
Eduardo Torres Schumann, Uwe Mönnich, Klaus U. Schulz

Integration Languages for Data-Driven Approaches to

Ontology Population and Maintenance

Populating an ontology with a vast amount of data and ensuring the
quality of the integration process by means of human supervision seem to
be mutually exclusive goals that nevertheless arise as requirements when
building practical applications. In our case, we were confronted with the
practical problem of populating the EFGT Net, a large-scale ontology that
enables thematic reasoning in different NLP applications, out of already
existing and partly very large data sources, but on condition of not putting
the quality of the resource at risk. We present here our particular solution
to this problem, which combines, in a single tool, on one hand an integration
language capable of generating new entries for the ontology out of structured
data with, on the other hand, a visualization of conflicting generated entries
with online ontology editing facilities. This approach appears to enable
efficient human supervision of the population process in an interactive way
and to be also useful for maintenance tasks.

1 Introduction

Ontologies play a key role in the Semantic Web and Knowledge Management
research as a way to model the domain of application and in order to
achieve an integrated access to heterogeneous data sources. Building an
ontology has also become usual when developing resources for Natural
Language Processing (NLP) applications, due to the need of representing
meaning traditionally compiled in lexica or thesauri in a form suitable
for manipulation by the computer. Although there are some differences
between ontologies used in the different scenarios – e.g. some ontologies
used in NLP applications are referred to as light weight ontologies because
their lack of a specification in a formal ontology language –, they all share
the fact that the process of ontology development requires considerable
human effort. Moreover, ontologies have to be refined and maintained
regularly in an iterative, data-driven process called the ontology learning
cycle (Maedche and Staab, ). This tasks constitute a determining factor
in the development of NLP applications and have also been identified as the
“bottleneck on the way to the semantic web”. If a large amount of existing
data is intended to be integrated through ontologies, approaches need to
work in a data-driven, automatic way but at the same time enable efficient
human supervision.

LDV-Forum 2007 – Band 22 (2) – 35-49

Torres Schumann, Mönnich, Schulz

The work we report on here is carried out in the framework of a larger
project that aims to encode vast encyclopedic and common purpose knowl-
edge deposited in a knowledge base called the EFGT Net, which is intended
to be used for different NLP applications like semantic annotation and
thematic reasoning. The EFGT Net is managed by means of a formal
language been specially designed for this purpose. Rather than providing an
exhaustive, precise definition of the formal meaning of a concept, the aim of
this language is to place concepts in the thematic space represented by the
EFGT Net. One main advantage of the EFGT Net language it can easily
handle nets with more than 105 concepts. Further details on motivations,
design guidelines and scientific ideas behind the EFGT Net are provided by
Schulz and Weigel ().

As one branch of development, we wished to populate the EFGT Net with
large amounts of already available data, such as legacy data from previous
projects, public available data like GeoNames () and data automatically
extracted from document resources like the Wikipedia (Wikipedia, ).
These data sources were given in different formats, such as tables and XML.
The translation of data into entries of the net turned out to be a non-trivial
and interesting task. Two questions became central:

. How to specify a computable mapping from data of distinct formats to
possible concepts of the ontology?

. How to support the user in the task of deciding which of the gener-
ated concept candidates harmonize with the resource and should be
incorporated to the ontology?

Here, we introduce our technical solution to these problems, the so-called
Upload Tool. As to the first question, our approach allows the user to define
templates of a specific form. In the simplest case, a template can be seen as
a formal definition of a new concept, expressed in an extension of the EFGT
Net language with the help of variables. The template specifies how the
sequence of template variables is mapped to some tuple of concept names or
attributes found in the textual input data. From each image tuple found in
the data, a new instantiation of the template is obtained, which gives rise to
a new concept definition which can be added to the ontology. More complex
templates simultaneously define several new concepts from one tuple of data.
Variants of the template syntax address the problem of defining data tuples
and mappings for input data coming in different formats (tables, XML).
This kind of extension of the ontology specification language for template
definition and data integration is what we call here an integration language.

