between word senses: If, for example, a concept Tree
is declared to be a subconcept of both, Plant and Data structure (where Plant and Data
structure are subconcepts of disjoint concepts, e.g. Object and Abstraction), then Tree
will be unsatisfiable.

Generalization mistakes causing unsatisfiability are connected with definitions of
some concepts that are too specific: such definitions contradict with their subconcepts,
representing exceptions to these definitions. Here is a classical example:

Example 
TBox: {1. Bird v CanF ly, 2. CanF ly v CanMove,

3. Canary v Bird, 4. P enguin v Bird}
New axiom: {5. P enguin v ¬CanF ly}

The statement all birds can fly in Example  is too specific. If an exception penguin,
that cannot fly, is added, the terminology becomes unsatisfiable.
Example  below demonstrates a case where two overgeneralized definitions of the

same concept conflict with each other:

Band 22 (2) – 2007 21

Ovchinnikova, Kühnberger

Example 
TBox: {1. Child v ∀likes.Icecream, 2. Icecream v Sweetie, 3. Chocolate v Sweetie,

4. Icecream v ¬Chocolate, 5. Chocolate v ¬Icecream}
New axiom: 6. Child v ∀likes.Chocolate

In this example, both definitions of Child (i.e. ∀likes.Icecream and ∀likes.Chocolate)
are too specific. Icecream and Chocolate being disjoint concepts produce a conflict,
if a modeled child likes at least one of their instances. Strictly speaking, the TBox
in Example  is satisfiable. But we consider contradictions in scopes of universal
quantification also as problematic, since such definitions are unusable in practice.

4 Related Work

A technique to find a minimal set of axioms that is responsible for inconsistencies in
an ontology was first proposed in Baader et al. (). In order to detect a set of
problematic axioms, assertions are labeled and traced back, if a contradiction is found
in a tableau expansion tree. In Schlobach and Cornet (), an advanced approach of
this idea is presented by introducing the notion of a minimal unsatisfiability-preserving
sub-TBox (MUPS): An axiom pinpointing service for ALC is proposed identifying the
exact parts of axioms that are causing a contradiction. Several present approaches to
ontology debugging are concerned with explanation services that are integrated into
ontology developing tools. For example, Wang et al. () present a service explaining
unsatisfiability in OWL-DL ontologies by highlighting problematic axioms and giving
natural language explanations of the conflict. In Haase and Stojanovic (), an
approach to automatic ontology extraction is described. Every extracted axiom receives
a confidence rating witnessing how frequent the axiom occurs in external sources.

The approaches sketched above either do not give solutions of how to fix the discovered
contradictions or just propose to remove a problematic part of an axiom, although
removed parts of axioms can result in a loss of information. Considering, for example,
Example  again, if the concept CanF ly is removed from axiom , then the entailments
Bird v CanMove and Canary v CanF ly are lost.
In Fanizzi et al. (), inductive logic programming techniques are proposed to

resolve inconsistencies. If a concept C is unsatisfiable, then the axiom defining C is
replaced by a new axiom, constructed on the basis of positive assertions for C. The
information previously defined in the ontology for C gets lost. Kalyanpur () extends
the OWL-DL tableau algorithm with a tracing technique to detect conflicting parts
of axioms. It is suggested to rewrite axioms using frequent error patterns occurring
in ontology modeling. Lam et al. () revise the technique proposed in Baader and
Hollunder () and support ontology engineers in rewriting problematic axioms in
ALC: Besides the detection of conflicting parts of axioms, a concept is constructed, that
replaces the problematic part of the chosen axiom. This approach keeps the entailment
Bird v CanMove, but not Canary v CanF ly in Example . An approach to resolve
overgeneralized concepts conflicting with exceptions is presented in Ovchinnikova and

22 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

Kühnberger () for ALE . Besides rewriting problematic axioms, a split of an
overgeneralized concept C into a more general concept (not conflicting with exceptions)
and a more specific one (capturing the original semantics of C) is proposed.

