
Band 22 – Heft 2 – Jahrgang 2007 – ISSN 0175-1336

Zeitschrift für Computerlinguistik und Sprachtechnologie
GLDV-Journal for Computational Linguistics and Language Technology

Forum

www.gldv.orgGesellschaft für linguistische Datenverarbeitung

Foundations of Ontologies

in Text Technology

Herausgegeben von
Uwe Mönnich und Kai-Uwe Kühnberger

Foundations of Ontologies in
Text Technology

ii LDV FORUM - Band 22(2)- 2007

LDV-Forum
ISSN 0175-1336
Band 22 - 2007 - Heft 2

Herausgeber

Anschrift der
Redaktion

Wissenschaftlicher
Beirat

Erscheinungsweise

Einreichung von
Beiträgen

Bezugsbedingungen

Satz und Druck

Zeitschrift für Computerlinguistik und Sprachtechnologie
GLDV-Journal for Computational Linguistics and Language
Technology – Offizielles Organ der GLDV

Gesellschaft für Linguistische Datenverarbeitung e. V. (GLDV)

Juniorprofessor Dr. Alexander Mehler, Universität Bielefeld,
alexander.mehler@uni-bielefeld.de
Prof. Dr. Christian Wolff, Universität Regensburg
christian.wolff@sprachlit.uni-regensburg.de

Prof. Dr. Christian Wolff,
Universität Regensburg
Institut für Medien-, Informations- und Kulturwissenschaft
D-93040 Regensburg

Vorstand, Beirat und Arbeitskreisleiter der GLDV
http://www.gldv.org/cms/vorstand.php,
http://www.gldv.org/cms/topics.php

2 Hefte im Jahr, halbjährlich zum 31. Mai und 31. Oktober.
Preprints und redaktionelle Planungen sind über die Website
der GLDV einsehbar (http://www.gldv.org).

Unaufgefordert eingesandte Fachbeiträge werden vor Veröf-
fentlichung von mindestens zwei ReferentInnen begutachtet.
Manuskripte sollten deshalb möglichst frühzeitig eingereicht
werden und bei Annahme zur Veröffentlichung in jedem Fall
elektronisch und zusätzlich auf Papier übermittelt werden.
Die namentlich gezeichneten Beiträge geben ausschließlich
die Meinung der AutorInnen wieder. Einreichungen sind an
die Herausgeber zu übermitteln.

Für Mitglieder der GLDV ist der Bezugspreis des LDV-Fo-
rums im Jahresbeitrag mit eingeschlossen. Jahresabonne-
ments können zum Preis von 25,- € (inkl. Versand), Einzele-
xemplare zum Preis von 15,- € (zzgl. Versandkosten) bei der
Redaktion bestellt werden.

Boris Kaiser, Bielefeld, mit LaTeX (pdfeTeX / MiKTeX) und Ad-
obe InDesign CS 3.0.1 , Druck: Druck TEAM KG, Regensburg

Impressum

iiiLDV FORUM - Band 22(2) - 2007

1 Introduction

The rise of the world-wide-web in connection with the tremendous increase of electro-
nically available textual data of all kinds, types, genres, and forms make the scientific
study of text resources a trend-setting research endeavor. The joint work of researchers
trained in different disciplines and research traditions encompassing the theoretical
study of properties of texts, text transformations, markup languages, query languages,
and text structures, as well as the practical pursuit of archiving textual information,
retrieving background knowledge from texts, and adapting dynamically ontological
knowledge to new information can be considered as the birth of text technology as a
scientific discipline.
 It is not very astonishing that the triumphal elevation of hypertexts – powered by
the success of the world-wide-web – as a data structure, did play an important role in
making text technology a widely recognized scientific subject. Text technology as a
scientific discipline has a rather short history, although its origins have their roots in
classical academic research traditions like (computational) linguistics, computer
science,artificial intelligence, literary sciences, and text sciences. Despite its recent emer-
genceas a coherent body of research text technology can easily be distinguished from
theseneighboring areas and can claim to have become an autonomous discipline of its
ownright. Text technology differs from classical computational linguistics and natural
language processing in focusing on text as a means in itself, not on text as a container
for language expressions (sentences) or text as a representation (or coding mechanism)
of utterances. Moreover, text technology considers structures and layouts of texts
contrary to literary history or classical linguistics and does not concentrate on finding
generative principles for the question of what constitutes a text. Last but not least, it
uses and develops markup standards (like XML, RDF, OWL etc.) and algorithms for
statistical and symbolic computations on texts, very similarly to computer science and
artificial intelligence in the area of the semantic web. But unlike computer science, text
technology directs its attention on texts instead of data structures in general, therefore
it attempts to structure data rather differently in comparison to, for example, the
semantic web tradition, and combines ideas from structure transformations that are
not at the center of interest of the computer science community.
 As a research area that is crucially located between different disciplines, text technolo-
gy is a strongly interdisciplinary research attempt. It combines research methodologies
from the already mentioned disciplines like linguistics, computational linguistics, ar-
tificial intelligence, and computer science. Whereas the domain of interest remains in-
the realm of the humanities, namely texts of all sorts and types, from a methodological

Editorial

Editorial
Uwe Mönnich, Kai-Uwe Kühnberger

iv

point of view text technology is primarily concerned with formal sciences. With the
emergence of new types of text (mainly based on the success of the world-wide-web),
that are no longer linearly structured, but contain hyperlinks and multi-media data, new
interaction paradigms and usability aspects are provoked and generate new needs for
finding, retrieving, and editing information. Furthermore new techniques for archiving
multi-modal linguistic knowledge need to be developed and implemented that have firm-
ly established the importance of the interdisciplinary research endeavor text technology.
 In comparison to text technology, the term ontology as it is used in technical disciplines
has a rather different history. Picking up a term that has a history of more than two
thousand years in philosophy, researchers in artificial intelligence introduced ontolo-
gies into their discipline as a means to represent conceptual background knowledge in
expert systems (Brachman and Schmolze, 1985). During the further development it
turned out, that many applications, most recently web applications, would strongly
benefit from a sound basis on which semantic information can be coded (Daconta
et al., 2003). It is a rather natural idea to integrate ontological knowledge into current
text technological applications. The result is an enrichment of structural information:
for example, taking annotation graphs as structural representation formalisms into
account, adding ontological knowledge to annotation graphs enlarges the structural
representation of text data by semantic knowledge.
 The present volume is the first part of a double volume about “Ontologies in Text
Technology” covering the theoretical basis of the topic. It contains a representative
sample of cutting-edge work in the foundations of combining text technology and
ontologies for state-of-the-art techniques of processing texts in language technology.
Volume II entitled “Applications of Ontologies in Text Technology” will be published in
January 2008 and will contain more applied work in the area of anaphora resolution,
discourse parsing, and extracting synonymy relations and lexico-semantic classes from
text.
 The origins of this double volume go back to the workshop “Adaptive Ontologies on
Syntactic Structures” held in conjunction with the 28th Annual Meeting of the German
Association of Linguistics (DGfS) at the University of Bielefeld in February 2006. As
a follow-up workshop, the editors organized an international workshop in Osnabrück
in September 2006 entitled “Ontologies in Text Technology – Approaches to Extract
Semantic Knowledge from Syntactic Information”. The proceedings of this workshop
contain six page papers of the participants and were published in the PICS series
(Publications of the Institute of Cognitive Science). Due to the fact that with Guus
Schreiber and Klaus Schulz two distinguished keynote speakers, gave inspiring talks
in this workshop, the workshop attracted many internationally well-known researchers
working in text and language technology. Because of the great success of this workshop
the idea was conceived to provide a possibility to present the results of this workshop
to a broader audience. It was decided that the participants of the workshop should be
invited to submit full and extended versions of their papers for a journal publication.
After a thorough further reviewing process and a revision of the accepted full articles,
the result is the present double volume of the GLDV-Journal for Computational Linguistics
and Language Technology.

v

2 The Research Unit 437 Text Technological Information Modeling

During the last six years the development of text technology in Germany was strongly
influenced by the research unit 437 “Text Technological Information Modeling” funded
by the German Research Foundation (DFG). This research unit is an interdisciplinary
research endeavor carried by the Universities of Bielefeld, Gießen, Dortmund, Tübingen,
and Osnabrück. Starting in the year 2001, this group constitutes the largest collaborative
research project devoted to text technological issues and has provided the basis for text
technological research in Germany. Currently this research unit is in its final funding
year. In order to get a better impression of the overall project, a concise overview of
the involved sub-projects of the second phase of this research unit is given:

 • Secondary Structuring of Information and Comparative Analysis of Discourse.
 Principal Investigator: Dieter Metzing.

 • Induction of Document Grammars for the Representation of Logical Hypertextual
 Document Structures.
 Principal Investigator: Alexander Mehler.

 • Text-Grammatical Foundations for the (Semi-)Automated Text-to-Hypertext Con�
 version.
 Principal Investigator: Angelika Storrer.

 • Generic Document Structures in Linearly Organized Texts: Text Parsing Using
 Domain Ontologies and Text Structure Ontologies.
 Principal Investigator: Henning Lobin.

 • Adaptive Ontologies on Extreme Markup Structures.
 Principal Investigators: Uwe Mönnich, Kai-Uwe Kühnberger.

 Although the research unit tries to cover all aspects of current text technological
activities, it is easily possible to identify certain core aspects that play a central
role in all sub-projects. Examples for such vertical topics of the whole research unit
are ontologies, annotations, markup standards, and processing aspects of texts. All
these topics play an important role in all participating projects. Some aspects of
these vertical topics of the research unit are also represented in this double volume
of the GLDV-Journal. The present volume focuses on the foundations of theories
for developing, characterizing, coding, learning, and adapting ontological background
knowledge as a crucial challenge for the semantic annotation of text documents. Some
of the sub-projects of the collaborative research unit mentioned above are represented
in this volume. Others will document aspects of their work in Volume II “Applications
of Ontologies in Text Technology”. We think that we can provide by this not only a
representative documentation of text technology in general, but also a representative
collection illustrating the research unit 437 in particular.