In many cases, some of the “new” concepts that are obtained from template
instantiation will be already defined in the ontology. Hence, to avoid
inconsistencies, data integration needs some form of manual control. Note
that both the amount of data to be integrated as well as the number of

36 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

concepts in the resource may be very large. As a consequence, methods
and interfaces that facilitate efficient human supervision of the population
process are essential when providing an appropriate answer to the second
question. In our approach, candidate entries are aligned with the ontology,
calculating existing entries that seem close to the candidate concept, either
from a logical or linguistic point of view. A visualization of the alignment
results with integrated ontology editing facilities allow the user to handle
conflicts on-the-fly. This kind of immediate visual feedback about the state
of the ontology with respect to certain data is also useful for tracking changes
in the modeling of entries and other maintenance tasks.

An implementation of the Upload Tool has been applied for substantially
extending a core ontology. By using already existing lists and data extracted
specially for this purpose, we were able to incorporate to the net some 104 new
concepts representing common named entities, most of them geographical
names and names of famous people.

The paper is structured as follows. Section  covers related work. Section
 introduces the formal language for concept definition in the EFGT Net,
which is extended in Sec.  to a language for defining templates. Section 
explains how to instantiate templates given suitable tables or XML data.
Possible conflicts arising during alignment of generated concept definitions
are described in Sec. . The Upload Tool and interactive support mechanisms
are described in Sec. . Section  discusses on future work and other possible
applications for templates.

2 Related Work

Obviously, the kind of integration language proposed here has many com-
monalities with data transformation languages such as XSLT (XSLT, ),
since we use it to transform data from different formats into entries of the
EFGT Net. Some distinctions should be made though. While transfor-
mation languages are designed to bring easily some specific data model or
format into other formats, as e.g. XSLT is designed for transforming XML,
our integration language is designed for the converse goal, i.e. bringing
syntactically heterogeneous data into a single target model. As explained
later, this is reflected in the syntax of our integration language, which has an
“intensional” part based on the EFGT Net language used for constructing and
querying the EFGT Net and an “extensional” part for extracting data given
in different formats. The intensional part our integration language is compa-
rable with known ontology query languages such as OWL-QL (Fikes et al.,
) for querying ontologies stated in OWL or SPARQL (Prud’hommeaux
and Seaborne, ) for RDF ontologies, which can also be regarded as
extensions of the corresponding ontology specification format. In fact, in
our approach the ontology is also queried during alignment in order to

Band 22 (2) – 2007 37

Torres Schumann, Mönnich, Schulz

determine already existing concepts with the same logical representation
as the generated entries. Since the logical representations generated by
our templates are (almost) fully specified, the use of a full-fledged ontology
query language like the ones mentioned above is unnecessary.

A way of obtaining structured data from heterogeneous, semi-structured
data sources like web pages consists in defining wrappers (Laender et al.,
). The extensional part of our integration language has an analogous
function to the many existing specialized wrapper definition languages
(WebL, ; Huck et al., ) and is used for specifying how to extract
tuples from specific data files.

In work focusing on learning and populating ontologies from text (Buite-
laar et al. () gives an overview), integrated frameworks a have been
described (Maedche and Volz, ) where the ontology engineer can edit
the ontology and perform other maintenance tasks as she inspects the re-
sults from the learning component. This constitues a practical solution,
as learning ontologies from text remains a difficult task and automatically
produced results cannot be always simply adopted. In constrast, we don’t
learn new concepts but generate them out a given data set, sharing with the
mentioned tools the idea of assisting the user during the population process.

Sophisticated interactive methods for user guidance can also be found in
work on methods for merging already existing ontologies. Although fully
automatic approaches to this problem exist, see e.g. Ehrig et al. (),
other approaches bank on human supervision of the integration process, such
as PROMPT (Noy and Musen, ) and OntoMap (Maier et al., ).
They share the idea of identifying anchors, i.e., corresponding concepts
in the target ontologies, and the merge the structure of both ontologies
basing on heuristics. Unclear cases together with possible pertinent merging
operations are are displayed and the user has to take a decision for the
next merging step. Anchors are manually stated (OntoMap) or identified
automatically based on linguistical similarity (PROMPT). Although we also
exploit linguistical simliarity during the alignment of the generated entries,
the integration approach presented here is fundamentally different because,
instead of heuristically merging ontology structures, we map structural
relationships encoded in data files to ontological relationships.