5 Proposed Approach

5.1 Tracing Clashes

In this section, we revise the tableau-based algorithm presented in Lam et al. () for
tracing clashes in unsatisfiable terminologies and rewriting problematic axioms. We
adapt this tracing technique to our simple logic. The proposed algorithm detects the
relevant parts of the axioms that are responsible for the contradiction.

Following Lam et al. () suppose that a terminology T contains axioms {α1, ..., αn},
where αi refers to an axiom Ai v Ci or Ai ≡ Ci (i ∈ {1, ..., n}). In checking the
satisfiability of a concept description C the tableau algorithm constructs a model of C
represented by a tree T. Each node x in this tree is labeled with a set L(x) containing
elements of the form (a : C, I, a′ : C′), where C and C′ are concept descriptions, a and
a′ are individual names, and I is a set of axiom indices. An element (a : C, I, a′ : C′)
has the following intended meaning: individual a belongs to concept description C due
to the application of an expansion rule on C′ and I contains the indices of the axioms
where a : C originates from.
T is initialized with a node x and L(x) = {(a : C,∅, nil)}. The algorithm expands T

according to the rules in Table . Concept descriptions involved in the expansion are
converted to negation normal form. The algorithm terminates if no more expansion rules
can be applied to tree nodes. T contains a clash if an individual a belongs simultaneously
to concept descriptions C and ¬C, i.e. (a : C,−,−) ∈ L(x) and (a : ¬C,−,−) ∈ L(x).
A clash in an expansion tree does not always mean unsatisfiability. If an individual

a in a model tree for a concept A belongs to a value restriction ∀R.C, where C is
unsatisfiable, but a has no R-successors, then this value restriction does not cause
unsatisfiability of A. On the other hand, with the advent of instances or subconcepts
of A which have R-successors this value restriction invokes unsatisfiability (cf. Wang
et al., ).

Definition  Minimal clash-preserving sub-TBox (MCPS)
Let A be a concept for which its model tree obtained relative to a terminology T contains
clashes. A sub-TBox T ′ ⊂ T is a MCPS of A, if a model tree for A towards T ′ contains
clashes and a model tree of A towards every T ′′ ⊂ T ′ contains no clashes.

The union of the axiom indices in I of all clash elements in the model tree of A
corresponds to MUPS of A in Schlobach and Cornet () and constitutes MCPS
of A in Lam et al. (). Given a specific clash (e1, e2), MCPS(e1,e2)(A) is similarly

Tags are provided to avoid circularity in the expansion of concept definitions.
“−” is a placeholder. It stands for any value.
Concerning unsatisfiablitily of A.

Band 22 (2) – 2007 23

Ovchinnikova, Kühnberger

Table 1: Tableau expansion rules.

Rule ≡+ if Ai ≡ Ci ∈ T , and (a : Ai, I, a′ : A′) is not tagged,
then tag((a : Ai, I, a′ : A′)) and L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}

Rule ≡– if Ai ≡ Ci ∈ T , and (a : ¬Ai, I, a′ : A′) is not tagged,
then tag((a : ¬Ai, I, a′ : A′)) and
L(x) := L(x) ∪ {(a : ¬Ci, I ∪ {i}, a : ¬Ai)}

Rule v if Ai v Ci ∈ T , and (a : Ai, I, a′ : A′) is not tagged,
then tag((a : Ai, I, a′ : A′)) and L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}

Rule ∀ if (a : ∀R.C, I, a′ : A′) ∈ L(x), and the above rules cannot be applied,
then if there is (b : D, J, a : ∀R.D) ∈ L(x),

then L(x) := L(x) ∪ {b : C, I, a : ∀R.C}
else L(x) := L(x) ∪ {b : C, I, a : ∀R.C},
where b is a new individual name

defined as in Definition  except for MCPS(e1,e2)(A) preserving only one clash (e1, e2),
but not all clashes as MCPS(A). To trace clashes we need to introduce the following
definition.

