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Towards a Logical Description of Trees in Annotation Graphs

The importance of annotation graphs increases rapidly due to new devel-
opments in multi-media applications, text technology, and semantic web
technologies. The paper provides a logical specification of trees in annotation
graphs commonly used to code documents that are inherently structured on
various levels.

1 Introduction

It is a matter of fact that a long history in artificial intelligence and computational lin-
guistics tries to develop tools to extract semantic knowledge from syntactic information.
In particular, from a text technological point of view the general research perspective
is to extract (semantic) information from annotated documents. Regarding this aim,
some of the relevant annotation models used are:

• Multilayer annotations

• Hyperlinks

• Discourse structure

• (Classical) linguistic description levels

An important aspect concerning annotation models is the development of a suit-
able logic system in order to specify the syntactic and semantic structures of such
models. Due to the fact that heterogeneous subsystems must be incorporated, an
amalgamation process can be assumed as the underlying architecture. The challenges
of such architectures are twofold: first, the dynamic interaction between syntactic and
semantic information must be represented and second, the efficiency of algorithms must
be guaranteed.

Fortunately, in the case of annotation graphs, the object of these remarks, techniques
from parameterized complexity theory can be exploited. This theory provides powerful
tools for a detailed investigation of algorithmic problems. As it turns out, the concept
of treewidth, indicating the similarity of a graph or a relational structure with a tree, is
a parameter which helps to show that many otherwise intractable problems become
computable in linear time when restricted to tree-like inputs.

The key feature of annotation graphs is their abstraction from the diversity of concrete
formats used for the transcription of text and speech. This feature makes them an
ideal candidate for the comparison of different annotation systems, e.g., those currently
developed by several linguistic collaborative research centres in Germany.
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Translating these different representation schemes into the framework of annotation
graphs is a necessary prerequisite for the transfer of the pleasant computational proper-
ties of annotation graphs to the original systems. This is particularly important in those
circumstances where the natural data structure of the concrete markup system cannot
be readily understood as describing trees, or at least, multi-rooted trees, taken into
account the possibilty of multiple annotation layers. Our main result can be interpreted
as specifying the conditions under which algorithmic methods that were designed for
trees can be applied to the realm of annotation systems that are apparently based on
underlying graph structures.

A classical domain for multilayered annotations is linguistics. Utterances of speakers
can be considered from different perspectives: examples are syntactic, semantic, discourse
and intonation aspects, just to mention some of them. Representing these types of data
in one representation format yields overlapping hierarchies. Moreover, the resulting
structures are naturally considered as graphs rather than trees.
These challenges can be met by representing annotation graphs in logical form.

Benefits of such a representation are the low descriptive complexity, the representability
as open diagrams, or the abstract format for the interaction of different linguistic levels.
Furthermore logical representations are amenable to the arsenal of techniques from
logical graph theory.

2 Annotation Graphs

We start this section by explicitly providing the corresponding formal definitions, first,
and by looking, in particular, at one example in more detail, afterwards.

2.1 Definitions and Examples

The underlying definition of an annotation graph is specified as follows:

Definition . (Bird and Liberman ) An annotation graph (AG), G, over a
label set L and a family of timelines 〈 〈Ti,≤i〉 〉i∈I , I being some index set, is a -tuple
〈N,A, τ〉 consisting of a node set N , a collection of labeled arcs A ⊆ N ×N ×L, and a
partial time function τ : N ⇀

⋃
i∈I Ti, which satisfies the following two conditions:

(i) 〈N,A〉 is a labeled acyclic digraph containing no nodes of degree zero, and

(ii) for any path from node n1 to n2 in A, if τ(n1) and τ(n2) are defined, then there
is a timeline 〈Ti,≤i〉 such that τ(n1), τ(n2) ∈ Ti, and such that τ(n1) ≤i τ(n2).

Remarks. AGs may be disconnected or empty, and they must not have orphan nodes. It
follows from the definition that every piece of connected annotation structure can refer
to at least one timeline. In Figure , an AG from the linguistics domain is depicted.