vi

3 The Structure of Volume I

This first volume “Foundations of Ontologies and Text Technology” contains articles
concerned with the methodological basis of using ontologies in text technology. Two
aspects need to be distinguished in this context: the syntactic aspect attempts to focus
on the underlying languages and data structures used for coding technologically rele-
vant information, as for example, markup standards like XML and annotation graphs
as a means to code linguistic information. Complementary to the syntactic level, the
semantic aspect deals with properties of ontological knowledge for text technological
applications. Both topics include aspects of learning and adaptation: learning and
adaptation of ontologies is a research field that is of great importance for the future,
because hand-coded ontologies are tedious, time-consuming, and expensive to create
(Perez and Mancho, 2003). But also on the syntactic side, there is the need for the
development of learning mechanisms: learning text types based on structural informa-
tion only, without any information about their content, turns out to be possible in many
cases. In the following, we will summarize major aspects of the articles included in this
volume.
 Lexical-semantic networks like the well-known WordNet (Fellbaum, 1998) together
with its versions in other languages like RussNet or GermaNet are not only a de
facto standard for several applications in text technology, but can also be seen as
prototypical examples where ontological knowledge can successfully be applied in text
technology. In their article “Domain Ontologies and Wordnets in OWL: Modelling
Options”, Harald Lüngen and Angelika Storrer question the common conversion stan-
dard to interpret synsets and lexical units of WordNet as OWL individuals. The article
provides arguments for a different conceptual view, namely that synsets and lexical
units need to be interpreted as concepts instead. Technically this results in a different
modeling of codingWordNet ontologies in the OWL format. The authors base their claim
on an evaluation of OWL representation models for WordNet variants like GermaNet
combined with TermNet.
 The second article of this volume “Automatic Ontology Extension: Resolving Incon-
sistencies” by Ekaterina Ovchinnikova and Kai-Uwe Kühnberger continues the discussion
of ontologies by focusing on learning and adaptation aspects of ontologies against the
background of new input. The work follows the tradition to represent ontological
knowledge using description logic, therefore it considers ontology design from a logi-
cal perspective (Baader et al., 2003). Due to the fact that automatically generated and
automatically updated ontologies face the problem of becoming inconsistent, the paper
provides an automatic procedure for resolving occurring inconsistencies in ontology
design. Potential inconsistencies in ontology design are restricted to logical ones, in
particular, the overgeneralization of concepts and polysemy problems are discussed in
detail. The authors propose an algorithmic solution for an automatic resolution based
on the minimal non-conflicting substitute.
 Related to the question of how to consistently extend ontologies by dynamic updates
is the question of how the population of ontologies with existing data sources can be
achieved. The article “Integration Languages for Data-Driven Approaches to Ontology

vii

Population and Maintenance” by Eduardo Torres Schumann, Uwe Mönnich, and Klaus
Schulz proposes a new integration language that is capable of generating new entries
in large-scale ontologies based on structured data. By an intelligent user interface
an efficient way to supervise the population of the ontology can be provided. The
authors embed their work into a system that is able to encode large amounts of data
like encyclopedic and common purpose knowledge: this large-scale knowledge base is
called EFGT net (Schulz and Weigel, 2003), a precisely defined framework designed for
various NLP applications.
 Text technology is concerned with different types of text. Not only that different
types of text have different content, often they differ significantly on a structural level
as well. Concerning webpages one can distinguish, for example, homepages of scien-
tists, blogs, or online stores from each other by structural features (Lindemann and Littig,
2006). The article “Structural Classifiers of Text Types: Towards a Novel Model of Text
Representation” by Alexander Mehler, Peter Geibel, and Olga Pustylnikov discusses
possibilities to learn text types solely on the basis of structural information without
having any content information. The authors show that the document object model
(DOM) can be used, in order to code structural information of texts. The authors
propose different learning mechanisms for achieving this task like quantitative structure
analysis (QSA) and several variants of tree kernels. The article adds also an evaluation
of these learning algorithms based on a large newspaper corpus.
 Graph structures play an important role in coding linguistic and textual information.
Prominent examples are annotation graphs, which are used to represent multi-layered
information about language, like phonological, grammatical, semantical, and pragmati-
cal information, as well as non-linguistic information (gestures or cultural background).
On the other hand, tree structures can be used in order to analyze text types. The
article “Towards a Logical Description of Trees in Annotation Graphs” by Jens Michaelis
and Uwe Mönnich focuses on logical descriptions of annotation graphs, one of the
major data resources for text technological applications. The authors present results for
characterizing a large class of annotation trees, namely, single time line, multiple tiers
(STMT) models, which constitute a subclass of annotation graphs in the sense of Bird
and Liberman (2001), and from which multi-rooted trees can be constructed. Besides
other technical results, the article provides also a spelled-out algorithm for tree-like
graph transduction from a given STMT model into a multi-rooted tree. The result
is a uniform and mathematically rigorous format for the syntactic representation of
annotation graphs. Taking into account that multi-rooted trees and Bird-Liberman
annotation graphs play a prominent role in archiving and coding texts, this work can
be considered as a theoretical basis for annotation tasks in general.

4 Acknowledgments

This volume would not have been possible without the help of many people. Most
importantly the guest editors want to thank the editors-in-chief of the GLDV-Journal for
Computational Linguistics and Language Technology, Alexander Mehler and Christian
Wolff. Their encouragement and support in all phases of the emergence of this double

viii

volume has been irreplaceable in completing it. Furthermore we want to thank the
German Research Foundation for financial support of the research unit 437 “Text
Technological Information Modeling” and particularly the speaker of this research unit,
Dieter Metzing.
 Last but not least, the editors want to thank the program committee for their
careful evaluations of the submitted papers. The quality of this volume is also a direct
consequence of the work these reviewers invested. The program committee consisted
of the following researchers (in alphabetical order): Irene Cramer, Thierry Declerck,
Stefan Evert, Pascal Hitzler, Wolfgang Höppner, Helmar Gust, Marcus Kracht, Edda
Leopold, Alessandro Moschitti, Larry Moss, Rainer Osswald, Olga Pustylnikov, Georg
Rehm, Hans-Christian Schmitz, Bernhard Schröder, Uta Seewald-Heeg, Manfred Stede,
Markus Stuptner, Frank Teuteberg, Yannick Versley, Johanna Völker, Armin Wegner,
and Christian Wolff.

References

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., editors
 (2003). The Description Logic Handbook: Theory, Implementation, and Applications.
 Cambridge University Press, New York.

Bird, S. and Liberman, M. (2001). A Formal Framework for Linguistic Annotation. Speech
 Communication, (33):23–60.

Brachman, R. and Schmolze, J. (1985). An Overview of the KL-ONE Knowledge Representation
 System. Cognitive Science, 9:171–216.

Daconta, M., Obrst, L., and Smith, K. (2003). The Semantic Web: A Guide to the Future of
 XML, Web Services, and Knowledge Management. John Wiley and Sons.

Fellbaum, C., editor (1998). WordNet. An Electronic Lexical Database. MIT Press.

Lindemann, C. and Littig, L. (2006). Coarse-Grained Classification of Web Sites by their
 Structural Properties. In Proc. of WIDM’06, pages 35–42.

Perez, G. A. and Mancho, M. D. (2003). A Survey of Ontology Learning Methods and
 Techniques. OntoWeb Delieverable 1.5.

Schulz, K. and Weigel, F. (2003). Systematics and Architectures for a Resource Representing
 Knowledge about Named Entities. In Proceedings Workshop on Principles and Practice
 of Semantic Web Reasoning, pages 189–207.

xiLDV FORUM - Band 22(2) - 2007

Uwe Mönnich, Kai-Uwe Kühnberger
Editorial ... iii

Inhaltsverzeichnis... xi

Harald Lüngen, Angelika Storrer
Domain ontologies and wordnets in OWL: Modelling options ..1

Ekaterina Ovchinnikova, Kai-Uwe Kühnberger
Automatic Ontology Extension: Resolving Inconsistencies ... 19

Eduardo Torres Schumann, Uwe Mönnich, Klaus U. Schulz
Integration Languages for Data-Driven Approaches
to Ontology Population and Maintenance ...35

Alexander Mehler, Peter Geibel, Olga Pustylnikov
Structural Classifiers of Text Types:
Towards a Novel Model of Text Representation .. 51

Jens Michaelis, Uwe Mönnich
Towards a Logical Description of Trees in Annotation Graphs ..68

Autorenverzeichnis ... 85

Inhaltsverzeichnis

LDV FORUM - Band 22(2) - 2007
Foundations of Ontologies in Text Technology

Administrator
Typewritten Text

Harald Lüngen, Angelika Storrer

Domain ontologies and wordnets in OWL: Modelling options

1 Project framework and goals

Wordnets are lexical reference systems that follow the design principles of the Princeton
WordNet project (Fellbaum,). Domain ontologies (or domain-specific ontologies
such as GOLD, or the GENE Ontology) represent knowledge about a specific domain
in a format that supports automated reasoning about the objects in that domain and
the relations between them (Erdmann,). In this paper, we will discuss how the
Web Ontology Language OWL can be used to represent and interrelate the entities and
relations in both types of resources. Our special focus will be on the question, whether
synsets should be modelled as individuals (we use individual and instance as synonyms
and will refer to this option as instance model) or as classes (we will refer to this option
as class model). We will present three OWL models, each of which offers different
solutions to this question. These models were developed in the context of the research
group “Text-technological Modelling of Information” as a collaboration of the projects
SemDok and HyTex. Since these projects are mainly concerned with German documents
and with corpora that contain documents of a special technical or scientific domain,
we used subsets of the German wordnet GermaNet (Kunze and Lemnitzer,),
henceforth referred to as GN, and the German domain ontology TermNet (Beißwenger
et al.,), henceforth referred to as TN, to develop and evaluate the three models.
To relate the general vocabulary of GN with the domain specific terms in TN, we
developed an approach that was inspired by the plug-in model proposed by Magnini
and Speranza (). In this approach, which has been developed in cooperation with
the GermaNet research group (see Kunze et al. () for details), we adapted the OWL
model for the English Princeton WordNet suggested by van Assem et al. () to GN,
i.e. we modelled German synsets as instances of word-class-specific synset classes. For
the reasons explained in section , we wanted to experiment with alternative models
that implement the class model. In section we will present three alternative OWL
representations for GN and TN and discuss their benefits and drawbacks.

2 Basic entities and relations in GermaNet and TermNet

Wordnets and domain ontologies have been used in various applications of text processing
(cf. Fellbaum, ; Kunze et al., ; Hirst, , for an overview). Although

 http://wordnet.princeton.edu
 http://www.linguistics-ontology.org/gold.html
 http://www.geneontology.org/
 cf. http://www.text-technology.de

LDV-Forum 2007 – Band 22 (2) – 1-17

Lüngen, Storrer

the Princeton WordNet was initially not conceived as an ontology but rather as a
psychologically motivated model of lexical knowledge (Miller and Hristea, , p.),
ontology textbooks often mention the Princeton WordNet as an ontological resource.
(Sowa, , p.) distinguishes between terminological ontologies, the categories of
which need not be fully specified by axioms and definitions, and axiomatized ontologies,
the categories of which are distinguished by axioms and definitions stated in logic or
in some computer-oriented language that could be automatically translated to logic.
A similar distinction is drawn in Erdmann (), p.: he differentiates between
light-weight ontologies, which consist primarily of a representation schema providing
means to specify taxonomies and to define additional features and relations, and
heavy-weight ontologies, which are specified in a logic-based representation language. In
this sense, PWN would be classified as a light-weight ontology; and PWN is, indeed,
mentioned in the list of possible ontology resources (Erdmann, , p.).
Designing an OWL representation for a wordnet-style resource implies that one

interprets the semantics of the entities and relations used in the original lexical resource
with respect to the semantics of OWL.