Definition  Trace
Given an element e = (a0 :C0, I0, a1 :C1) in a set L(x), the trace of e is a sequence of
the form 〈(a0 :C0, I0, a1 :C1), (a1 :C1, I1, a2 :C2), . . . , (an−1 :Cn−1, In−1, an :Cn), (an :
Cn,∅, nil)〉, where Ii−1 ⊆ Ii for each i ∈ {1, ..., n} and every element in the sequence
belongs to L(x).

Note that the expansion rules in Table  coincide with Lam et al. (), except for
the Rule ∀, which obviously does not change crucial properties of the algorithm like
complexity, decidability etc. Therefore, the properties of the original algorithm in Lam
et al. () are also relevant for our algorithm.

5.2 Types of Clashes

First of all, it is important to understand which solution for resolving clashes is ap-
propriate from a pragmatic point of view. In order to achieve this, we return to
our running examples. Concerning Example  it seems to be obvious that the axiom
Bird v CanF ly has to be modified, since this axiom contains overgeneralized knowledge.
Simply deleting this axiom would result in the loss of the entailments Bird v CanMove
and Canary v CanF ly, although both entailments do not contradict with the axiom
Penguin v ¬CanF ly. A natural idea is to replace the problematic part of the overgen-
eralized definition of the concept Bird (namely CanF ly) with its least subsumer, that
does not conflict with Penguin. In our example, the concept description CanMove
is precisely such a subsumer. Unfortunately, the simple replacement of CanF ly by
CanMove in Axiom  is not sufficient to preserve the entailment Canary v CanF ly.

24 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

We suggest therefore to introduce a new concept FlyingBird that preserves the previous
meaning of Bird and subsumes its former subconcepts:

. Bird v CanMove . CanF ly v CanMove
. Canary v FlyingBird . Penguin v Bird
. Penguin v ¬CanF ly . FlyingBird v Bird
. FlyingBird v CanF ly
The situation is different for multiple overgeneralizations. A relevant solution for Exam-
ple  is to replace the overgeneralized definitions ∀likes.Icecream and ∀likes.Chocolate
with their least common subsumer ∀likes.Sweetie. The resulting axiom Child v
∀likes.Sweetie claims that children like only sweeties without specifying it:
1. Child v ∀likes.Sweetie 2. Icecream v Sweetie 3.Chocolate v Sweetie
4. Icecream v ¬Chocolate 5. Chocolate v ¬Icecream
The examples make clear that it is a non-trivial practical question of how multiple and
single overgeneralizations can be distinguished. A single overgeneralization occurs, if
some concept is too specifically defined and an exception contradicts with this definition.
In the case of multiple overgeneralizations, two or more definitions of the same concept
are too specific and conflict with each other. Unfortunately, it seems to be impossible to
define this distinction purely logically, since this distinction is just a matter of human
expert interpretation.
From a practical perspective it turns out that multiple overgeneralizations occur, if

a concept is subsumed by two or more concepts that are explicitly defined as disjoint
in the ontology (cf. Example ). This case has a certain structural similarity to the
polysemy problem, where an unsatisfiable concept is also subsumed by different disjoint
concepts (cf. the tree example in Section ). Practically, polysemy can be distinguished
from multiple overgeneralizations by taking into account the level of abstraction of the
disjoint concepts. In the case of polysemy, the disjoint superconcepts of the unsatisfiable
concept usually occur in the upper structure of the taxonomy tree, whereas multiple
overgeneralizations occur on lower levels of the taxonomy.
Definition  defines the abstraction level of concepts. The abstraction level of a

concept towards a model tree is the number of steps in the shortest path from this
concept to a most general (undefined) concept in the tableau extension procedure.

Definition  Given a set L(x) that was obtained relative to a terminology T and
an element (a : C1, I1, a0 : C0) ∈ L(x), the abstraction level L(C1) is defined as the
minimal cardinality of the sequences 〈(a : C1, I1, a0 : C0), ..., (a : Cn, In, a : Cn−1)〉
where ∀i ∈ {1, ..., n} : [(a : Ci, Ii, ai−1 : Ci−i) ∈ L(x) and Ii ⊆ Ii−1] and there is no
concept D such that Cn v D ∈ T or Cn ≡ D ∈ T .