Thus, for each i ∈ I, timeline 〈Ti,≤i〉 consists of a nonempty set Ti and a total order ≤i on Ti.
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Figure 1: An example of an anchored annotation graph (cf. Bird and Liberman 2001).

Definition . (Bird and Liberman ) An anchored AG is an AG, G, defined
as in Definition . and additionally satisfying the following condition:

(iii) if any node n does not have both incoming and outgoing arcs then τ : n 7→ t for
some time t.

Remarks. For anchored annotation graphs, it follows from the definition that every
node has two bounding times, and timelines partition the node set. The AGs depicted
in Figure  are anchored.

Definition . (Bird and Liberman ) A totally anchored AG is an anchored
AG, G, defined as in Definition . such that the time function τ :N ⇀

⋃
i∈I Ti is total.

Definition . A totally anchored AG, G, defined as in Definition . is time-crossing
arc free if for all 〈p, q, l〉, 〈r, s,m〉 ∈ A such that τ(p), τ(r) ∈ Ti for some i, and such
that τ(p) ≤i τ(r) then either τ(q) ≤i τ(r) or τ(s) ≤i τ(q) holds.

In particular, the EXMARaLDA annotation tool, developed by the linguistic collabora-
tive research centre in Hamburg, can be seen as strongly relying on the formal concept
of AGs (cf. Schmidt ). In fact, not using the full range of possibilities provided by
the general AG-definition given above, the core model underlying an EXMARaLDA
basic transcription provides a so-called single timeline, multiple tiers (STMT) model,
which in strict AG-terms can be understood as being a totally anchored AG consisting
of exactly one timeline (cf. Figure ). In line with the assumption of Bird and Liberman
(, p. f) that reference to a single timeline implies that nodes with the same time
reference should be considered to be identical, the AG depicted in Figure  can formally
be specified as in the next example.

Example . For Tex = {0, 1, 2, 3, 4, 5} and ≤ex=≤N� Tex × Tex consider the timeline
〈Tex,≤ex〉. Then for 〈Tex,≤ex〉 and the label set Lex implicitly specified via the
N denotes the set of all non-negative integers, including 0. ≤N is the canonical order on N, and for
each set M ⊆ N, ≤N� M ×M is the restriction of ≤N to M ×M .
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Figure 2: Example of an STMT model (cf. Schmidt 2005).

definition of the arc collection Aex, let Gex be the totally anchored AG 〈Nex, Aex, τex〉
over 〈Tex,≤ex〉 (as the single timeline) and Lex, where Nex is the set {0, 1, 2, 3, 4, 5},
τex is the identity function on {0, 1, 2, 3, 4, 5} and Aex consists of the following directed
labeled edges:

a(1)
1 = 〈1 , 3 , faster〉 ,
a(2)

1 = 〈0 , 1 , Okay.〉 ,
a(2)

2 = 〈1 , 2 , Très bien,〉 ,
a(2)

3 = 〈2 , 3 , Très bien.〉 ,
a(3)

1 = 〈0 , 1 , Okay.〉 ,
a(3)

2 = 〈1 , 3 , Very good, very good.〉 ,
a(4)

1 = 〈2 , 4 , right hand hand raised〉 ,
a(5)

1 = 〈2 , 3 , Alors ça〉 ,
a(5)

2 = 〈3 , 4 , dépend ((cough))〉 ,
a(5)

3 = 〈4 , 5 , un petit peu.〉 ,
a(6)

1 = 〈2 , 5 , That depends, then, a little bit〉 ,
a(7)

1 = 〈4 , 5 , εtipø:〉 .

If the collection of arcs is, in fact, “simply” a set then a(2)
1 and a(3)

1 are identical. Since the intention
here is actually that they are not identical, we assume them to be distinguishable either by some
(at least technically) different labeling or by treating the collection of arcs as a multiset.

Band 22 (2) – 2007 71



Michaelis, Mönnich

2.2 Logical Properties

In order to specify some logical properties, we need some additional concepts. First, we
define a tree-decomposition of a graph.