3 The EFGT Net Language - An Overview

The EFGT Net formalism is presented in this section on an informal basis.
We focus on its logical language, which will be extended to an integration
language in the next sections. Concepts are captured in a EFGT Net by
creating an entry consisting in

. a unique identifier for the concept, its ID String, that determines the
position of the concept in the net, and

38 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

. a set of attributes holding a linguistical representation of the concept
including the name of the concept in at least one of the supported
languages, a list of synonyms, orthographical variants and flection
forms, etc. as well as other data like a related URL, an associated
period of time, etc.

For a set of entries, a sound underlying deduction calculus determines a
directed acyclic graph (DAG) for the corresponding set of ID String, where
nodes in the DAG represent the concepts and edges binary relations between
concepts. Schulz and Weigel () provide more details.
Figure  summarizes the syntax of ID Strings. Starting from the root

element (), there are two operation for creating complex ID Strings for a
new concept out of a given one. The first operation, a local introduction,

IDStr := () | (Type IDStr .Num) | (IDStr & IDStr)
Type := (e | E | F | g | G | t | T)
Num := D ( | D)∗
D := ( | . . . | )

Figure 1: ID String syntax.

is used when the new concept can be sufficiently characterized as a set or
a set element that narrows the meaning of a more general concept. For
example, the concept “Cities” can be regarded as a set of geographical
locations (different cities) narrowing the more general concept “Locations”,
and “Oslo” could be an element of the set “Cities”. This is represented in
the formal language by marking the ID String of the refined concept with
a special type which corresponds to the kind of specialization (i.e. the
“kind” of set or set element), as well as an index for enumeration. In the
example, “Locations” could be coded as a refinement of the top node () by
marking it with the type G of sets of geographical entities and the index ,
i.e. (G().) . Analogously, “Cities” could be coded as (G(G().).) and
“Oslo” as the (third) element of “Cities” by using type g for geographical
elements, (g(G(G().).).) . The complete set of types, which motivates
the name EFGT Net, contains:
E,e Type E denotes a set of Entities like composers whereas type e denotes

a singleton entity like J. S. Bach.
F Type F denotes a thematic F ield like quantum physics. Since every

thematic field can be regarded as a set of subfields, there is no type f.
G,g As mentioned before, type G denotes Geographical sets like rivers

whereas type g stands for singleton geographic instances like the Alps.
T,t Finally, type T denotes a set of Temporal periods like epochs in art,

and type t denotes an individual temporal interval like September th

.

Band 22 (2) – 2007 39

Torres Schumann, Mönnich, Schulz

The other way to create a new ID String is by combining two ID Strings
with the operator & to form a new one. This is called a concept intersection.
If the component ID Strings are sets of the same type, the new concept
stands for the intersection of the sets. When combining a set with an
individual, the new ID String represents a subset where the individual
acts as a modifier. In the remaining cases, the intersection represents
a new thematic field, the exact meaning is left open. E.g. combining
“Persons”, (E().) , and “Science”, (F(F().).) , would yield “Persons in
Science/ Scientists”), ((E().)&(F(F().).)) . “European Countries” may
result from joining the identifier for “Europe”, (g(...).) , and “Country”,
(G(...).) , to ((g(...).)&(G(...).)) .

The attributes used in addition to the ID String for characterizing the
concept are qualified by means of a semantic type indicating which kind of
information it holds (birth date of a person, the number of inhabitants of a
city, a company’s web-page, etc.). Additionally, a syntactic type specifies
how the information is conveyed (as a date, proper name, URL, etc.) and a
language type the language used. The list of semantic and syntactic types is
open and can be extended to accommodate different requirements.