Using Definition  it is possible to distinguish the two types of inconsistencies formally
(cf. Definition ): If a concept is subsumed by two other concepts that are defined to
be disjoint and the abstraction level of these concepts is higher than a user-defined
For the sake of simplicity Definition  concerns multiple overgeneralization with only two concepts.

Band 22 (2) – 2007 25

Ovchinnikova, Kühnberger

distinctive abstraction level, then this case is considered to be polysemous. If the
abstraction level is below the user-defined abstraction level, then we are dealing with
multiple overgeneralizations. Finally, if the clash is not produced by explicitly disjoint
concepts, then we face the case of single overgeneralization.

Definition  Given a clash (a : C,−,−), (a : ¬C,−,−) from a set L(x) that was
obtained relative to a terminology T and a distinctive abstraction level l, the following
cases can be distinguished:

• If there exists a concept D such that (a : D,−,−), (a : ¬D,−,−) ∈ L(x) and
D v ¬C ∈ T and C v ¬D ∈ T , then
– If max(L(C),L(D)) ≥ l this clash is polysemous,
– Else this clash is a multiple overgeneralization,

• Else this clash is a single overgeneralization.

In the following subsection, we will discuss resolution aspects of the mentioned types
of clashes.

5.3 Resolving Clashes

Unfortunately, it is impossible to resolve polysemy problems automatically without an
appeal to external knowledge. After splitting the problematic concept (e.g. Tree in the
example of Section ) into two concepts with different names (e.g. TreeStructure and
TreePlant) it is necessary to find out which one of the definitions and subconcepts of
the original concept refers to which of the new concepts. This can be done either by
the ontology engineer or with the help of additional knowledge about the usage context
of this concept in external resources. Since this paper is concerned with logical aspects
of ontology adaptation only, we do not consider this problem here.

As already mentioned above, multiple overgeneralizations can be repaired by replacing
conflicting definitions with their least common subsumer. In order to find a least common
subsumer, we need to calculate subsumers for concepts. Fact  characterizes subsumers
computationally.

Fact  Given a set L(x) obtained relative to a terminology T and concept C such that
(a : C,−,−) ∈ L(x), a concept C′ is a subsumer of C towards T if

• ∃e = (a : C′,−,−) : (a : C,−,−) ∈ Trace(e) or

• ∃e = (a : ∀R.D,−,−) : (a : C,−,−) ∈ Trace(e) and C′ =̇ ∀R.D′ such that D′ is
atomic and a subsumer of D.

If C is satisfiable towards T , then the other direction of the implication does also hold.

Fact  claims that a concept C′ is a subsumer of a concept C, if it was added to a
node a in the tableau expansion procedure after C or if C is subsumed by a relational
The proofs of Fact  and further facts below are not presented in detail due to space limitations.
We will rather provide sketches of proof ideas.

26 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

restriction ∀R.D and C′ is a relational restriction on R with a scope D′ subsuming D.
General axioms with a complex concept definition on the right side cannot occur in our
restricted logic. Therefore if C is satisfiable, then no inferred subsumption that is not
explicitly expressed in the TBox is possible. If C is unsatisfiable, then it is subsumed
by any concept. As the reader will see hereinafter, we are interested only in cases where
C is satisfiable.
According to Fact , given a set L(x), a lcs for two satisfiable concepts C1 and C2

occurring in L(x) can be characterized as a minimal concept subsuming both, C1 and
C2 towards T .

Fact  Given a set L(x) obtained relative to a terminology T and concepts C1 and C2
satisfiable towards T , such that (a : C1,−,−) ∈ L(x), (a : C2,−,−) ∈ L(x) a concept L
is a least common subsumer for C1 and C2 towards T if and only if the following two
conditions hold:

. L ∈ subsumersT (C1) ∩ subsumersT (C2).
. For every concept L′ that satisfies condition  and is not equal to L: T 6|= L′ v L.