Definition . (Robertson and Seymour ) A tree-decomposition of a graph
G = 〈V,E〉 is a tree T = 〈N,F 〉 together with a collection of subsets {Tu |u ∈ N} of V
such that

⋃
u∈N Tu = V and the following properties hold:

. For every edge e = 〈a, b〉 of G there is a u ∈ N such that {a, b} ⊆ Tu

. For all u, v, w ∈ N , if w lies on a path from u to v in T then Tu ∩ Tv ⊆ Tw

The width of a tree-decomposition is equal to maxu∈T {|Tu| − 1}

Note that a consequence of condition  from the above definition could be formulated
as ’, namely, for all u ∈ V , 〈{v ∈ N |u ∈ Tv}, F ∩({v ∈ N |u ∈ Tv}×{v ∈ N |u ∈ Tv}〉
is a tree. The important concept of treewidth, defined next, is an indicator for the
tree-likeness of a given graph G.

Definition . (Robertson and Seymour ) The treewidth of a graph G is the
minimum value of k such that G has a tree-decomposition of width k.

The treewidth of a class of graphs C is naturally defined as the smallest number k
such that for all graphs G in C, their treewidth is smaller or equal to k. Annotation
graphs have unbounded treewidth since arbitrary large grids can be considered as
annotation graphs. In practical applications, though, one is mainly concerned with
finite families of documents represented as annotation graphs. Trivially, these families
are of bounded treewidth. In the following we therefore restrict our attention to such
finite families of annotation graphs.

Fact . Finite families of anchored annotation graphs are of bounded treewidth.

Monadic Second-Order Logic (MSO) is a subset of second-order logic. MSO extends
first-order logic by allowing quantification over subsets of the universe of discourse.
In other words quantification over second-order variables with at most one argument
position is allowed.
Annotation graphs can be conceived as finite relational structures with the set of

nodes understood as universe of discourse, the family of arcs as binary relations and
the times as monadic predicates. A compact representation can be given in terms of an
open diagram (cf. Prolog facts).

Theorem . (Courcelle) Every property expressible in MSO is verifiable in linear
time on graphs of bounded treewidth.

Here, a tree is taken to be a connected acyclic graph. Later we will restrict our attention to the
concept of a finite ordered tree as it underlies our Definition . of a finite labeled tree.
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Courcelle’s result is contained in Courcelle . The principal tool in the proof of
linear time decidability is the annotation of tree-like graph structures with logical types
of bounded quantifier rank. These types assume the role of states in a bottom-up tree
automaton.

Let MSO2 designate the extended monadic second-order logic with quantification over
sets of nodes and sets of edges.

Theorem . (Seese ) If a set of graphs G has a decidable MSO2 theory then
it is the subset of the (homomorphic images of) a recognizable set of trees, i.e. it is
tree-definable in the sense of Courcelle ().

Remark. Trees are constructed from a finite set F of graph operations. Typical examples
are disjoint union, relabeling of edges, addition of edges. Seese’s theorem is an outgrowth
of a combination of techniques from MSO-definable graph transductions and from the
fundamental work of Robertson and Seymour on graph minors.

The representation of trees within the AG-framework is possible in terms of so-called
chart constructions, where each tree node is mapped to an AG-arc, as outlined in the
following easy example (cf. Cotton and Bird ):
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@@

@@
@

B C
·

B
//

A

))·
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The representation of trees in MSO2-terms, relying on an order ≤, can be given via
the notion of a matching relation. A set of edges M is called a matching relation if the
following conditions are satisfied:

• e ∈M ∧ inc(e, u, v)→ u ≤ v (M is compatible with ≤)

• e ∈M ∧ e′ ∈M ∧ inc(e, u, v) ∧ inc(e′, w, z) ∧ u ≤ w ≤ v → u ≤ z ≤ v
(M is non-crossing)

where inc denotes the usual incidence relation.
Recall from the previous section the notion of a totally anchored AG that is time-cross-

ing arc free. In case such an AG is anchored w.r.t. a single timeline, that notion is a
particular instance of a matching relation.