In this interpretation process, the choice between one modelling option and the other
is highly dependent upon the application context in which the ontology is to be used.
The models discussed in section have been developed with the following application
framework in mind:

• The models are designed to be used in our research group’s text processing
applications, such as anaphora resolution (Goecke et al., this volume), discourse
parsing (Bärenfänger et al., this volume), text-to-hypertext conversion (Holler
et al., ; Storrer,), and text classification (Mehler, this volume).

• Since some of these applications may deal with documents in a specific domain, we
aim at a common representation format for domain-specific and general vocabulary.

For readers not familiar with wordnet-style lexical representations, the following
paragraphs contain a brief introduction to the main types of entities and relations that
have to be captured in our models.

The basic entities in GermaNet are disambiguated words, called lexical units. Lexical
units denoting the same or a very similar concept are grouped together in synsets,
where the word synset is an abbreviation for synonym set. Lexical units and synsets are
connected by two types of binary relationships: () conceptual relations like hyponymy
and meronymy hold between synsets, and () lexical-semantic relations like antonymy
hold between pairs of lexical units.
The basic entities in our domain ontology TermNet are technical terms, used to

refer to well-defined concepts in the specialised domain. In many cases they form a
taxonomy in which terms are represented as classes, and more specific terms are defined

 The OWL models of the Princeton WordNet discussed in section use the term "word sense" for
disambiguated words; the corresponding term in GermaNet is "lexical unit". Since our models are
based on GermaNet data we will use the term "lexical unit" (abbreviated by LU) in this paper.

2 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

General vocabulary
(GermaNet)

lexical unit synset (synonym set)

hypernym-of

holonym-of

antonym-of domain-specific
vocabulary (TermNet)

technical term

superclass-of

in
te

rn
a

l lin
k

e
xtern

a
l link

b
id

ire
ctio

na
l l.

link

Figure 1: Entities and relations in GermaNet and TermNet.

as subclasses of broader terms. In the terminology of hypertext research, which is
represented in TN for example, the technical terms InternalLink, ExternalLink, and
BidirectionalLink are all subclasses of the broader term Link. Figure illustrates these
basic entities and relations in GN and TN.

3 OWL models for the Princeton WordNet

Although the Princeton WordNet was initially not conceived as an ontology, it has
proven to be a useful resource for ontology-driven NLP applications. Following the
Semantic Web initiative, several approaches for the conversion of the Princeton WordNet
into OWL or RDFS have been put forward. We took three approaches that use OWL
as their target representation language and examined them more closely: () The WC
approach (“WC”) (a working draft has been published by the Semantic Web Best
Practices and Deployment Working Group, van Assem et al.,); () the “Neuchâtel
approach” (“NCH”) (Ciorăscu et al.,), and () the “Amsterdam approach” (“AMST”)
(van Assem et al.,). NCH has partly been considered in WC, and the group of
authors representing AMST overlaps with that of WC; thus, AMST seems to be a
predecessor of WC. The three approaches differ in their goals: WC aims at providing
a standard conversion of the Princeton WordNet into OWL that can be used directly

Band 22 (2) – 2007 3

Lüngen, Storrer

by Semantic Web applications. In this approach the OWL version should not deviate
from the original PWN, i.e. the PWN data model should be reflected in OWL without
further interpretations. The goal of AMST was also to provide an OWL-encoded version
of PWN. The main objective of NCH, though, was to create a test domain for the
ontology-based information system knOWLer and to demonstrate its performance by
means of sample queries in a document retrieval scenario. A discussion of modelling
alternatives did not play a role in this effort. The WC approach used version . of the
Princeton WordNet, while NCH converted the version .. of the Princeton WordNet
in OWL.
In WC and NCH, the actual ontology (i.e. the class hierarchy without the in-

stances, cf. Erdmann, , p.), which is called the “WordNet RDF/OWL schema”
in WC, consists of the class of synsets (WC: Synset, NCH: LexicalConcept) and its
subclasses Noun(Synset), Adjective(Synset), Adverb(Synset), and Verb(Synset), where
Adjective(Synset) has a further subclass called AdjectiveSatellite(Synset). Lexical units
are modelled by the class WordSense in WC and by the class WordObject in NCH. In
WC, WordSense is further subdivided into part of speech-specific subclasses like Noun-
WordSense; in NCH, it is not. Moreover, for purely formal units (not associated with
a meaning), the class Word exists. In NCH, a corresponding class called StemObject
exists only in an external ontology which is used for document retrieval.

The single synsets – e.g. the synset {horse, nag, steed} – are modelled as individuals,
i.e. as instances of NounSynset, VerbSynset etc., in all three approaches. Likewise, the
single lexical units (e.g. horse) are modelled as individuals in WC as well as in NCH.
Consequently, the lexicalisation relation (the relation that connects synsets and lexical
units) is an OWL ObjectProperty with the domain Synset (LexicalConcept) and with
the range WordSense (WordObject ; the relation is called synsetContainsWordSense in
WC and wordForm in NCH), thus connecting a synset individual to one or more lexical
unit individuals. In AMST, lexical units are modelled neither as classes nor as individuals,
but as literals which appear as values of the multiple-valued DatatypeProperty wordForm
(domain: Synset). Furthermore, in all three approaches, further ObjectProperties with
Synset as domain and range exist, which model the PWN conceptual relations (e.g.
hyponymOf, entails, and partly their POS-specific restrictions) in OWL. In a similar
fashion, the PWN lexical relations (e.g. antonymOf, participleOf) are represented as
ObjectProperties WordSense in the OWL versions of WC and NCH, with WordSense
as domain and range. Moreover, the WC approach contains instructions on how to
interpret the PWN hyponymOf relation by declaring it a subproperty of the subclassOf
property in OWL. In AMST, the lexical relations are encoded by dint of “helper classes”
such as SynSetVerb.

Considering that the conversion mainly aims at preserving the original structure and
providing an OWL representation that can be easily processed and integrated in SW
applications, these models seem to be quite suitable.

 The homonymic lexical units nArtefakt..Schloss and nOrt..Schloss of GermaNet, for
example, share certain formal (i.e. orthographic, phonological, and morphological) properties
which could be represented as properties of one Word instance.

4 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

From a linguistic viewpoint, however, it is striking that all of the approaches model
synsets, i.e. sets of quasi-synonymous units, and their members, the disambiguated
lexical units, as individuals. This is striking because synsets are frequently considered
to be concepts which can be referenced linguistically by the lexical units contained in
the synsets; e.g. a synset formed by {horse, nag, steed} denotes the horse concept. This
suggests that at least the synsets should be conceived as classes, the instances of which
are individual objects (e.g. the horse “Fury”). However, in principle, the lexical unit
“horse” can also generically refer to the whole class (e.g. in meaning postulates like “A
sorrel is a reddish horse”).
All in all, the decision to model synsets and lexical units as individuals, i.e. to

implement the instance model, is not at all obvious. Instead, both options – for which
we introduced the short terms instance model and class model in section – capture
two different perspectives that one may have on wordnets:

. In the instance model, a wordnet is conceived primarily as a lexicon describing
properties of lexical units. The categories of the model represent linguistic classes
and subclasses. Thus, synsets and word senses are modelled as instances of word
class categories, e.g. the classes NounWordSense or NounSynset.

. In the class model, a wordnet is conceived primarily as an ontology describing
properties of the concepts that are denoted by the lexical units. The categories
captured in the ontology represent concepts and their properties. Thus, synsets
and word senses are modelled as classes in which the instances are individual
entities.

There are two arguments which motivate, in our view, the implementation of the
class model:

. The Princeton WordNet, in its version PWN ., draws an explicit distinction
between the relation of hyponymy on the one hand (e.g. the subordinate synset
containing “peach” is a hyponym of the superordinate synset containing “drupe”)
and the class-instance relation on the other (e.g. the proper name “Berlin” is
an instance of the synset containing “city”). Over , PWN synsets were
manually classified as instances and tagged as such. Despite this introduction
of the class-instance distinction, the PWN version . may still be converted to
OWL using the instance model, e.g. by ignoring the class-instance distinction
among synsets by skipping those synsets that are tagged as instances. However,
Miller and Hristea () (p.) introduced this distinction with the aim to help
ontologists “to distinguish between a concept-to-concept relation of subsumption
and an individual-to-concept relation of instantiation”. We believe that this aim
implies that synsets (like “peach”) are conceived as concepts denoting classes with
numerous instances, while proper names (like “Berlin”) denote instances of synset
classes (in the case of “Berlin” the class synset containing “city”). In our opinion,

 Examples from (Miller and Hristea, , p.).

Band 22 (2) – 2007 5

Lüngen, Storrer

this perspective is captured more adequately by the class model than by the
instance model, because when class synsets are already modelled as instances, the
class-instance relations would have to be defined between pairs of instances; this
is not a very intuitive interpretation of such relations.

. The second argument is concerned with domain-specific vocabulary in domain
ontologies. Domain ontologies often represent taxonomies of technical terms
that mirror superclass-subclass-relations between their instances. This may be
illustrated by the example in figure : the term externalLink is a subclass of the
broader term Link. In the class model one may represent these relations using the
<rdfs:subClassOf> property and benefit from its related mechanisms of feature in-
heritance. Another aspect that may be nicely captured by the class model is that in
such taxonomies, subclasses with the same classification feature (e.g. InternalLink
and ExternalLink in the example illustrated in figure) are disjoint: an individual
link may either be an instance of InternalLink or an instance of ExternalLink.
This restriction can be neatly represented using the OWL <owl:disjointWith>
construct. Since <rdfs:subClassOf> and <owl:disjointWith> can only be defined
for classes, the class model is better suited to represent taxonomies than the
instance model. All in all, the class model seems to be more appropriate to capture
domain-specific terminology in OWL than the instance model.

For our domain ontology TermNet, we developed an OWL model that implements
the class model: the main entities of TN, the technical terms, are represented as classes.
Specific terms are related to broader terms by means of the <rdfs:subClassOf> property.
Disjointness of technical terms, e.g. between internal link and instance of external link
in our example, is represented by using the OWL <owl:disjointWith> construct.

If one chooses the class model for the domain ontology one still may follow the
instance model when representing the general vocabulary of GermaNet. Indeed, in the
approach described in Kunze et al. () we related the class model of TN with an
instance model of GN; this option will be described in section .. In addition, we
experimented with alternative models for GN: one that implements GN following the
class model and one that combines both options in OWL Full. The three models as
well as their respective combination with TermNet will be discussed and compared in
the following section.

4 Three alternative models for representing GN and TN in OWL

In this section, we discuss three alternative representations of GN and its plug-in
connections with TN in OWL: the first representation we call The OWL DL Instance
Model (GN synsets and lexical units are OWL individuals), the second encoding we call
The OWL DL Class Model (GN synsets and lexical units are classes), and the third

 The model is described in Kunze et al. (); the subset of TermNet considered in the model
comprises NounTerms from the domain of hypertext research.