Fact  ensures that L satisfies condition  of Definition  (recall that the set
subsumersT (C) is the exhaustive set of concept descriptions subsuming C towards T
provided C is satisfiable towards T). Obviously, L satisfies also condition  of Defini-
tion . Thus, in order to resolve a clash produced in a model tree of a concept A by
two overgeneralized definitions C1 and C2, it is sufficient to delete axioms A v C1 and
A v C2 from the terminology and add axioms from the set {A v L | L is a lcs(C1, C2)}.
If concepts C1 and C2 themselves are unsatisfiable, then they should be repaired before
A. Compare Section  for more remarks concerning this issue.

Now we examine the problem of resolving the case of single overgeneralization. Lam
et al. () shows that removing any of the axioms appearing in the clash traces is
sufficient to resolve the clash. An important practical question concerns the choice of
the axiom to be removed or modified. In the literature, a lot of ranking criteria were
suggested for this task on ontology debugging (Schlobach and Cornet, ; Kalyanpur,
; Lam et al., ; Haase and Stojanovic, ):

• Arity of an axiom α denotes in how many clashes α is involved. The higher the
arity is, the lower is the rank of α.

• Semantic impact of α denotes how many entailments are lost if α is removed.
Axioms with a high semantic impact are ranked higher.

• Syntactic relevance denotes how often concept and role names occurring in an
axiom α are used in other axioms in the ontology. Axioms containing elements
that are frequently occurring in the ontology are ranked higher.

• Manual ranking of α can be provided by the ontology engineer.

Band 22 (2) – 2007 27

Ovchinnikova, Kühnberger

• Frequency ranking of α is used in approaches to semi-automatic ontology extraction
and denotes how often concepts and roles in α occur in external data sources.

In this paper, we do not discuss ranking strategies and suppose that one of these
strategies has been applied and the problematic axiom to be removed or rewritten has
been chosen. Assume a concept description C is chosen to be removed from an axiom
α, in order to resolve a clash in a model tree for a concept A. The next questions is:
How can we find an appropriate concept description C′ that can resolve the clash by
replacing C? We are looking for a replacement that resolves the clash, does not cause
new clashes or entailments, and preserves as many entailments implied by T as possible.
Definition  defines such a replacement.

Definition  Minimal nonconflicting substitute (MNS)
Assume the following is given: a terminology T , a clash e1 = (a : X,−,−), e2 = (a :
¬X,−,−) in the model tree for a concept A, a concept C satisfiable towards T  that
is chosen to be removed from an axiom αi (αi ∈ T and ∃j ∈ {1, 2} : (a : C, {i,−},−) ∈
Trace(ej)), and T ′′ := T \ {αi}. Let an axiom α′ be obtained from αi by replacing C
with a concept C′ and T ′ := T \ {αi} ∪ {α′}. C′ is a minimal nonconflicting substitute
(MNS) of C if the following conditions hold:

. A model tree for A towards T ′ contains the same number of clashes as a model
tree for A towards T ′′.

. If C′ 6= >, then there exists an entailment β, such that T |= β, T ′′ 6|= β, and
T ′ |= β.

. There exists no entailment β such that T 6|= β and T ′ |= β.

. There exists no concept description C′′ with the same properties of C′, such that
C′′ preserves more entailments from T .

Condition () guarantees that MNS resolves the clash (e1, e2) in which αi and C are
involved and does not introduce new clashes. Due to condition () MNS preserves at
least one entailment from T that would be lost with the removal of C. Condition ()
excludes new entailments that are not implied by T and condition () guarantees that
MNS preserves as much information as possible.

Fact  Given a clash e1 = (a : X,−,−), e2 = (a : ¬X,−,−) obtained from a set L(x)
relative to a terminology T and a concept C satisfiable towards T that is chosen to be
removed from an axiom αi (αi ∈ T and ∃j ∈ {1, 2} : (a : C, {i,−},−) ∈ Trace(ej)), a
concept C′ is a MNS of C if and only if the following conditions hold:

. C′ subsumes C towards T .

Notice again: if C is unsatisfiable, then it should be repaired before A. Compare Section  for
more information.

28 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

. If C is subsumed by X or ¬X towards T , then C′ is not subsumed by X or ¬X
towards T .