The present section has served to emphasize the advantages that come with a logical
description of graphs of bounded treewidth. The fact that a set of finite graphs is
of bounded treewidth does not lead automatically to a representation of this set as
a family of trees beyond the obvious tree decomposition as defined in Definition ..
Restricting the attention to the family of annotation graphs that satisfy the combined
conditions characteristic of the single timeline, multiple tiers model, it can indeed be
shown that these graphs allow a presentation in the form of multi-rooted trees. The
next section is devoted to an elaboration of this claim.
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3 Multilayer Annotation and STMT models

3.1 Multi-rooted Trees

Since our final aim will be to formally reconstruct an STMT model as a so-called
multi-rooted tree, we here give some further explicit definitions setting the stage.

Definition . A tree domain is a nonempty set Dτ ⊆ N∗ such that for all χ ∈ N∗
and i ∈ N it holds that χ ∈ Dτ if χχ′ ∈ Dτ for some χ′ ∈ N∗, and χi ∈ Dτ if χj ∈ Dτ
for some j ∈ N with i < j.

Definition . A finite labeled tree, τ , is a quadruple of the form 〈Nτ , /∗τ ,≺τ , labelτ 〉
where the triple 〈Nτ , /∗τ ,≺τ 〉 is a finite (ordered) tree defined in the usual sense, i.e.
up to an isomorphism 〈Nτ , /∗τ ,≺τ 〉 is the natural (tree) interpretation of some tree
domain Dτ , and where labelτ is the labeling function (of τ), i.e. a function from Nτ
into some set of labels, Lτ .

Note that, if 〈Nτ , /∗τ ,≺τ , labelτ 〉, is a finite labeled tree, a tree domain, Dτ , whose
natural (tree) interpretation is isomorphic to 〈Nτ , /∗τ ,≺τ 〉 is uniquely determined. Note
further that Definition . demands 〈Nτ , /∗τ ,≺τ 〉 to be "only" isomorphic to the natural
(tree) interpretation of some tree domain, Dτ , and not to be necessarily a tree domain
itself. Such a definition allows us to have two finite labeled trees with disjoint set
of nodes, which, of course, is not the case for the corresponding tree domains whose
natural (tree) interpretations are isomorphic to the underlying (non-labeled) trees. This
possibility is exploited within the next definition.

Definition . For any finite string α ∈ Σ∗ for some finite alphabet Σ, a multi-rooted
tree (over α) is a finite tuple of the form 〈τr〉r<R for some R ∈ N, where for each r < R,
τr is a finite labeled tree 〈Nr , /∗r ,≺r , labelr 〉 such that for each r, s < R with r 6= s
it holds that Nr ∩ Ns = ∅, and such that for each r < R there are some k(r) ∈ N,
α(r)

0 , . . . α(r)
k(r) ∈ Σ∗ and w(r)

0 , . . . w(r)
k(r)+1 ∈ Σ∗ for which the yield of τr is of the form

α(r)
0 · · ·α(r)

k(r), and for which α is of the form w(r)
0 α(r)

0 , . . . w(r)
k(r)α

(r)
k(r)w

(r)
k(r)+1.

Straightforwardly, adding a “super root” immediately dominating the tree components
of a multi-rooted tree, 〈τr〉r<R, gives rise to a tree in the sense of Definition . again.

3.2 Finding a partition of a given STMT model into subgraphs

Given a totally anchored AG, G, consisting of exactly one timeline such that every
two nodes with the same time reference are identical (i.e., G is an STMT model),
For each set M , M∗ is the Kleene closure of M , including ε, the empty string.
Nτ is the finite, nonempty set of nodes, and /∗τ and ≺τ are the respective binary relations of
dominance and precedence on Nτ . Thus, /∗τ is the reflexive-transitive closure of /τ ⊆ Nτ ×Nτ ,
the relation of immediate dominance on Nτ .