4 From the EFGT Net Language to an Integration Language

In this section we start developing our particular integration language for
the EFGT Net. We use it for stating templates, which specify how data can
be integrated in the ontology. As a starting point, consider the very simple
data example about Switzerland’s geography compiled in Table . Suppose

Canton District Capital
Thurgau Bezirk Weinfelden Weinfelden
Thurgau Bezirk Bischofszell Bischofszell
Wallis Bezirk Brig Brig-Glis

Table 1: Geographical data about Switzerland

you want to add each district in the table to an EFGT Net already holding
the cantons. For each canton, one may want to introduce a new set of type
G for receiving the canton districts and then add each district with type g
to the corresponding district set.
We first explain how templates without variables may be used to define

new candidate entries. In our integration language, the template

(districts G[Thurgau].n)
districts.name.en.name = “districts in canton Thurgau”

constructs a suitable ID String for a new concept named “districts in canton
Thurgau” under the concept “Thurgau” (we may later add the corresponding

40 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

districts in a second step). The first line provides the skeletal structure of the
ID String for the new concept expressed in the extended ID String language.
It queries the net for the concept between the square brackets, “Thurgau”,
takes its ID String and defines a new set of type G as a local introduction
with a fresh index, represented by n in the expression. Assuming the ID
String for “Thurgau” is (g(G().).) in the net, the ID String generated
by this template would be (G(g(G().).).) , where, for simplicity, it
is also assumed that there are no further local introductions of type G
under “Thurgau” and taking n =  provides a fresh index. The string
‘districts’ in tiny letters, a concept anchor, marks the expression between
the parentheses as the ID String for a new concept and is used to assign an
attribute representation to the generated ID String. Here fore, the second
line of the template specifies the name of the concept as “districts in canton
Thurgau”, where name is (incidentally) both the semantic and syntactic type
and en the language type. The entry set generated by this template is then
{((G(g(G().).).) , {name.en.name = “districts in canton Thurgau”})},
which contains a single entry of the form (ID String, attribute set). In the
general situation, each anchor in the template generates an entry that can be
aligned with the ontology, so only templates with at least one concept anchor
with its corresponding attribute specification are allowed. One template
produces as many ontology entries as anchors are introduced in the template.
The real power of templates comes from the use of variables. Figure 

shows an elaboration of the simple template above. The local introduction

(capital (district g(districts G[#Canton].n).n)&[capitals])
districts.name.en.name = “districts in canton #Canton”
district.name.en.name = “#District”
capital.name.en.name = “#Capital”

Figure 2: A more elaborated entry template

of type g (inner term) shows that each district is encoded as an element of
the corresponding district set. Each capital (cf. outermost term) is modeled
as an intersection of its district with the concept “capitals” which already
exists in the net. Instead of writing a new template for each capital, we use
variables that point to values in the table. These variables are represented in
Fig.  by the strings #Canton, #District and #Capital. When executing
the template for the given data set, candidate entries are produced, the
description using the concepts found in the table. Details of the mapping
from template variables to data will be discussed in the next section. For the
moment, if we assume that the template in Fig.  is correctly instantiated
with the values found in the first row of Table , three candidate entries
are generated, which are depicted in Fig. . Here we assume that there are
already two districts in the district set, so “Bezirk Weinfelden” receives the

Band 22 (2) – 2007 41

Torres Schumann, Mönnich, Schulz

{ ((G(g(G().).).), {name.en.name = “districts in canton Thurgau”}),
((g(G(g(G().).).).), {name.en.name = “Bezirk Weinfelden”}) ,
(((g(g(G(g(G().).).).).)&(G((G().)&(F().)).)),

{name.en.name = “Weinfelden”}) }

Figure 3: Entry set generated by the elaborated template for the first row in Table 1

index . Note that for the following instantiation, which uses the second row
of Table , a redundant entry would be generated for “districts in canton
Thurgau”. Such redundancies are handled later during the alignment of
entries with ontology.
The complete extended ID String syntax for template definition is sum-

marized in Fig. . Compare it with Fig. . The last three alternatives for
IDStr′ constitute the core of the extension, where the first of them represents