. C′ preserves at least one entailment from T or C′ := >.

. There exists no concept description C′′ 6= C′ with the same properties, such that
C′ subsumes C′′ towards T .

Due to conditions () and () C′ satisfies conditions () and () of Definition 
(since C′ is not subsumed by a conflicting definition, it does not reconstruct the clash).
Condition () guarantees that C′ satisfies condition () of Definition . Finally condition
() corresponds to () in Definition .

We reconsider Example . The model tree for the concept Penguin in this example
consists of the following elements:

L(x) = {(a : Penguin,∅, nil), (a : Bird, {4}, a : Penguin),
(a : ¬CanF ly, {5}, a : Penguin), (a : CanF ly, {4, 1}, a : Bird),
(a : CanMove, {4, 1, 2}, a : CanF ly)}

Thus, the set of problematic axioms is {1, 4, 5}. Suppose the concept CanF ly is chosen
to be removed from axiom . According to Fact  CanMove is MNS of CanF ly.
If CanF ly is replaced by CanMove in Axiom , then the entailments of the form
X v CanF ly, where X is a subconcept of Bird (for example, Canary), would be lost.
Such situations are undesirable, because the clash (CanF ly,¬CanF ly) concerns only
the conflict between the overgeneralized concept Bird and the exception Penguin. In
order to keep the entailments, we suggest to introduce a new concept FlyingBird to
the terminology which will capture the original meaning of Bird (cf. Section .).

6 Adaptation Algorithm

If a new axiom α is added to a terminology T , then the proposed algorithm constructs
model trees for every atomic concept X that is defined in T . Model trees containing
clashes are used for ontology repairing. Using Definition  the algorithm distinguishes
between inconsistency types. Since polysemy can not be repaired without external
knowledge, this problem is only reported to the user. Multiple overgeneralizations are
repaired by replacing the conflicting definitions with their least common subsumer.

With respect to single overgeneralization, for every clash (e′, e′′) a concept description
F from the trace of some clash element e ∈ {e′, e′′} is chosen to be rewritten in an
axiom β (β=̇E v F or β=̇E ≡ F) according to a given ranking (see section .). F
is replaced with its minimal nonconflicting substitutes in β. A new concept Enew is
introduced to capture the original semantics of E. The name Enew is constructed
automatically from the original name E and the problematic concept F . The set T
consists of elements from L(x) that are contained in the trace of the element e between
the unsatisfiable concept X and the rewritten concept E.

Band 22 (2) – 2007 29

Ovchinnikova, Kühnberger

The split&replace procedure splits atomic concepts from L(x) that are involved
in the clash above. Concepts appearing in the trace of e earlier are split first. If a
definition of B1 was rewritten and B1 was split into Bnew1 and B1 and a concept B2
is going to be split immediately after B1, then B1 in the definition of a new concept
name Bnew2 is replaced with Bnew1 .

Algorithm Adapt a satisfiable terminology T to a new axiom α,
given a distinctive abstraction level l
α=̇A v B or α=̇A ≡ B, add α to T
for all axioms α′=̇X v Y or α′=̇X ≡ Y , α′ ∈ T
if X is unsatisfiable towards T then
for all clashes (e′, e′′) in the sets L(x) of the model tree for X where

e′ = (a : C,−,−), e′′ = (a : ¬C,−,−)
if ∃D : (a : D,−,−), (a : ¬D,−,−) ∈ L(x) and {D v ¬C,C v ¬D} ⊂ T
then if max(L(C),L(D)) ≥ l then report polysemy

else remove D1, D2 where
Di∈{1,2} are last but one elements in the traces of e′, e′′

for all lcs(D1, D2) add A v lcs(D1, D2) to T end for
else
choose an β ∈ T (β=̇E v F or β=̇E ≡ F) such that
∃e ∈ {e′, e′′} : (b : F,−,−) ∈ Trace(e) to be rewritten acc. to ranking
remove β from T
for all MNS(F)
βnew is obtained from β by replacement of F with MNS(F)
add βnew to T

end for
add Enew v E,Enew v F to T
let T be a subsequence of Trace(e)
between the elements (a : E,−,−) and (b : X,−,−) (not inclusive)
split&replace(E, Enew, T)

end for

Subroutine split&replace(A,Anew, T)
(b : B′,−, a : B) is the next element of T and B is atomic
B′′ is obtained by replacing A with with Anew in B′

if B v B′ ∈ T then add Bnew v B′′ to T
else add Bnew ≡ B′′ to T
for all γ ∈ T such that γ is not the next axiom in T

replace B with Bnew in the right part of γ
end for
split&replace(B,Bnew, T)