In other words, up to an isomorphism Nτ is a tree domain such that for all χ, ψ ∈ Nτ it holds that
χ /τ ψ iff ψ = χi for some i ∈ N, and χ ≺τ ψ iff χ = ωiχ′ and ψ = ωjψ′ for some ω, χ′, ψ′ ∈ N∗
and i, j ∈ N with i < j.
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the considerations of this subsection concern the aim of finding a partition of G into
subgraphs each of which being without time-crossing arcs in the sense of Definition
.. This aim is motivated by the observation that time-crossing of two edges is usually
caused by interference of two different layers of annotation, while single layers consist
of edges in matching form, i.e. time-crossing arc free. A corresponding partition is
not necessarily unique and there are, of course, several possible algorithms in order
to calculate a particular instance of such a partition. Heuristics may help to decide
which algorithm is to be preferred in terms of its computational properties. As an
example, we here present an algorithm which can be seen as being a representative
of a “left-to-right, top-down” strategy (cf. Figure ). The perspective motivating this
“tree-traversing” metaphor results from our final aim to reconstruct the given AG as
a multi-rooted tree by using the corresponding partition. In the next section we will
show, that such a reconstruction can be done “on the fly,” when calculating the partition
according to the presented algorithm.

For the rest of this section let G = 〈N,A, τ〉 be a totally anchored AG over a label set
L and a single timeline 〈T,≤T 〉 such that every two nodes with the same time reference
are identical. W.l.o.g. we may assume T is of the form {0, 1, . . . ,K−1} for some K ∈ N
such that τ is surjective, i.e., in particular the order on T is induced by the canonical
order on N. Since we are concerned with a single timeline and a totally anchored graph,
we can also identify the set of vertices, N , with T . Thus, the cardinality of N is K.
We construct the “upper part” of the corresponding adjacency matrix, 〈Ap,q〉0≤p<q<K ,
where each entry Ap,q consists of all arcs a = 〈p, q, l〉 ∈ A for some l ∈ L. The algorithm
which provides us with a partition of A, PartA, is the following:

partitionA
 r ← 0
 constructAr % construct first partition set
 PartA← 〈Ar〉 % initialize the list of partition sets
 until Ar = ∅ repeat
 r ← r + 1
 constructAr % construct next (potential) partition
 if Ar 6= ∅ then
 PartA← PartA · 〈Ar〉 % append next partition set to list
 fi
 return PartA

Here the subprocedure constructAr is defined as:

constructAr
 Ar ← ∅
 if K > 0 then

 exploreA0,K−1
 fi

Note that, because of (i) of Definition ., K > 1 if N is nonempty.
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For 0 ≤ p < q < K, exploreAp,q is defined as follows:

exploreAp,q
 if Ap,q 6= ∅ then
 choose a ∈ Ap,q
 Ar ← Ar ∪ {a} % add a to partition set A r

 Ap,q ← Ap,q \ {a} % remove a from set A p,q

 fi
 i← 0
 j ← 1
 while p+ i < q − j and Ap+i,q−j = ∅ repeat % searching a leftmost “child”
 if p+ i < q − j − 1 then % exploring “top-down” interval [p+i,q-j]
 j ← j + 1 % reducing right interval value by 
 else
 i← i+ 1 % increasing left interval value by 
 j ← 0 % right interval value back to q
 fi
 ip,q ← i
 jp,q ← j
 if p+ ip,q < q − jp,q then % there is no “child” at all iff p+ip,q=q-jp,q
 exploreAp+ip,q,q−jp,q % exploring leftmost “child” —- nonemptiness

of A p+ip,q,q-jp,q
is guaranteed by WHILE-loop

 if jp,q > 0 then
 exploreAq−jp,q,q % searching for right “sibling” of leftmost

“child”
 fi
 fi

Fact . For p, q < K with p < q, ip,q and jp,q (depending on ip,q) are minimal, i.e.,
Ap+i,q−j = ∅ for all j < q− (p+ i) in case i < ip,q, and for all j < jp,q in case i = ip,q.

Remark. Note that for p, q < K with p < q, the while-loop for potentially finding
minimal i and minimal j, depending on i, within the subprocedure exploreAp,q is a
“left-to-right, top-down” search along the “rows” left-to and below matrix entry Ap,q (cf.
Figure ). In particular, we have Ap+i,q−j = ∅ if i < ip,q and q−(p+ip,q) ≤ j < q−(p+i).
Hence exploreAp,p+ip,q would yield no contribution to the partition set Ar, if it were
part of the subprocedure exploreAp,q.