IDStr′ := () | (Type IDStr′ .Num) | (IDStr′ & IDStr′) |
[Query] |(AnchorType [Query] .n) |(AnchorIDStr′ & IDStr′)

Anchor := Alphanum+

Query := IDStr |Lit
Lit := String |Ref

Figure 4: The extended ID String syntax.

a concept query and the other two are variants of the local introduction
and concept intersection rules that introduce concept anchors. We allow ID
Strings or literals as queries. A literal (rule Lit) is an arbitrary string value
specified in the template and interpreted as a concept name or, alternatively,
a value taken from data, symbolized by Ref for reference in the syntax.
References are discussed in the next section. Names for concept anchors are
alphanumeric strings (rule Anchor).

Attr := Anchor . Sem .Lang . Syn =Lit
Sem := (name | syn | url | . . .)
Lang := (de | en | . . .)
Syn := (nom | adj | . . .)

Figure 5: Attribute specification syntax.

The grammar of attribute assignments via concept anchors is summarized
in Fig. . For each anchor, literals are assigned to attributes specified by
their semantic, language and a syntactic type.

5 Referring to Data for Entry Template Instantiation

In the previous section we indicated that the variables of a template are
mapped to tuples of textual data for instantiation. In general, many distinct

42 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

instantiations can be obtained from one data source. Here we explain the
details of this mapping for two kinds of input data, tables and XML data.
This clarifies the procedural meaning of a template in presence of data
encoded in these formats.
The following observation leads us to the main idea: Once a template is

instantiated by some fixed tuple, the outermost anchor generates a concept
of the EFGT Net which is more specific than (a descendant of) all concepts
generated by other anchors of the template. More generally, if the template
contains two anchors A and B, and if B is in the syntactic scopus of A, then
the concept introduced by A is more specific than the one introduced by B.
E.g., in the template in Fig. , each concept resulting from an instantiation
of the anchor district is more specific than (a descendant of) a concept
instantiation of the reference Canton. The anchor capital represents the
most specific concept for each instantiation of the template. Since for a given
anchor A the set of ancestors B represented in the template is unequivocal,
the ancestors marked in the template functionally depend on the enclosing
anchor. E.g., functional dependencies in our example template constitute a
chain: the capital functionally determines the district, which determines the
districts set, which determines the canton.
As explained in further detail below, each data format also encodes

functional dependencies in a different way. The main idea for variable
instantiation will be to extract tuples that represent functional dependencies
in the data file and use these tuples in order to instantiate the functional
dependencies represented in the template. This principle constraints the data
files we can process using our integration language: functional dependencies
represented in templates must also be encoded as functional dependencies in
the data files. In this sense we say that data files must “naturally” encode the
target relationships in the ontology. In practice, we found that this was not
a severe restriction, allowing to leave data in its original appearance. This
way, the user can define templates interactively and try different alternatives
without a need of transforming data each time.

Table Data. Tables usually have at least one key column that functionally
determines the values in the other columns. E.g., in Table  both the Capital
and District columns functionally determine the other two columns, so
that a chain of dependencies can be constructed. Thus, each row provides a
tuple representing functional dependencies that can be used for instantiating
the template. The choice here is to let the outermost anchor range over the
key column and to let the other references in the template point to adequate
columns, and then to evaluate the template successively for each row of the
table. We mentioned that template variables are marked by the symbol
#. If the columns in the table are named, a reference can be specified by
followed by the name of the column. Columns are internally numbered,

Band 22 (2) – 2007 43

Torres Schumann, Mönnich, Schulz

so the user can use numbers #, #, etc. for reference. Figure  shows the
template of Fig.  with references to Table , so that the candidate entry
set generated for the first row is exactly the set depicted in Fig. .