Example  shows the application of the algorithm. The concept Transport in axiom

30 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

 is chosen to be rewritten. It is easy to see that the proposed algorithm extends the
semantics of the “split” concepts, whereas the semantics of other concepts remains un-
changed. New concept names (TransportAirplane,AviatesTransportAirplaneP ilot)
are constructed automatically.

Example 
Original terminology:
. Pilot v ∀aviates.Airplane . Airplane v Transport
. PassengerP lane v Airplane . FighterP ilot v Pilot
. FighterP ilot v ∀aviates.F ightingMachine . FightingMachine v ¬Transport

Changed terminology:
. Pilot v ∀aviates.Airplane
. PassengerP lane v TransportP lane
. FighterP ilot v Pilot
. FighterP ilot v ∀aviates.¬FightingMachine
. FightingMachine v ¬Transport
. TransportAirplane v Airplane
. TransportAirplane v Transport
. AviatesTransportAirplaneP ilot v Pilot
.AviatesTrasportAirplaneP ilot v ∀aviates.T rasportAirplane

7 Root and Derived Concepts

It is easy to verify that the result of the application of our algorithm is dependent on
the order the concepts are input into the debugger. If axioms are added one by one,
then nothing in the procedure needs to be changed. But if a set of axioms is added to
the ontology, then it is interesting to see whether it is reasonable to reorder axioms in
this set. Unsatisfiable concepts can be divided into two classes:

. Root concepts are atomic concepts for which a clash found in their definitions does
not depend on a clash of another atomic concept in the ontology.

. Derived concepts are atomic concepts for which a clash found in their definitions
either directly (via explicit assertions) or indirectly (via inferences) depends on a
clash of another atomic concept (Kalyanpur, ).

In order to debug a derived concept, it is enough to debug corresponding root concepts.
Thus, it is reasonable to debug only the root concepts. The technique of distinguishing
between root and derived concepts was proposed in Kalyanpur (). We integrate
this technique into our approach.

Definition  An atomic concept A is derived from an atomic concept A′ if there
exists a clash (e1, e2) in the model tree of A such that MCPS(e1,e2)(A′) is a subset of

Band 22 (2) – 2007 31

Ovchinnikova, Kühnberger

MCPS(e1,e2)(A). If there is no concept A′ from which A is derived, then A is a root
concept.

Fact  shows how to find dependencies between problematic concepts.

Fact  Given a clash (e1, e2) obtained from a set L(x) for a concept A, A is derived
from a concept A′ (towards this clash) if and only if ∃(b : A′,−,−) ∈ TraceL(x)(e1) :
(b : A′,−,−) ∈ TraceL(x)(e2).

MCPS(e1,e2)(A′) is a subset of MCPS(e1,e2)(A) if and only if the model tree for A′

is a subset of the model tree for A and both of these trees contain the clash (e1, e2)
(modulo differences in the axiom indices set). Obviously, A′ is in the traces of the clash
elements in its own model tree. Therefore, if A is derived from A′ towards (e1, e2), then
A′ is in the traces of e1 and e2 in L(x). On the other hand, if A′ occurs in the traces of
e1 and e2, then the model tree of A′ contains this clash and is a subset of L(x).

Using Fact  it is possible to construct a directed graph with atomic concepts as nodes
and arrows denoting derivation. It can happen that two concepts are simultaneously
derived from each other (for example {A v D, A v ¬D, B v D, B v ¬D, A ≡ B}).
In this case, it is necessary to debug both of the derived concepts.