Proposition . The time complexity of partitionA is in O(K2m), m being the
cardinality of A.

Proposition . Let k ∈ N. Then for K = 2k, the label set L = {l0, l1, . . . , lk−1} and
the arc set A = {〈p, p + k, lp〉 | 0 ≤ p < k} the time complexity of partitionA is at
least in O(K2m) (as before, m being the cardinality of A, i.e., m = k in this case).
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Figure 3: Potential search space for i and j within WHILE-loop of exploreAp,q .

As mentioned above, in order to find an appropriate partition of A, the algorithm
given above only represents one of several more general possibilities depending on
the strategy pursued. In fact, applying the algorithm to the example above yields a
partition into three arc sets which might “contra-intuitively” partition the second, third
and fifth layer, depending on which arc is chosen first from the arc subsets A0,1, A1,3,
A2,3 and A4,5 according to line  of the subprocedure explore. If the second layer is
not partitioned, the fifth will be, and vice versa. This is due to the fact that both a(2)

2
and a(5)

2 definitely belong to the set A0, while a(2)
3 and a(5)

1 never will do so at the same
time.

Example . (continued) Applying partition to Aex yields a partition into three
sets, A0, A1 and A2, of the form

A0 = {x0 , x1 , a
(2)
2 , x2 , a

(5)
2 , x3} , A1 = {x′0 , x′1 , x′2 , x′3} and A2 = {a(6)

1 , a(4)
1 }

with xi, x′i ∈ Xi such that xi 6= x′i for 0 ≤ i ≤ 3, where

X0 = {a(2)
1 , a(3)

1 } , X1 = {a(1)
1 , a(3)

2 } , X2 = {a(2)
3 , a(5)

1 } and X3 = {a(5)
3 , a(7)

1 }.

Note that the situation of “algorithmic arbitrariness” immediately changes if we have
further access to “external” information which can be used to guide the selection from
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an arc subset Ap,q, like hierarchical structure and ontological information in the sense
of Bird and Liberman (, Section .f), e.g., in terms of type and speaker as in
an EXMARaLDA Basic Transcription Model itself based on a pure STMT model (cf.
Schmidt  and Figure  here).

Figure 4: Example of an EXMARaLDA Basic Transcription Model (cf. Schmidt 2005).

3.3 Building a multi-rooted tree from an STMT model - “Reversing the chart construction”

Consistently taking over all formal prerequisites, we, in particular, let G = 〈N,A, τ〉
be the totally anchored AG over a label set L and a single timeline 〈T,≤T 〉 from the
previous section. In order to build—on the fly—a multi-rooted tree, MultTreeA, from
PartA, the partition of A, created by applying partition to A, we slightly adapt and
extend the algorithm.

Modified lines are indicated by a prime following the line number (x’). Additional lines are indicated
by a subsequent line number counting (x., x. etc.).
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partitionA
% including the construction of a multi-rooted tree, MultTree A, from Part A
 r ← 0
’ constructAr, Tr % construct first partition set and

corresponding tree
 PartA← 〈Ar〉 % initialize list of partition sets
. MultTreeA← 〈Tr〉 % initialize multi-rooted tree (list)
 until Ar = ∅ repeat
 r ← r + 1
 constructAr, Tr % construct next (potential) partition

set and corresponding tree
 if Ar 6= ∅ then
 PartA← PartA · 〈Ar〉 % append next partition set to list
. MultTreeA← MultTreeA · 〈Tr〉 % append next tree to multi-rooted

tree (list)
 fi
 return PartA
. return MultTreeA

The subprocedure constructAr, Tr is “just” an extension of constructAr.