(capital (district g(districts G[#Canton].n).n)&[capitals])
districts.name.en.name = “districts in canton #Canton”
district.name.en.name = “#District”
capital.name.en.name = “#Capital”

Figure 6: A more elaborated entry template

Sometimes, one wants to skip some rows of the table or to apply different
templates depending on the value of some fields. This is achieved by using
if-then-else statements with conditions on references, also included in
the integration language. In other cases, a field of a table may contain an
enumeration of concepts. This helps to collapse many rows that only differ
in one column to a single row. Our language has special devices for dealing
with such variations.

XML data. Each XML document can be represented as a labeled tree. In
this kind of tree, some structural relationships can be regarded as encod-
ing functional dependencies. Most prominently, an element functionally
determines its parent node. If a label a occurs exactly once in each path
ending with a label b, then each b element functionally determines a unique
a element among its ancestors. If an element comes with a unique textual
contents, then the text functionally determines the element. Furthermore,
each element node functionally determines its its attribute nodes.
Figure  shows two panes of two different XML files encoding the data

about Switzerland from Table . On pane A, functional dependencies in
Table  are represented as structural relationships that are also inherently
functional in XML. The text node “Weinfelden” functionally determines
its element node of type capital, which has an unequivocal parent (with
type district) that has an unique attribute name, “Bezirk Weinfelden”.
So in pane A, “Bezirk Weinfelden” functionally depends on “Weinfelden”.
It is easy to see that “Thurgau” is also a function of “Bezirk Weinfelden”.
Of course, there a different ways to encode functional dependencies by
structural relationships in an XML representation. For the extraction of
tuples that represent functional dependencies, we rely on XPath expressions
(XPath, ). The procedure is a follows. The first step is to determine
by means of an absolute XPath expression a set of nodes acting as keys.
The outermost concept anchor is let to range over this key set. There is
a path in the document tree from each node in the key set to the root
document node. References for the ancestors of the concept anchor in the

44 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

A
<geo_data related="Switzerland">

<canton name="Thurgau">
<district name="Bezirk Weinfelden">

<capital>Weinfelden</capital>
</district>
<district name="Bezirk Bischofszell">

<capital>Bischofszell</capital>
</district>

</canton>
<canton name="Wallis">
. . .
</canton>

</geo_data>

�

6g gg B
<geo_data related="Switzerland">

<canton name="Thurgau">
<district id="3">

<name>Bezirk Weinfelden</name>
<capital>Weinfelden</capital>

</district>
<district id="4">

<name>Bezirk Bischofszell</name>
<capital>Bischofszell</capital>

</district>
</canton>
<canton name= "Wallis">
. . .
</canton>

</geo_data>

gR

�g
g

Figure 7: Two XML representations of the data in Table 1

template are defined as relative paths, interpreted on the path from the key
node to the document root. In XPath terms, relative paths are evaluated
against nodes in the ancestor axis of each key node or the key node itself
(ancestor-or-self axis).

Figure  shows a variant of the elaborated template in Fig.  including
XPath references that generate adequate instantiations out of pane A.
The absolute path //capital selects the capitals of the XML document,
that are identified in turn with the name of the outermost anchor concept
capital. The other references are evaluated on each path starting at each
capital node and ending on the document node. For the capital node
“Weinfelden”, the references district/@name and canton/@name extract
“Bezirk Weinfelden” and “Thurgau” respectively from the ancestor-or-self
axis, which is implicitly assumed and doesn’t have to be stated in the
template. This method is quite flexible, allowing to deal with different XML

(capital (district g(districts G[#canton/@name].n).n)&[capitals])
districts.name.en.name = “districts in canton #canton/@name”
district.name.en.name = “#district/@name”
capital.name.en.name = “#//capital”

Figure 8: The elaborated template adapted for pane A in Fig. 7

renditions of the same data and even with those that encode functional
dependencies with structural relationships that are not inherently functional
in XML. E.g., pane B in Fig.  encodes the name of the district in an
element node name instead as an attribute like in pane A. The relationship
between the district and name element is also functional in this case, because
there is only one child element of type name. But in the example, this is
only incidentally so. This kind of structural relationship is not inherently