6 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

encoding we call The OWL Full Metaclass Model (GN synsets and lexical units are
both OWL classes and individuals).
For each model, a basic hierarchy of classes is declared using <owl:Class> and

<rdfs:subClassOf> statements. The basic hierarchy includes Synset with its subclasses
NounSynset, AdjectiveSynset, VerbSynset, and AdverbSynset, as well as the class Lexi-
calUnit with its subclasses NounUnit, AdjectiveUnit, VerbUnit, and AdverbUnit, cf. also
Kunze et al. ().
In each model, we define the general lexicalisation relation (describing the relation

between one synset and its lexical units) as an OWL Object Property called hasMember.
Listing shows that this property has the general class Synset as its domain and the
general class LexicalUnit as its range.

<owl:InverseFunctionalProperty rdf:about="#hasMember">
<rdfs:range rdf:resource="#LexicalUnit"/>
<rdfs:domain rdf:resource="#Synset"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<owl:inverseOf rdf:resource="#memberOf"/>

</owl:InverseFunctionalProperty>

Listing 1: OWL code introducing the lexicalisation relation hasMember in all three models

Likewise in each model, the GN hyponym relation is an OWL Object Property called
isHyponymOf and defined with Synset as both domain and range, cf. listing .

The POS-specific restrictions for hasMember and isHyponymOf are encoded in both
models by use of the <owl:allValuesFrom> construction. Listing illustrates how such
restrictions are defined for the classNounSynset : the OWL code in this listing specifies
the restriction of the range of the property hasMember to NounUnit, which is the
POS-corresponding subclass of LexicalUnit.

In each model, we also wanted to relate GN synsets to terms of the domain ontology
TermNet (TN). Since the OWL representation of TN remains constant (terms are
always represented as OWL classes for reasons stated in section), each model implies
a different way of encoding the plug-in relations between GN and TN.
In the following section, we will compare these three models and describe how they

can be related to TermNet within OWL. This will be discussed by the examples of how
the lexicalisation relation between individual synsets and lexical units, the hyponymy
relation between individual synsets, and the plug-in relation attachedToNearSynonym
between individual synsets in GN and terms in TN are encoded. Furthermore, for
each model, we discuss our experiments with queries to the resulting knowledge bases
formulated in Prolog and nRQL.

4.1 The OWL DL Instance Model

As discussed in section , previous approaches to the representation of the PWN in
OWL conform to an instance model, where the single synsets are rendered as OWL

Band 22 (2) – 2007 7

Lüngen, Storrer

<owl:ObjectProperty rdf:about="#conceptualRelation">
<rdfs:domain rdf:resource="#Synset"/>
<rdfs:range rdf:resource="#Synset"/>

</owl:ObjectProperty>

<owl:TransitiveProperty rdf:about="#isHyponymOf">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:subPropertyOf rdf:resource="#conceptualRelation"/>
<owl:inverseOf>
<owl:TransitiveProperty rdf:about="#isHypernymOf"/>

</owl:inverseOf>
</owl:TransitiveProperty>

Listing 2: OWL code introducing conceptual relations and the relation isHyponymOf in all three models

<owl:Class rdf:ID="NounSynset">
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#NounUnit"/>

</owl:allValuesFrom>
<owl:onProperty>
<owl:InverseFunctionalProperty rdf:ID="hasMember"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
...

</owl:Class>

Listing 3: OWL code for a restriction of the lexicalisation relation hasMember in all three models

individuals and where the conceptual and lexical-semantic relations are OWL property
instances. The instance model for representing GermaNet in OWL, which adopted the
WC strategy (see section) for the representation of wordnets, was introduced in
Kunze et al. ().
Relation instances of the hasMember relation are encoded as property instances of

individual synsets. Listing shows the XML code representing the individual that
corresponds to the synset {eitel, selbstherrlich, selbstgefällig, selbstgerecht}.
A relation instance of isHyponymOf is also encoded as a property instance of an

individual synset in XML, cf. listing .

To check the consistency of the OWL DL Instance Model, the GermaNet ontology was
populated with synset and lexical unit individuals and all relation instances that
hold between them. The ontology was checked for consistency using the ontology editor
Protégé .. in connection with the reasoner/classifier software RacerPro ...

 All characteristics of the OWL object and datatype properties as well as OWL code representing
further lexical relations in the instance model are described in Kunze et al. ().

 http://protege.stanford.edu, visited May

8 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

<AdjectiveSynset rdf:ID="aVerhalten.235">
<hasMember rdf:resource="#aVerhalten.235.eitel"/>
<hasMember rdf:resource="#aVerhalten.235.selbstherrlich"/>
<hasMember rdf:resource="#aVerhalten.235.selbstgefällig"/>
<hasMember rdf:resource="#aVerhalten.235.selbstgerecht"/>
<!-- ... (Further properties of aVerhalten.235] -->

<AdjectiveSynset>

Listing 4: OWL code for relation instances of hasMember in the Instance Model

<AdjectiveSynset rdf:ID="aVerhalten.235">
<!-- ... (Further properties of aVerhalten.235] -->
<isHyponymOf rdf:resource="#aVerhalten.225"/>

<AdjectiveSynset>

Listing 5: OWL code for relation instances of isHyponymOf in the Instance Model

To test how queries to the ontology can be formulated and processed, we parsed the
owl file using the triple store SWI Prolog Semantic Web library in combination with
the Thea OWL library for Prolog (Vassiliadis,). For the ontology, we subsequently
implemented in Prolog several query types for the ontology, which are typical of
text-technological applications:

• List the set of synsets that a given lexical unit is a member of
• List the set of lexical units a given synset has as its members
• List the set of synonyms of a given lexical unit
• List the set of direct hyponym (hypernym) synsets of a given synset
• List the set of direct hyponym (hypernym) lexical units of a given lexical unit
• List the set of direct or transitive hyponym (hypernym) synsets of a given synset
• List the set of direct or transitive hyponym (hypernym) lexical units of a given

lexical unit

Queries of these types could be successfully run on the GN subset encoded as OWL
DL Instance Model ontology.

In the approach described in Kunze et al. (), we related a subset of TN technical
terms with a subset of GN synsets. Since that implies that an ontology which follows
the instance model is related to an ontology which follows the class model, we call the
approach to connect these a mixed model. We defined three plug-in relations called
attachedToNearSynonym, attachedToGeneralConcept, and attachedToHolonym with
domain tn:Term and range gn:Synset. Plug-ins are relations to connect the specialised

 http://www.racer-systems.com, visited May
 http://www.swi-prolog.org, visited May

Band 22 (2) – 2007 9

Lüngen, Storrer

concepts (concepts from domain-specific vocabulary or terminologies) of a domain
ontology with the more general concepts of a PWN style lexical-semantic network.
The original plug-in approach yields a common hierarchy in which the top concepts
of the specialised ontology are eclipsed while the subordinate concepts, the terms, are
imported into the general language ontology. The plug-ins defined in Kunze et al. ()
are inspired by, but not identical to, the ones originally introduced in (cf. Magnini
and Speranza,). The plug-in relation attachedToNearSynonym, for example, is
defined as an OWL Object Property in the mixed model with domain tn:Term and
range gn:Synset as shown in listing . Gn, tn, and plg are namespace prefixes for the
URIs of the three ontologies involved (GermaNet, TermNet, and plug-in relations),
which are ideally kept in separate files.

<owl:ObjectProperty rdf:about="#plg:attachedToNearSynonym">
<rdfs:domain rdf:resource="#tn:Term"/>
<rdfs:range rdf:resource="#gn:Synset"/>

</owl:ObjectProperty>

Listing 6: OWL code for introducing the plug-in relation attachedToNearSynonym in the Instance Model

To plug the class tn:Term_Link into its corresponding synset gn:Link, the for-
mer is declared to be a subclass of a local restriction that assigns every individ-
ual of the class tn:Term_Link the individual gn:Link as the value on the property
plg:attachedToNearSynonym, using the <owl:hasValue> construction (listing) (cf. also
Kunze et al.,).

<owl:Class rdf:ID="tn:Term_Link">
<rdfs:subClassOf rdf:resource="#tn:NounTerm"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:hasValue rdf:resource="#gn:Link"/>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="plg:attachedToNearSynonym"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Listing 7: OWL code for relation instances of attachedToNearSynonym in the Instance Model

Since in this mixed model TermNet terms are modelled as classes and GermaNet
synsets are modelled as instances and since in OWL DL classes cannot be specified as
values of property instances, the plug-in relations proposed in Kunze et al. () cannot
have inverse properties, i.e. cannot be defined using the <owl:inverseOf> construction.
A declaration of inverse relations is strictly speaking not necessary for making inferences,
but it is still desirable because it can speed up processing.

10 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

4.2 The OWL DL Class Model

When modelling the conceptual relations between synsets according to a class model
(synsets are OWL classes), our first preference would have been to relate classes by
declaring pairs of them as relation instances of a conceptual relation like isHyponymOf.
However, when classes are assigned as values of properties, they must function as
individuals at the same time, which goes beyond the scope of OWL DL (cf. Smith et al.,
). Thus, we decided to relate classes with one another by employing local property
restrictions using the <owl:allValuesFrom> construction, such as in the example in
listing , where the synset containing Webdokument is declared to be a hyponym of the
synset containing Hypertextsystem. When a synset has more than one hypernym, we
declare the <owl:allValuesFrom> restriction such that all values have to be taken from
a union of classes.

<owl:Class rdf:about="#gn:Synset_Webdokument">
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#gn:Synset_Dokument"/>
<owl:Class rdf:about="#gn:Synset_Hypertextsystem"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
<owl:onProperty>
<owl:TransitiveProperty rdf:about="#gn:isHyponymOf"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:class>

Listing 8: OWL code for relation instances of isHyponymOf in the OWL DL Class Model

Within a class model, it is tempting to model lexical units as the instances of the
synsets. However, we have indicated above that we want the instances of synsets
to include individuals of a discourse model, such as Berlin (i.e. named entities) or
Horse_. Lexical units do not represent semantic units but linguistic expression
types; thus, it is adequate to model lexical units as classes, too. (Their instances should
represent the tokens (occurrences) of lexical units in text.) Accordingly, the relation
instances of the lexicalisation relation hasMember and all of the lexical relations are
encoded as local property restrictions on synset classes, too, cf. listing .

Again, we parsed the ontology using the Semantic Web library with the Thea OWL
library for Prolog. To run the set of queries listed in section ., a new set of Prolog
predicates had to be implemented. Still, the queries could all be run in a straightforward
manner, and Prolog provided the correct answer sets.