constructAr, Tr
 Ar ← ∅
. Tr ← ∅
 if K > 0 then

. χ0,K−1 ← ε % define (essential part of) root address of T r

. k0,K−1 ← ε % dummy for line . of procedure explore A 0,K-1

. real root0,K−1 ← false % potentially no arc from node  to node K-
 exploreA,K-

 fi

For 0 ≤ p < q < K, the modified subprocedure exploreAp,q is now given by

Recall that, because of (i) of Definition ., K > 1 if N is nonempty.
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exploreAp,q
 if Ap,q 6= ∅ then
 choose a ∈ Ap,q
 Ar ← Ar ∪ {a} % add a to partition set A r

 Ap,q ← Ap,q \ {a} % remove a from set A p,q

. χp,q ← χp,q · kp,q % define (essential part of) new
node address for T r

. Tr ← Tr ∪ {〈〈χp,q, r〉, label(a)〉} % add to T r a corresponding new
node labeled by label(a) 

. real rootp,q ← true % no dummy node, cf. line ., .
. k ← 0 % potential next daughter to find

is leftmost child
. if p+ 1 = q then
. Tr ← Tr ∪ {〈〈χp,q · k, r〉, 〈p, p+ 1〉〉} % yield of T r comprises (arc cover-

ing) interval [p,p+]
. fi
. else
. if p = 0 and q = K − 1then
. Tr ← Tr ∪ {〈〈ε, r〉, dummy-labelr〉} % dummy root covering potential non-

time-crossing, non-inclusive arcs
(cf. T 0 and T 1 from Example .)

. k ← 0
. else
. k ← kp,q
. fi
 fi
 i← 0
 j ← 1

For each arc a = 〈p, q, l〉 ∈ A for some p, q ∈ N and l ∈ L, we take label(a) to denote its label l.
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 while p+ i < q − j and Ap+i,q−j = ∅ repeat % searching leftmost “child”
 if p+ i < q − j − 1 then
 j ← j + 1
 else
. if real rootp,q = true then
. Tr ← Tr ∪ {〈〈χp,q · k, r〉, 〈p+ i, p+ i+ 1〉〉} % yield of T r comprises (arc

covering) interval [p+i,p+i+]
. k ← k + 1
. fi
 i← i+ 1
 j ← 0
 fi
 ip,q ← i
 jp,q ← j

 if p+ ip,q < q − jp,q then
. χp+ip,q,q−jp,q ← χp,q
. kp+ip,q,q−jp,q ← k
. real rootp+ip,q,q−jp,q ← real rootp,q
 exploreAp+ip,q,q−jp,q
 if jp,q > 0 then
. χp+ip,q,q−jp,q ← χp,q
. kq−jp,q,q ← kp+ip,q,q−jp,q + 1
. real rootq−jp,q,q ← real rootp,q
 exploreAq−jp,q,q % searching for right “sibling” of

leftmost “child”
 fi
 fi

Remark. The previously stated results on the time complexity bounds of partitionA
are not affected (cf. Proposition . and .).

Proposition . For each Tr appearing as a component in MultTreeA, let Lr denote
the (label) set L ∪ {dummy-labelr} ∪ {〈p, p + 1〉 | 0 < p < K − 1}. Then the set of
first components of the first components of the elements of Tr, {χ ∈ N∗ | 〈〈χ, r〉, l〉 ∈
Tr for some l ∈ Lr}, constitutes a tree domain. In this sense Tr can straightforwardly
be interpreted as a finite labeled tree. All non-terminal nodes of Tr, except for the
root node, are necessarily labeled by arc labels from L. The root node is labeled by
dummy-labelr in case A0,K−1 was empty, while processing exploreA0,K−1. Otherwise
it is also labeled by an element from L. Each leaf is labeled by 〈p, p + 1〉 for some
p < K − 1.