Band 22 (2) – 2007 45

Torres Schumann, Mönnich, Schulz

functional in XML, because the XML data model allows that an element
has more that one element child of the same type, although, of course, that
district element may have only on name element can be regulated by means
of a DTD or XML Schema. We call this kind of encoding of functional
relationships with not inherently functional structural relationships in XML
a “pseudo-attribute”. Our approach also can handle pseudo-attributes.
In the template we can simply replace the reference district/@name by
district/name in order to obtain the same tuples as for pane A.

6 Alignment of Generated Entries

In general, generated entries can be aligned with the ontology by examining
first, whether there is another concept in the ontology with an equivalent
logical characterization (logical existence), and second, whether the concept
is already linguistically present in the ontology. In the case of the EFGT
Net, it is enough to match the generated ID String against all ID Strings in
the net to decide the logical existence. Whether a concept is linguistically
present in the ontology can be decided by performing a search over the
attributes holding linguistic information. The cases in Fig.  can then
be distinguished. A generated candidate entry can be considered a new

Log.
existent

Ling.
present

Case name Interpretation

no no Potential new
entry

Generated new entry

yes no Logical clash ) Complementary lex. representation
) Logical modeling too coarse

yes yes Concept match Entry exists already
no yes Name clash ) Logically differing concepts with

same name (homonym entries)
) Same concept but different logical
modeling

Figure 9: Alignment cases

concept to be added to the ontology when there is simply nothing indicating
that it collides with another concept in the ontology. Logical clashes can
be obliterated by merging the attribute representation of both concepts.
This makes sense when the colliding concept name is just a variant not
included in the linguistic representation of the existing concept. It may
also be the case that the semantic analysis of two different concepts is too
coarse to distinguish between them. A concept match is given when the
generated entry is indistinguishable from another concept in the ontology.
Name clashes also have two possible interpretations. It may occur that

46 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

two semantically different concepts share their linguistical representation
(homonym entries), in which case the new candidate entry may be considered
for adding it to the ontology. The converse interpretation is that an already
existing concept in the ontology is modeled by the template in a different
way than in the net.

7 Ontology Population and Inspection with the Upload Tool

We have developed a prototype called the Upload Tool that interprets EFGT
Net entry templates. It has a client-server architecture, where the EFGT Net
resides in a RDBS backend queried by the web client. The client interprets
the template language and performs the alignment. Figure  shows a
screen-shot of the Upload Tool. The upper part contains the entry template,
submitted as a file in a previous step. The entry template can be edited
and evaluated online. The results of the alignment are displayed in the
lower part of the window as a list of entries for each template instantiation.
When there is a concept match, entries are colored red, while potential new
entries are displayed in green. Check-boxes allow for selecting green entities
and uploading them to the database, where inference takes place and the
structure of the net is rearranged for accommodating new concepts. Blue
entries have already been considered in a previous template instantiation
and don’t need to be considered again.

When conflicts appear, different facilities that correspond to the different
interpretations listed in Table  are provided to user for handling the
conflict. In the case of logical clashes, a warning appears and the user can
decide to run a facility for merging the attribute (lexical) representation, or,
corresponding to the other interpretation, a tool for editing and refining the
ID String of the conflicting concepts. For efficiently handling name clashes,
there are two modes available that respectively enable or disable the creation
of homonym entries. This is useful depending on the data considered. E.g.,
enabling homonym entries is self-evident when uploading geographical data,
where homonyms are usual. Different people can also have homonym names,
but when integrating names in the EFGT Net one may want to check if
incoming data corresponds to a truly new person or represents a refinement
in the modeling of an existing entry, so disabling homonyms is better choice
in a first step. Fig.  shows a name clash for “Thurston Moore”, where
an additional window showing the parents of the already existing entry
has been opened for clarification. When the name clash is interpreted as a
difference in the logical modeling between the existing and the generated
entry, a further tool for merging the corresponding ID Strings can be started
directly from the client interface.