Band 22 (2) – 2007 11

Lüngen, Storrer

<owl:InverseFunctionalProperty rdf:about="#hasMember">
<owl:inverseOf rdf:resource="#memberOf"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<rdfs:range rdf:resource="#LexicalUnit"/>
<rdfs:domain rdf:resource="#Synset"/>

</owl:InverseFunctionalProperty>

Listing 9: OWL code for relation instances of hasMember in the OWL DL Class Model

To test the consistency and general queryability of the combination of both GN and
TN as class models in OWL, we also implemented a set of test queries using the query
language nRQL (Haarslev et al.,) in connection with RacerPro. We tested the
query types listed in section . as well as more complex queries across GN and TN,
e.g. querying hyponymy also along the plug-in relation attachedToGeneralConcept. The
results showed that, when using RacerPro, only information about (sets of) individuals
can be queried, but not about classes as such, which would be necessary for a wordnet
ontology in the class model. Thus, we had to first introduce one pseudo-individual for
each synset and lexical unit. Consequently, the original class model became somewhat
corrupted, but, unlike in the case of the SWI SemWeb Library, additional coding of
query predicates was not required when using nRQL. We could formulate queries as
listed in section . to the GN+TN Class Model represented in OWL. Listing
shows nRQL code for a query for all hyponyms (TN terms or GN synsets) of the GN
synset Navigationshilfe. RacerPro would infer the right answer, i.e. a list of synset IDs
from both GermaNet and TermNet including those in listing .

Listing 10: nRQL query to Class Model

(retrieve (?y) (or (and (?x ?y |gn_isHyperonymOf|) (?x
|gn_Synset_Navigationshilfe|)) (and (?x |gn_Synset_Navigationshilfe|)
(?x ?z |gn_isHyperonymOf|) (?z ?y |plg_inverseOfAttachedToGeneralConcept|))))

((?Y |tn_ObjektiverLink|))
((?Y |tn_Eins-zu-n-Link|))
((?Y |tn_VerborgenerLink|))
((?Y |gn_SS_Link|)))

4.3 The OWL Full Metaclass Model

As already indicated, we tested a third modelling option for GermaNet in OWL. The
Instance Model can be converted into a Metaclass Model simply by adding the following
line to the definitions of the class Synset :

 We would like to thank Bianca Selzam, who built the TermNet OWL model and conducted the
query experiments using nRQL.

12 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

<rdfs:subClassOf rdf:resource="http://www.w.org///owl#Class"/>

This makes Synset a metaclass, i.e. a class in which the instances are classes, too.
Accordingly, lexical units were declared as metaclasses. Thus, all of the single synsets
and lexical units are simultaneously classes and instances in this ontology, which now
seems to offer all advantages of the instance and the class model at the same time:
since synsets and lexical units are instances, straightforward and simple XML element
relation instances as in the instance model shown in section ., are used to represent
the conceptual and lexical-semantic relations, and the lexicalisation relation. On the
other hand, since synsets and lexical units are classes, they can now be populated with
token occurrence individuals as needed in text-technological applications, cf. figure .
Interestingly, it seems that a metaclass mechanism for OWL could also be used in many
other domains and applications, (cf. Schreiber, ; Noy (ed.),).

Figure 2: Instance vs. Metaclass Model.

Unfortunately the ontology described above lies outside the scope of OWL DL, i.e. it
is in OWL Full (cf. Smith et al.,). Thus, standard DL-based reasoners cannot be
used on it.

 Line is shown as added using the Protégé editor.
 Outside the DL reasoning community, Pan et al. () introduced a non-standard OWL variant

called OWL FA. This is a well-defined metamodelling extension of OWL DL, and, unlike OWL
Full, it is still decidable.

Band 22 (2) – 2007 13

Lüngen, Storrer

However, this metaclass model ontology of GermaNet in OWL Full could be parsed
using the SWI Prolog Semantic Web library in combination with the Thea OWL library
for Prolog and successfully queried with queries of the types listed in section .. The
queries had to be coded in Prolog and are basically the same as the ones one can code for
the instance model. We implemented a set of queries in Prolog that can infer hyponym
relationships in the OWL Full Metaclass representation of GN. For querying the set
of hyponyms of a given lexical unit, for example, the Prolog predicates shown in listing
 were written: HasElements/ and IsMemberof/ are user-defined predicates that
check the GN lexicalisation relation (hasMember and its inverse property memberOf,
respectively), and owl_parser:uri_split/ is a predicate provided by the Thea OWL
library for deleting or adding a namespace URI. (For demonstration purposes, we
provide a “readable” version of the predicate unitIsHyperonymOf here, i.e. one where
the answer does not contain namespace URIs.) Listing shows a query for the set of
lexical unit hyponyms of the lexical unit aVerhalten..eitel and the response of the
Prolog interpreter.

Listing 11: Prolog predicates for querying the Metaclass Model

unitIsHyperonymOf_readable(Input,Output) :-
isMemberOf(Input,Set),
setIsHyperonymHelper2(Set,Set2),
hasElements(Set2,C),
owl_parser:uri_split(C,_,Output,'#').

setIsHyperonymHelper2(Input,Output) :-
individual(Input,_,_,PList),
member(value('http://www.owl-ontologies.com/unnamed.owl#isHypernymOf',Output),
PList).

Listing 12: Prolog query to Metaclass Model

?- unitIsHyperonymOf_readable('aVerhalten.235.eitel', A).

A = 'aVerhalten.231.geckenhaft' ;
A = 'aVerhalten.236.a�ektiert' ;
A = 'aVerhalten.236.geziert' ;

Further predicates that can be used for the hypernymy and hyponymy-related queries
listed in section . are unitIsDirectHyponymOf, setIsHyperonymOf and setIsDirectHy-
peronymOf.

 We would like to thank Christian Kullmann, who implemented the query predicates and conducted
the query experiments in Prolog using Thea.

14 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

5 Conclusions and outlook

Existing conversions of the Princeton WordNet into the Semantic Web ontology language
OWL (Ciorăscu et al., ; van Assem et al., ,) as well as a description
to convert GermaNet to OWL (Kunze et al.,) apply what we have dubbed an
instance model to the representation of wordnets in OWL: the single synsets and
lexical units are rendered as OWL individuals, and relation instances of the conceptual
and lexical-semantic relations appear as property instances. Nevertheless, from a
linguistic point of view, synsets are concepts (classes) whose instances are individuals or
discourse entities, and lexical units are types of linguistic expressions, whose instances
can be interpreted as the token occurrences of these expressions in text, which seems
appropriate at least in text-technological applications. Moreover, domain-specific
ontologies or terminologies encoded in OWL such as TermNet (Kunze et al.,) or
GOLD (Farrar and Langendoen,) rather apply a class model of representation, in
which terms are rendered as OWL classes, and a taxonomic hierarchy is imposed by
means of the OWL subClassOf relation. In text-technological applications, it is often
desirable to integrate such domain-specific ontologies with a general wordnet, and it
would clearly ease the integration process if the two resource types corresponded to the
same representation model.

Thus, in section , we described our evaluation of three OWL representation models
for wordnets, using the example of GermaNet, and how they can be combined with
the domain ontology TermNet, applying plug-in approach suggested by Magnini and
Speranza (). Firstly, in the instance model of GN, conceptual and lexical-semantic
relations as well as the lexicalisation relation appear as property instances, i.e. XML
elements. Plug-in relations have as their domain a term class and as their values
a GN individual synset. As a consequence, inverse relations of plug-ins could not
be defined. Secondly, in the class model of GN, all conceptual and lexical-semantic
relations, the lexicalisation relation, as well as plug-in relations were rendered as
property restrictions on classes representing individual synsets and terms. Thirdly, in
the metaclass model of GN, synsets and lexical units are both classes and individuals in
OWL. All lexical-semantic and conceptual relations as well as the lexicalisation relation
are thus XML property instances like in the instance model. Plug-in relations can either
be represented as property instances like in the instance model or as local property
restrictions like in the class model.
In our view, it would be clearly desirable to encode wordnets in a metaclass model

in OWL: it allows for a linguistically adequate representation of synsets and lexical
units as OWL classes while the somewhat clumsy representation of lexical-semantic and
conceptual relations as local property restrictions, such as in the class model, are not
necessary. Its only drawback is that DL-based reasoning software cannot be used on a
metaclass model, because it is outside of the sublanguage OWL DL. As a possible way
out, we found that the processing of queries for wordnet relations in the OWL metaclass
model could be realised using the triple store SWI Prolog Semantic Web library and
 We would like to thank Guus Schreiber for pointing out this possibility to us.

Band 22 (2) – 2007 15

Lüngen, Storrer

the Thea OWL library (Vassiliadis,) for Prolog.
A total conversion of GermaNet into all of the three models examined is under way. We

also aim at plugging in more domain ontologies in GermaNet based on their OWL repre-
sentations; thus far, only connections from TermNet have been tested. The set of Prolog
predicates for querying wordnets in OWL according to the metaclass model has to be ex-
tended for the remaining wordnet relations. Finally, we plan to develop a metaclass model
for TermNet. On this basis, we aim to experiment with alternative plug-in properties
that relate the GN metaclass model to the TN metaclass model (and possibly other do-
main ontologies represented according to this model). We will inform about future work
on our project website, cf. http://www.hytex.info/_werkstatt/_owlmodellierung.

References

Beißwenger, M., Storrer, A., and Runte, M. (). Modellierung eines Terminologienetzes für
das automatische Linking auf der Grundlage von WordNet. LDV-Forum, (-):–.

Ciorăscu, C., Ciorăscu, I., and Stoffel, K. (). knOWLer – Ontological support for information
retrieval systems. In Proceedings of the th Annual International ACM-SIGIR Conference,
Workshop on Semantic Web, Toronto, Canada.

Erdmann, M. (). Ontologien zur konzeptuellen Modellierung der Semantik von XML.
Books on Demand, Karlsruhe.

Farrar, S. and Langendoen, D. T. (). A linguistic ontology for the semantic web. GLOT
International, ():–.

Fellbaum, C., editor (). WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
MA.

Haarslev, V., Möller, R., and Wessel, M. (). Querying the Semantic Web with Racer +
nRQL. In Proceedings of the KI- International Workshop on Applications of Description
Logics (ADL’), Ulm, Germany, September , Ulm.

Hirst, G. (). Ontology and the lexicon. In Staab, S. and Studer, R., editors, Handbook
on Ontologies, International Handbooks on Information Systems, pages –. Springer,
Heidelberg.

Holler, A., Maas, J.-F., and Storrer, A. (). Exploiting coreference annotations for text--
to-hypertext conversion. In Proceedings of LREC , Volume II, pages –, Lisboa.

Kunze, C. and Lemnitzer, L. (). GermaNet - representation, visualization, application. In
Proceedings of LREC, volume V, pages –, Las Palmas.

Kunze, C., Lemnitzer, L., Lüngen, H., and Storrer, A. (). Repräsentation und Verknüpfung
allgemeinsprachlicher und terminologischer Wortnetze in OWL. Zeitschrift für Sprachwis-
senschaft, ().

Kunze, C., Lemnitzer, L., and Wagner, A. (). Anwendungen des deutschen Wortnetzes in
Theorie und Praxis. Sonderheft der Zeitschrift für Computerlinguistik und Sprachtechnologie.
Bonn.