8 Conclusion and Future Work

In this paper, we presented an approach for dynamically resolving conflicts appearing
in automatic ontology learning. This approach is an integration of ideas proposed in
Lam et al. () and Ovchinnikova and Kühnberger () extended for the subset of
description logics used in practically relevant systems for ontology learning (Haase and
Stojanovic, ). Our algorithm detects problematic axioms that cause a contradiction,
distinguishes between different types of logical inconsistencies and automatically repairs
the terminology. This approach is knowledge preserving in the sense that it keeps as
many entailments implied by the original terminology as possible.

In Ovchinnikova et al. (), a prototypical implementation of the idea of splitting
overgeneralized concepts in ALE-DL was discussed. This implementation was tested
on the famous wine-ontology that was automatically extended with new classes
extracted from text corpora with the help of the TextOnto tool. Several cases of
overgeneralization were detected and correctly resolved.
In the near future, we plan to test the prototype implementation of the proposed

algorithm on existing real-life ontologies. It is of particular interest to see to what
extent statistical information about the distribution and co-occurrence of concepts in
texts can help to improve the adaptation procedure for making it more adequate to
human intuition.
http://www.w3.org/TR/owl-guide/wine.owl
http://ontoware.org/projects/text2onto/
For example, the class LateHarvest originally defined to be a sweet wine was claimed to be

overgeneralized after an exception RieslingSpaetlese which was defined to be a late harvest wine
and a dry wine appeared.

32 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

Acknowledgments

This research was partially supported by grant MO /- of the German Research
Foundation (DFG).

References

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., editors
(). The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York.

Baader, F. and Hollunder, B. (). Embedding Defaults into Terminological Representation
Systems. J. Automated Reasoning, :–.

Baader, F. and Küsters, R. (). Non-standard Inferences in Description Logics: The Story
So Far. In Gabbay, D. M., Goncharov, S. S., and Zakharyaschev, M., editors, Mathematical
Problems from Applied Logic I. Logics for the XXIst Century, volume  of International
Mathematical Series, pages –. Springer.

Baader, F., Lutz, C., Milicic, M., Sattler, U., and Wolter, F. (). Integrating Description
Logics and Action Formalisms: First Results. In Proceedings of the  International
Workshop on Description Logics (DL), CEUR-WS.

Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., and Semeraro, G. (). Downward
Refinement in the ALN Description Logic. In HIS ’: Proc. of the Fourth International
Conference on Hybrid Intelligent Systems (HIS’), pages –, Washington, DC, USA.
IEEE Computer Society.

Haase, P. and Stojanovic, L. (). Consistent evolution of owl ontologies. In Proc. of the
Second European Semantic Web Conference, pages –.

Kalyanpur, A. (). Debugging and Repair of OWL Ontologies. Ph.D. Dissertation. University
of Maryland College Park.

Lam, S. C., Pan, J. Z., Sleeman, D. H., and Vasconcelos, W. W. (). A Fine-Grained
Approach to Resolving Unsatisfiable Ontologies. In Web Intelligence, pages –.

Ovchinnikova, E. and Kühnberger, K.-U. (). Adaptive ALE-Tbox for Extending Termi-
nological Knowledge. In th Australian Joint Conference on ArtificialIntelligence, pages
–.

Ovchinnikova, E., Wandmacher, T., and Kühnberger, K.-U. (). Solving Terminological
Inconsistency Problems in Ontology Design. International Journal of Interoperability in
Business Information Systems (IBIS), ():–.

Perez, G. A. and Mancho, M. D. (). A Survey of Ontology Learning Methods and
Techniques. OntoWeb Delieverable ..

Schlobach, S. and Cornet, R. (). Non-Standard Reasoning Services for the Debugging of
Description Logic Terminologies. In IJCAI, pages –.

Wang, H., Horridge, M., Rector, A. L., Drummond, N., and Seidenberg, J. (). Debugging
OWL-DL Ontologies: A Heuristic Approach. In International Semantic Web Conference,
pages –.

Band 22 (2) – 2007 33