Example . (continued) Applying the modified algorithm partition to Aex, in
particular yields a multi-rooted tree MultTreeAex = 〈T0, T1, T2〉 with
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T0 = {〈 〈 ε , 0 〉 , dummy-label0 〉 , 〈 〈 0 , 0 〉 , label(x0) 〉 , 〈 〈 00 , 0 〉 , 〈 0 , 1 〉 〉 ,
〈 〈 1 , 0 〉 , label(x1) 〉 , 〈 〈 10 , 0 〉 , label(a(2)

2 ) 〉 , 〈 〈 100 , 0 〉 , 〈 1 , 2 〉 〉 ,
〈 〈 11 , 0 〉 , label(x2) 〉 , 〈 〈 110 , 0 〉 , 〈 2 , 3 〉 〉 , 〈 〈 2 , 0 〉 , label(a(5)

2 ) 〉 ,
〈 〈 20 , 0 〉 , 〈 3 , 4 〉 〉 , 〈 〈 3 , 0 〉 , label(x3) 〉 〉 , 〈 〈 30 , 0 〉 , 〈 4 , 5 〉 〉 }

T1 = {〈 〈 ε , 1 〉 , dummy-label1 〉 , 〈 〈 0 , 1 〉 , label(x′0) 〉 , 〈 〈 00 , 1 〉 , 〈 0 , 1 〉 〉 ,
〈 〈 1 , 1 〉 , label(x′1) 〉 , 〈 〈 10 , 1 〉 , 〈 1 , 2 〉 〉 , 〈 〈 11 , 1 〉 , label(x′2) 〉 ,
〈 〈 110 , 1 〉 , 〈 2 , 3 〉 〉 , 〈 〈 2 , 1 〉 , label(x′3) 〉 〉 , 〈 〈 20 , 1 〉 , 〈 4 , 5 〉 〉}

T2 = {〈 〈 ε , 2〉 , dummy-label2〉 , 〈 〈 0 , 2〉 , label(a(6)
1 ) , 〈 〈 00 , 2〉 , label(a(4)

1 ) ,
〈 〈 000 , 2〉 , 〈 2 , 3〉〉 , 〈 〈 001 , 2〉 , 〈 3 , 4〉〉 , 〈 〈 01 , 2〉 , 〈 4 , 5〉 〉 }

with xi, x′i ∈ Xi such that xi 6= x′i for 0 ≤ i ≤ 3, where

X0 = {a(2)
1 , a(3)

1 } , X1 = {a(1)
1 , a(3)

2 } , X2 = {a(2)
3 , a(5)

1 } and X3 = {a(5)
3 , a(7)

1 }

(cf. Figure ).

T0 dummy-label0

label(((xxx0)))

〈000 ,,, 111〉

label(((xxx1)))

label(((aaa(2)
2 )))

〈111 ,,, 222〉

label(((xxx2)))

〈222 ,,, 333〉

label(((aaa(5)
2 )))

〈333 ,,, 444〉

label(((xxx3)))

〈444 ,,, 555〉

T1 dummy-label1

label(((xxx′′′
0)))

〈000 ,,, 111〉

label(((xxx′′′
1)))

〈111 ,,, 222〉 label(((xxx′′′
2)))

〈222 ,,, 333〉

label(((xxx3)))

〈444 ,,, 555〉

T2 dummy-label2

label(((aaa(6)
1 )))

label(((aaa(4)
1 )))

〈222 ,,, 333〉 〈333 ,,, 444〉

〈444 ,,, 555〉

Figure 5: The tree components of the multi-rooted tree MultTreeAex = 〈T0, T1, T2〉.

4 Envoi

In this paper we have sketched the beginnings of a logical theory of annotation graphs.
Along the way we have tried to emphasize the following points:

• Abstract logical framework with multilayer capabilities for linguistic annotations

• Compact logical representation

• Efficient MSO theory
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• Subset of regular trees

• Internal definability of tree structure

• Partition of annotation layers

While the logical approach towards annotation models provides a unified format for
the syntactic level it still has to be complemented with a component that serves to
integrate syntactic with semantic structures. Primary candidates for this component
are amalgamation techniques from model theory and the assembly of heterogeneous
formal specifications via transformation systems. Care must be taken in this effort
to preserve the nice complexity properties that are associated with finite graphs of
bounded treewidth. On the other hand, annotation graphs offer a minimal formalization
of typical transcription needs by means of acyclic graphs with fielded records on the
edges. Semantic information is easily integrated into this minimal framework. It is for
this reason that we believe that our general perspective on the formal properties of
annotation graphs will retain its value if additional types of annotation are added to
the current format of transcription schemes.
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