16 LDV-FORUM

Domain ontologies and wordnets in OWL: Modelling options

Magnini, B. and Speranza, M. (). Merging Global and Specialized Linguistic Ontologies.
In Proceedings of Ontolex , pages –, Las Palmas de Gran Canaria, Spain.

Miller, G. A. and Hristea, F. (). Word net nouns: Classes and instances. Computational
Linguistics, ():–.

Noy (ed.), N. (). Representing classes as property values on the semantic web. WC
Working Group Note. http://www.w3.org/TR/swbp-classes-as-values/, visited May .

Pan, J. Z., Horrocks, I., and Schreiber, G. (). OWL FA: A metamodeling extension of OWL
DL. In Proceedings of the Workshop OWL: Experiences and directions, Galway, Ireland.

Schreiber, G. (). The web is not well-formed. IEEE Intelligent Systems, ():–.

Smith, M. K., Welty, C., and Deborah L. McGuinness, e. (). OWL Web On-
tology Language – Guide. Technical report, WC (World Wide Web) Consortium.
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, visited May .

Sowa, J. F. (). Knowledge Representation. Logical, Philosophical, and Computational
Foundations. Brooks/Cole, Pacific Grove.

Storrer, A. (). Mark-up driven strategies for text-to-hypertext conversion. In Metzing,
D. and Witt, A., editors, Linguistic Modelling of Information and Markup Languages.
Contributions to Language Technology, Text, Speech and Language Technology. Kluwer,
Dordrecht. To appear.

van Assem, M., Gangemi, A., and Schreiber, G. (). Conversion of WordNet to a standard
RDF/OWL representation. In Proceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC’), Genoa, Italy.

van Assem, M., Menken, M. R., Schreiber, G., Wielemaker, J., and Wielinga, B. (). A
method for converting thesauri to RDF/OWL. In Proceedings of the rd International
Semantic Web Conference (ISWC), number in Lecture Notes in Computer Science,
Hiroshima, Japan.

Vassiliadis, V. (). Thea. A web ontology language - OWL library for [SWI] Prolog.
Web-published manual, http://www.semanticweb.gr/TheaOWLLib/index.htm, visited July
.

Band 22 (2) – 2007 17

Ekaterina Ovchinnikova, Kai-Uwe Kühnberger

Automatic Ontology Extension: Resolving Inconsistencies

Ontologies are widely used in text technology and artificial intelligence. The
need to develop large ontologies for real-life applications provokes researchers
to automate ontology extension procedures. Automatic updates without the
control of a human expert can generate potential conflicts between original
and new knowledge. As a consequence the resulting ontology can yield
inconsistencies. We propose a procedure that models the process of adapting
an ontology to new information by repairing several important types of
inconsistencies.

1 Introduction

There is an increasing interest in augmenting text technological and artificial intelligence
applications with ontological knowledge. Since the manual development of large ontolo-
gies has been proven to be time-consuming, many current investigations are devoted to
automatic ontology learning methods (Perez and Mancho,).

The most important existing markup language for ontology design is the Web Ontology
Language (OWL), with its popular versions (OWL Lite and OWL DL) based on the
logical formalism called Description Logic (DL). DL was designed for the representation
of terminological knowledge and reasoning devices (Baader et al.,). Although most
of the tools extracting or extending ontologies automatically output the knowledge
in the OWL-format, they usually use only a small subset of the corresponding DL
representation. The core ontologies generated in most practical applications contain the
subsumption relation defined on concepts (taxonomy) and a few general relations (such
as part-of and other). At present complex ontologies making use of the full expressive
power and advances of the various versions of DL can be achieved only manually or
semi-automatically. However, several recent approaches not only attempt to learn
taxonomic and general relations, but also state which concepts in the knowledge base
are equivalent or disjoint (Haase and Stojanovic,).

The storage of ontological information within a logical framework entails inconsistency
problems, because pieces of information can contradict each other, making the given
ontology unsatisfiable and therefore useless for reasoning purposes. The problem
of inconsistency becomes even more important with regard to large-scale ontologies:
resolving inconsistencies in large ontologies by hand is time-consuming and tedious,
therefore automatic procedures to debug ontologies are required.
The approach presented in this paper focuses on logical inconsistencies in termino-

logical knowledge base: after a rough sketch of DLs (Section), we discuss informally

A documentation can be found at http://www.w3.org/TR/owl-features/.

LDV-Forum 2007 – Band 22 (2) – 19-33

Ovchinnikova, Kühnberger

inconsistencies in ontologies (Section) and related work (Section). In addition to
extending some existing ontology debugging methods, we provide formal criteria to
distinguish different types of logical inconsistencies (overgeneralization and polysemy)
in Section and present an adaptation algorithm resolving logical inconsistencies that
may appear in ontology extensions (Section). Section adds some remarks concerning
the order of the update and Section concludes the paper.

2 Description Logic

In this section, we define description logics (DL) underlying the ontology representation
considered in this paper (cf. Baader et al., , for an overview). A DL ontology
contains a set of terminological axioms (called TBox), a set of instantiated concepts
(called Assertion or ABox), and a set of role axioms (called RBox). In the present paper,
we focus on the TBox, leaving the ABox and the RBox aside for further investigation.

A TBox is a finite set of axioms of the form A1 ≡ A2 (equalities) or A v C (inclusions),
where A stands for a concept name and C (called concept description) is defined as
follows (R denotes a role name, A denotes an atomic concept): C → A | ¬A | ∀R.A.
The semantics of concepts and axioms is defined in the usual way in terms of a

model theoretic interpretation function I = (∆I , ·I), where ∆I is a non-empty set of
individuals and the function ·I maps every concept name A to AI ⊆ ∆I and every
role name R to RI ⊆ ∆I ×∆I . Negation and universal restriction is defined as usual:
(¬A)I = ∆I\AI and (∀R.A)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ AI}. An interpretation
I is a model of a TBox T , if for every inclusion A v C in the TBox, AI ⊆ CI and
for every equality A1 ≡ A2 in the TBox, AI1 = AI2 holds. A concept description D
subsumes C in T (T |= C v D), if for every model I of T : CI ⊆ DI . A concept C
is called satisfiable towards T , if there is a model I of T such that CI is nonempty.
Otherwise C is unsatisfiable towards T . The algorithms for checking satisfiability of
concept descriptions are described in Baader et al. () and implemented in several
reasoners. A TBox T is called unsatisfiable iff there is an atomic concept A defined in
T that is unsatisfiable.

An important DL concept for this paper is the least common subsumer (lcs) (cf. Baader
and Küsters,) for the definition and algorithms for computing lcs). Intuitively, the
lcs for concept descriptions C1 and C2 is a concept description that collects all common
features of C1 and C2 and is most specific towards subsumption.

Definition A concept description L is a least common subsumer (lcs) of concept
descriptions C1, ..., Cn towards a TBox T iff it satisfies the following two conditions:

. ∀i ∈ {1, ..., n} : T |= Ci v L and
. ∀L′: if ∀i ∈ {1, ..., n} : T |= Ci v L′ and L′ 6= L then T 6|= L′ v L.

In the following definitions, we closely follow Haase and Stojanovic () who present an approach
using one of the most powerful DL-versions for ontology learning.

Hereinafter concept descriptions are referred to as concepts.
Some of the DL reasoners are listed at http://www.cs.man.ac.uk/∼sattler/reasoners.html.

20 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

3 Inconsistent Ontologies

The notion of an inconsistent ontology has several meanings. For example, three types
of inconsistencies are distinguished in Haase and Stojanovic ():

• Structural inconsistency is defined with respect to the underlying ontology lan-
guage. An ontology is structurally inconsistent, if it is syntactically inconsistent,
i.e. if it contains axioms violating syntactical rules of the representation language
(e.g. OWL DL).

• Logical inconsistency of an ontology is defined on the basis of formal semantics:
An ontology is logically inconsistent, if it has no model.

• User-defined inconsistency is related to application context constraints defined by
the user.

In this paper, we consider logical inconsistencies only. In particular, we focus on
unsatisfiable terminologies. Notice that an ontology can become logically inconsistent
only if its underlying logic allows negation. Ontologies share this property with every
logical system. For the approaches concerned with core ontologies (lacking negation)
contradictions in the ontological knowledge base cannot arise. But for approaches using
more powerful logics, the problem of inconsistency becomes important (Haase and
Stojanovic,).

Terminological unsatisfiability can have several reasons: first, errors in the automatic
ontology learning procedure or mistakes of the ontology engineer, second, polysemy of
concept names, and third, generalization mistakes. The polysemy problem is particularly
relevant for automatic ontology learning. If an ontology is learned automatically, then
it is hardly possible to distinguish between word senses: If, for example, a concept Tree
is declared to be a subconcept of both, Plant and Data structure (where Plant and Data
structure are subconcepts of disjoint concepts, e.g. Object and Abstraction), then Tree
will be unsatisfiable.

Generalization mistakes causing unsatisfiability are connected with definitions of
some concepts that are too specific: such definitions contradict with their subconcepts,
representing exceptions to these definitions. Here is a classical example:

Example
TBox: {1. Bird v CanF ly, 2. CanF ly v CanMove,

3. Canary v Bird, 4. P enguin v Bird}
New axiom: {5. P enguin v ¬CanF ly}

The statement all birds can fly in Example is too specific. If an exception penguin,
that cannot fly, is added, the terminology becomes unsatisfiable.
Example below demonstrates a case where two overgeneralized definitions of the

same concept conflict with each other:

Band 22 (2) – 2007 21

Ovchinnikova, Kühnberger

Example
TBox: {1. Child v ∀likes.Icecream, 2. Icecream v Sweetie, 3. Chocolate v Sweetie,

4. Icecream v ¬Chocolate, 5. Chocolate v ¬Icecream}
New axiom: 6. Child v ∀likes.Chocolate

In this example, both definitions of Child (i.e. ∀likes.Icecream and ∀likes.Chocolate)
are too specific. Icecream and Chocolate being disjoint concepts produce a conflict,
if a modeled child likes at least one of their instances. Strictly speaking, the TBox
in Example is satisfiable. But we consider contradictions in scopes of universal
quantification also as problematic, since such definitions are unusable in practice.

4 Related Work

A technique to find a minimal set of axioms that is responsible for inconsistencies in
an ontology was first proposed in Baader et al. (). In order to detect a set of
problematic axioms, assertions are labeled and traced back, if a contradiction is found
in a tableau expansion tree. In Schlobach and Cornet (), an advanced approach of
this idea is presented by introducing the notion of a minimal unsatisfiability-preserving
sub-TBox (MUPS): An axiom pinpointing service for ALC is proposed identifying the
exact parts of axioms that are causing a contradiction. Several present approaches to
ontology debugging are concerned with explanation services that are integrated into
ontology developing tools. For example, Wang et al. () present a service explaining
unsatisfiability in OWL-DL ontologies by highlighting problematic axioms and giving
natural language explanations of the conflict. In Haase and Stojanovic (), an
approach to automatic ontology extraction is described. Every extracted axiom receives
a confidence rating witnessing how frequent the axiom occurs in external sources.

