[1]
Englmeier, T., Fink, F., Springmann, U. and Schulz, K.U. 2022. Optimizing the Training of Models for Automated Post-Correction of Arbitrary OCR-ed Historical Texts. Journal for Language Technology and Computational Linguistics. 35, 1 (Dec. 2022), 1–27. DOI:https://doi.org/10.21248/jlcl.35.2022.232.