Posterior changes in uploaded data can be easily tracked with the Upload
Tool, because once the net has been populated with a specific file, the same

Band 22 (2) – 2007 47

Torres Schumann, Mönnich, Schulz

Figure 10: Alignment results in the Upload Tool

file always can be retried. If some entries have changed in the meanwhile,
they will appear as name clashes when aligning them again with the original
template. This can also be regarded as focused view to the ontology on the
basis of some data, allowing to inspect the ontology thematically.

8 Future work

Templates are useful for maintaining and populating ontologies with per-
tinent data that is already available. We see additional applications for
templates we want to investigate in future. Storing data together with
related templates could be an easy way to create thematic ontology modules
one can then combine in order to obtain customized ontologies. Maintaining
a template library also could be useful for further automatizing the data
integration process as well as for providing support when data acquisition
and document browsing take place in an integrated scenario, as we proposed
in Weigel et al. ().

References

Buitelaar, P., Cimiano, P., and Magnini, B., editors (). Ontology Learning
from Text: Methods, Evaluation and Applications, volume  of Frontiers in

48 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

Artificial Intelligence and Applications. IOS Press.

Ehrig, M., Staab, S., and Sure, Y. (). Bootstrapping Ontology Alignment
Methods with APFEL. In Gil, Y., Motta, E., Benjamins, V. R., and Musen,
M. A., editors, Int. Semantic Web Conference, volume  of LNCS, pages
–. Springer.

Fikes, R., Hayes, P., and Horrocks, I. (). OWL-QL: A Language for Deductive
Query Answering on the Semantic Web. Technical Report KSL -, Stanford
Univ.

GeoNames (). GeoNames. http://www.geonames.org/.

Huck, G., Fankhauser, P., Aberer, K., and Neuhold, E. (). JEDI: Extracting
and synthesizing information from the web. In Proc. of COOPIS.

Laender, A., Ribeiro-Neto, B., Silva, A., and Teixeira, J. (). A brief survey of
web data extraction tools. In SIGMOD Record, volume .

Maedche, A. and Staab, S. (). Learning ontologies for the semantic web. In
Workshop on the Semantic Web (SemWeb).

Maedche, A. and Volz, R. (). The Ontology Extraction and Maintenance
Framework Text-To-Onto. In  IEEE Int. Conf. on Data Mining (ICDM’).
Workshop on Integrating Data Mining and Knowledge Management.

Maier, A., Schnurr, H.-P., and Sure, Y. (). Ontology-based Information
Integration in the Automotive Industry. In Proc. of the nd Int. Semantic Web
Conference (ISWC), volume  of LNCS, pages –. Springer.

Noy, N. F. and Musen, M. A. (). PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In Proc. of the National Conf. on Artificial
Intelligence (AAAI), pages –, Austin, TX.

Prud’hommeaux, E. and Seaborne, A. (). SPARQL Query Language for RDF.
http://www.w.org/TR/rdf-sparql-query/. WC Candidate Recommendation.

Schulz, K. U. and Weigel, F. (). Systematics and Architecture for a Resource
Representing Knowledge about Named Entities. In Proc. Workshop on Principles
and Practice of Semantic Web Reasoning, pages –.

WebL (). Automating the web language.
http://research.compaq.com/SRC/WebL.

Weigel, F., Schulz, K. U., Brunner, L., and Torres-Schumann, E. (). Integrated
Document Browsing and Data Acquisition for Building Large Ontologies. In
Proc. of the th Int. Conf. on Knowledge-Based & Intelligent Information &
Engineering Systems (KES).

Wikipedia (). Wikipedia, the free encyclopedia. http://www.wikipedia.org.

XPath (). XML Path Language (XPath) Version .. WC Recommendation
 November . http://www.w.org/TR/xpath.

XSLT (). XSL Transformations (XSLT), Version .. WC Recommendation
 November . http://www.w.org/TR/xslt.

Band 22 (2) – 2007 49