The approaches sketched above either do not give solutions of how to fix the discovered
contradictions or just propose to remove a problematic part of an axiom, although
removed parts of axioms can result in a loss of information. Considering, for example,
Example again, if the concept CanF ly is removed from axiom , then the entailments
Bird v CanMove and Canary v CanF ly are lost.
In Fanizzi et al. (), inductive logic programming techniques are proposed to

resolve inconsistencies. If a concept C is unsatisfiable, then the axiom defining C is
replaced by a new axiom, constructed on the basis of positive assertions for C. The
information previously defined in the ontology for C gets lost. Kalyanpur () extends
the OWL-DL tableau algorithm with a tracing technique to detect conflicting parts
of axioms. It is suggested to rewrite axioms using frequent error patterns occurring
in ontology modeling. Lam et al. () revise the technique proposed in Baader and
Hollunder () and support ontology engineers in rewriting problematic axioms in
ALC: Besides the detection of conflicting parts of axioms, a concept is constructed, that
replaces the problematic part of the chosen axiom. This approach keeps the entailment
Bird v CanMove, but not Canary v CanF ly in Example . An approach to resolve
overgeneralized concepts conflicting with exceptions is presented in Ovchinnikova and

22 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

Kühnberger () for ALE . Besides rewriting problematic axioms, a split of an
overgeneralized concept C into a more general concept (not conflicting with exceptions)
and a more specific one (capturing the original semantics of C) is proposed.

5 Proposed Approach

5.1 Tracing Clashes

In this section, we revise the tableau-based algorithm presented in Lam et al. () for
tracing clashes in unsatisfiable terminologies and rewriting problematic axioms. We
adapt this tracing technique to our simple logic. The proposed algorithm detects the
relevant parts of the axioms that are responsible for the contradiction.

Following Lam et al. () suppose that a terminology T contains axioms {α1, ..., αn},
where αi refers to an axiom Ai v Ci or Ai ≡ Ci (i ∈ {1, ..., n}). In checking the
satisfiability of a concept description C the tableau algorithm constructs a model of C
represented by a tree T. Each node x in this tree is labeled with a set L(x) containing
elements of the form (a : C, I, a′ : C′), where C and C′ are concept descriptions, a and
a′ are individual names, and I is a set of axiom indices. An element (a : C, I, a′ : C′)
has the following intended meaning: individual a belongs to concept description C due
to the application of an expansion rule on C′ and I contains the indices of the axioms
where a : C originates from.
T is initialized with a node x and L(x) = {(a : C,∅, nil)}. The algorithm expands T

according to the rules in Table . Concept descriptions involved in the expansion are
converted to negation normal form. The algorithm terminates if no more expansion rules
can be applied to tree nodes. T contains a clash if an individual a belongs simultaneously
to concept descriptions C and ¬C, i.e. (a : C,−,−) ∈ L(x) and (a : ¬C,−,−) ∈ L(x).
A clash in an expansion tree does not always mean unsatisfiability. If an individual

a in a model tree for a concept A belongs to a value restriction ∀R.C, where C is
unsatisfiable, but a has no R-successors, then this value restriction does not cause
unsatisfiability of A. On the other hand, with the advent of instances or subconcepts
of A which have R-successors this value restriction invokes unsatisfiability (cf. Wang
et al.,).

Definition Minimal clash-preserving sub-TBox (MCPS)
Let A be a concept for which its model tree obtained relative to a terminology T contains
clashes. A sub-TBox T ′ ⊂ T is a MCPS of A, if a model tree for A towards T ′ contains
clashes and a model tree of A towards every T ′′ ⊂ T ′ contains no clashes.

The union of the axiom indices in I of all clash elements in the model tree of A
corresponds to MUPS of A in Schlobach and Cornet () and constitutes MCPS
of A in Lam et al. (). Given a specific clash (e1, e2), MCPS(e1,e2)(A) is similarly

Tags are provided to avoid circularity in the expansion of concept definitions.
“−” is a placeholder. It stands for any value.
Concerning unsatisfiablitily of A.

Band 22 (2) – 2007 23

Ovchinnikova, Kühnberger

Table 1: Tableau expansion rules.

Rule ≡+ if Ai ≡ Ci ∈ T , and (a : Ai, I, a′ : A′) is not tagged,
then tag((a : Ai, I, a′ : A′)) and L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}

Rule ≡– if Ai ≡ Ci ∈ T , and (a : ¬Ai, I, a′ : A′) is not tagged,
then tag((a : ¬Ai, I, a′ : A′)) and
L(x) := L(x) ∪ {(a : ¬Ci, I ∪ {i}, a : ¬Ai)}

Rule v if Ai v Ci ∈ T , and (a : Ai, I, a′ : A′) is not tagged,
then tag((a : Ai, I, a′ : A′)) and L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}

Rule ∀ if (a : ∀R.C, I, a′ : A′) ∈ L(x), and the above rules cannot be applied,
then if there is (b : D, J, a : ∀R.D) ∈ L(x),

then L(x) := L(x) ∪ {b : C, I, a : ∀R.C}
else L(x) := L(x) ∪ {b : C, I, a : ∀R.C},
where b is a new individual name

defined as in Definition except for MCPS(e1,e2)(A) preserving only one clash (e1, e2),
but not all clashes as MCPS(A). To trace clashes we need to introduce the following
definition.

Definition Trace
Given an element e = (a0 :C0, I0, a1 :C1) in a set L(x), the trace of e is a sequence of
the form 〈(a0 :C0, I0, a1 :C1), (a1 :C1, I1, a2 :C2), . . . , (an−1 :Cn−1, In−1, an :Cn), (an :
Cn,∅, nil)〉, where Ii−1 ⊆ Ii for each i ∈ {1, ..., n} and every element in the sequence
belongs to L(x).

Note that the expansion rules in Table coincide with Lam et al. (), except for
the Rule ∀, which obviously does not change crucial properties of the algorithm like
complexity, decidability etc. Therefore, the properties of the original algorithm in Lam
et al. () are also relevant for our algorithm.

5.2 Types of Clashes

First of all, it is important to understand which solution for resolving clashes is ap-
propriate from a pragmatic point of view. In order to achieve this, we return to
our running examples. Concerning Example it seems to be obvious that the axiom
Bird v CanF ly has to be modified, since this axiom contains overgeneralized knowledge.
Simply deleting this axiom would result in the loss of the entailments Bird v CanMove
and Canary v CanF ly, although both entailments do not contradict with the axiom
Penguin v ¬CanF ly. A natural idea is to replace the problematic part of the overgen-
eralized definition of the concept Bird (namely CanF ly) with its least subsumer, that
does not conflict with Penguin. In our example, the concept description CanMove
is precisely such a subsumer. Unfortunately, the simple replacement of CanF ly by
CanMove in Axiom is not sufficient to preserve the entailment Canary v CanF ly.

24 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

We suggest therefore to introduce a new concept FlyingBird that preserves the previous
meaning of Bird and subsumes its former subconcepts:

. Bird v CanMove . CanF ly v CanMove
. Canary v FlyingBird . Penguin v Bird
. Penguin v ¬CanF ly . FlyingBird v Bird
. FlyingBird v CanF ly
The situation is different for multiple overgeneralizations. A relevant solution for Exam-
ple is to replace the overgeneralized definitions ∀likes.Icecream and ∀likes.Chocolate
with their least common subsumer ∀likes.Sweetie. The resulting axiom Child v
∀likes.Sweetie claims that children like only sweeties without specifying it:
1. Child v ∀likes.Sweetie 2. Icecream v Sweetie 3.Chocolate v Sweetie
4. Icecream v ¬Chocolate 5. Chocolate v ¬Icecream
The examples make clear that it is a non-trivial practical question of how multiple and
single overgeneralizations can be distinguished. A single overgeneralization occurs, if
some concept is too specifically defined and an exception contradicts with this definition.
In the case of multiple overgeneralizations, two or more definitions of the same concept
are too specific and conflict with each other. Unfortunately, it seems to be impossible to
define this distinction purely logically, since this distinction is just a matter of human
expert interpretation.
From a practical perspective it turns out that multiple overgeneralizations occur, if

a concept is subsumed by two or more concepts that are explicitly defined as disjoint
in the ontology (cf. Example). This case has a certain structural similarity to the
polysemy problem, where an unsatisfiable concept is also subsumed by different disjoint
concepts (cf. the tree example in Section). Practically, polysemy can be distinguished
from multiple overgeneralizations by taking into account the level of abstraction of the
disjoint concepts. In the case of polysemy, the disjoint superconcepts of the unsatisfiable
concept usually occur in the upper structure of the taxonomy tree, whereas multiple
overgeneralizations occur on lower levels of the taxonomy.
Definition defines the abstraction level of concepts. The abstraction level of a

concept towards a model tree is the number of steps in the shortest path from this
concept to a most general (undefined) concept in the tableau extension procedure.

Definition Given a set L(x) that was obtained relative to a terminology T and
an element (a : C1, I1, a0 : C0) ∈ L(x), the abstraction level L(C1) is defined as the
minimal cardinality of the sequences 〈(a : C1, I1, a0 : C0), ..., (a : Cn, In, a : Cn−1)〉
where ∀i ∈ {1, ..., n} : [(a : Ci, Ii, ai−1 : Ci−i) ∈ L(x) and Ii ⊆ Ii−1] and there is no
concept D such that Cn v D ∈ T or Cn ≡ D ∈ T .

Using Definition it is possible to distinguish the two types of inconsistencies formally
(cf. Definition): If a concept is subsumed by two other concepts that are defined to
be disjoint and the abstraction level of these concepts is higher than a user-defined
For the sake of simplicity Definition concerns multiple overgeneralization with only two concepts.

Band 22 (2) – 2007 25

Ovchinnikova, Kühnberger

distinctive abstraction level, then this case is considered to be polysemous. If the
abstraction level is below the user-defined abstraction level, then we are dealing with
multiple overgeneralizations. Finally, if the clash is not produced by explicitly disjoint
concepts, then we face the case of single overgeneralization.

Definition Given a clash (a : C,−,−), (a : ¬C,−,−) from a set L(x) that was
obtained relative to a terminology T and a distinctive abstraction level l, the following
cases can be distinguished:

• If there exists a concept D such that (a : D,−,−), (a : ¬D,−,−) ∈ L(x) and
D v ¬C ∈ T and C v ¬D ∈ T , then
– If max(L(C),L(D)) ≥ l this clash is polysemous,
– Else this clash is a multiple overgeneralization,

• Else this clash is a single overgeneralization.

In the following subsection, we will discuss resolution aspects of the mentioned types
of clashes.

5.3 Resolving Clashes

Unfortunately, it is impossible to resolve polysemy problems automatically without an
appeal to external knowledge. After splitting the problematic concept (e.g. Tree in the
example of Section) into two concepts with different names (e.g. TreeStructure and
TreePlant) it is necessary to find out which one of the definitions and subconcepts of
the original concept refers to which of the new concepts. This can be done either by
the ontology engineer or with the help of additional knowledge about the usage context
of this concept in external resources. Since this paper is concerned with logical aspects
of ontology adaptation only, we do not consider this problem here.

As already mentioned above, multiple overgeneralizations can be repaired by replacing
conflicting definitions with their least common subsumer. In order to find a least common
subsumer, we need to calculate subsumers for concepts. Fact characterizes subsumers
computationally.

Fact Given a set L(x) obtained relative to a terminology T and concept C such that
(a : C,−,−) ∈ L(x), a concept C′ is a subsumer of C towards T if

• ∃e = (a : C′,−,−) : (a : C,−,−) ∈ Trace(e) or

• ∃e = (a : ∀R.D,−,−) : (a : C,−,−) ∈ Trace(e) and C′ =̇ ∀R.D′ such that D′ is
atomic and a subsumer of D.

If C is satisfiable towards T , then the other direction of the implication does also hold.

Fact claims that a concept C′ is a subsumer of a concept C, if it was added to a
node a in the tableau expansion procedure after C or if C is subsumed by a relational
The proofs of Fact and further facts below are not presented in detail due to space limitations.
We will rather provide sketches of proof ideas.

26 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

restriction ∀R.D and C′ is a relational restriction on R with a scope D′ subsuming D.
General axioms with a complex concept definition on the right side cannot occur in our
restricted logic. Therefore if C is satisfiable, then no inferred subsumption that is not
explicitly expressed in the TBox is possible. If C is unsatisfiable, then it is subsumed
by any concept. As the reader will see hereinafter, we are interested only in cases where
C is satisfiable.
According to Fact , given a set L(x), a lcs for two satisfiable concepts C1 and C2

occurring in L(x) can be characterized as a minimal concept subsuming both, C1 and
C2 towards T .

Fact Given a set L(x) obtained relative to a terminology T and concepts C1 and C2
satisfiable towards T , such that (a : C1,−,−) ∈ L(x), (a : C2,−,−) ∈ L(x) a concept L
is a least common subsumer for C1 and C2 towards T if and only if the following two
conditions hold:

. L ∈ subsumersT (C1) ∩ subsumersT (C2).
. For every concept L′ that satisfies condition and is not equal to L: T 6|= L′ v L.

Fact ensures that L satisfies condition of Definition (recall that the set
subsumersT (C) is the exhaustive set of concept descriptions subsuming C towards T
provided C is satisfiable towards T). Obviously, L satisfies also condition of Defini-
tion . Thus, in order to resolve a clash produced in a model tree of a concept A by
two overgeneralized definitions C1 and C2, it is sufficient to delete axioms A v C1 and
A v C2 from the terminology and add axioms from the set {A v L | L is a lcs(C1, C2)}.
If concepts C1 and C2 themselves are unsatisfiable, then they should be repaired before
A. Compare Section for more remarks concerning this issue.

Now we examine the problem of resolving the case of single overgeneralization. Lam
et al. () shows that removing any of the axioms appearing in the clash traces is
sufficient to resolve the clash. An important practical question concerns the choice of
the axiom to be removed or modified. In the literature, a lot of ranking criteria were
suggested for this task on ontology debugging (Schlobach and Cornet, ; Kalyanpur,
; Lam et al., ; Haase and Stojanovic,):

• Arity of an axiom α denotes in how many clashes α is involved. The higher the
arity is, the lower is the rank of α.

• Semantic impact of α denotes how many entailments are lost if α is removed.
Axioms with a high semantic impact are ranked higher.

• Syntactic relevance denotes how often concept and role names occurring in an
axiom α are used in other axioms in the ontology. Axioms containing elements
that are frequently occurring in the ontology are ranked higher.

• Manual ranking of α can be provided by the ontology engineer.

Band 22 (2) – 2007 27

Ovchinnikova, Kühnberger

• Frequency ranking of α is used in approaches to semi-automatic ontology extraction
and denotes how often concepts and roles in α occur in external data sources.

In this paper, we do not discuss ranking strategies and suppose that one of these
strategies has been applied and the problematic axiom to be removed or rewritten has
been chosen. Assume a concept description C is chosen to be removed from an axiom
α, in order to resolve a clash in a model tree for a concept A. The next questions is:
How can we find an appropriate concept description C′ that can resolve the clash by
replacing C? We are looking for a replacement that resolves the clash, does not cause
new clashes or entailments, and preserves as many entailments implied by T as possible.
Definition defines such a replacement.

Definition Minimal nonconflicting substitute (MNS)
Assume the following is given: a terminology T , a clash e1 = (a : X,−,−), e2 = (a :
¬X,−,−) in the model tree for a concept A, a concept C satisfiable towards T that
is chosen to be removed from an axiom αi (αi ∈ T and ∃j ∈ {1, 2} : (a : C, {i,−},−) ∈
Trace(ej)), and T ′′ := T \ {αi}. Let an axiom α′ be obtained from αi by replacing C
with a concept C′ and T ′ := T \ {αi} ∪ {α′}. C′ is a minimal nonconflicting substitute
(MNS) of C if the following conditions hold:

. A model tree for A towards T ′ contains the same number of clashes as a model
tree for A towards T ′′.

. If C′ 6= >, then there exists an entailment β, such that T |= β, T ′′ 6|= β, and
T ′ |= β.

. There exists no entailment β such that T 6|= β and T ′ |= β.

. There exists no concept description C′′ with the same properties of C′, such that
C′′ preserves more entailments from T .

Condition () guarantees that MNS resolves the clash (e1, e2) in which αi and C are
involved and does not introduce new clashes. Due to condition () MNS preserves at
least one entailment from T that would be lost with the removal of C. Condition ()
excludes new entailments that are not implied by T and condition () guarantees that
MNS preserves as much information as possible.

Fact Given a clash e1 = (a : X,−,−), e2 = (a : ¬X,−,−) obtained from a set L(x)
relative to a terminology T and a concept C satisfiable towards T that is chosen to be
removed from an axiom αi (αi ∈ T and ∃j ∈ {1, 2} : (a : C, {i,−},−) ∈ Trace(ej)), a
concept C′ is a MNS of C if and only if the following conditions hold:

. C′ subsumes C towards T .

Notice again: if C is unsatisfiable, then it should be repaired before A. Compare Section for
more information.

28 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

. If C is subsumed by X or ¬X towards T , then C′ is not subsumed by X or ¬X
towards T .

. C′ preserves at least one entailment from T or C′ := >.

. There exists no concept description C′′ 6= C′ with the same properties, such that
C′ subsumes C′′ towards T .

Due to conditions () and () C′ satisfies conditions () and () of Definition
(since C′ is not subsumed by a conflicting definition, it does not reconstruct the clash).
Condition () guarantees that C′ satisfies condition () of Definition . Finally condition
() corresponds to () in Definition .

We reconsider Example . The model tree for the concept Penguin in this example
consists of the following elements:

L(x) = {(a : Penguin,∅, nil), (a : Bird, {4}, a : Penguin),
(a : ¬CanF ly, {5}, a : Penguin), (a : CanF ly, {4, 1}, a : Bird),
(a : CanMove, {4, 1, 2}, a : CanF ly)}

Thus, the set of problematic axioms is {1, 4, 5}. Suppose the concept CanF ly is chosen
to be removed from axiom . According to Fact CanMove is MNS of CanF ly.
If CanF ly is replaced by CanMove in Axiom , then the entailments of the form
X v CanF ly, where X is a subconcept of Bird (for example, Canary), would be lost.
Such situations are undesirable, because the clash (CanF ly,¬CanF ly) concerns only
the conflict between the overgeneralized concept Bird and the exception Penguin. In
order to keep the entailments, we suggest to introduce a new concept FlyingBird to
the terminology which will capture the original meaning of Bird (cf. Section .).

6 Adaptation Algorithm

If a new axiom α is added to a terminology T , then the proposed algorithm constructs
model trees for every atomic concept X that is defined in T . Model trees containing
clashes are used for ontology repairing. Using Definition the algorithm distinguishes
between inconsistency types. Since polysemy can not be repaired without external
knowledge, this problem is only reported to the user. Multiple overgeneralizations are
repaired by replacing the conflicting definitions with their least common subsumer.

With respect to single overgeneralization, for every clash (e′, e′′) a concept description
F from the trace of some clash element e ∈ {e′, e′′} is chosen to be rewritten in an
axiom β (β=̇E v F or β=̇E ≡ F) according to a given ranking (see section .). F
is replaced with its minimal nonconflicting substitutes in β. A new concept Enew is
introduced to capture the original semantics of E. The name Enew is constructed
automatically from the original name E and the problematic concept F . The set T
consists of elements from L(x) that are contained in the trace of the element e between
the unsatisfiable concept X and the rewritten concept E.

Band 22 (2) – 2007 29

Ovchinnikova, Kühnberger

The split&replace procedure splits atomic concepts from L(x) that are involved
in the clash above. Concepts appearing in the trace of e earlier are split first. If a
definition of B1 was rewritten and B1 was split into Bnew1 and B1 and a concept B2
is going to be split immediately after B1, then B1 in the definition of a new concept
name Bnew2 is replaced with Bnew1 .

Algorithm Adapt a satisfiable terminology T to a new axiom α,
given a distinctive abstraction level l
α=̇A v B or α=̇A ≡ B, add α to T
for all axioms α′=̇X v Y or α′=̇X ≡ Y , α′ ∈ T
if X is unsatisfiable towards T then
for all clashes (e′, e′′) in the sets L(x) of the model tree for X where

e′ = (a : C,−,−), e′′ = (a : ¬C,−,−)
if ∃D : (a : D,−,−), (a : ¬D,−,−) ∈ L(x) and {D v ¬C,C v ¬D} ⊂ T
then if max(L(C),L(D)) ≥ l then report polysemy

else remove D1, D2 where
Di∈{1,2} are last but one elements in the traces of e′, e′′

for all lcs(D1, D2) add A v lcs(D1, D2) to T end for
else
choose an β ∈ T (β=̇E v F or β=̇E ≡ F) such that
∃e ∈ {e′, e′′} : (b : F,−,−) ∈ Trace(e) to be rewritten acc. to ranking
remove β from T
for all MNS(F)
βnew is obtained from β by replacement of F with MNS(F)
add βnew to T

end for
add Enew v E,Enew v F to T
let T be a subsequence of Trace(e)
between the elements (a : E,−,−) and (b : X,−,−) (not inclusive)
split&replace(E, Enew, T)

end for

Subroutine split&replace(A,Anew, T)
(b : B′,−, a : B) is the next element of T and B is atomic
B′′ is obtained by replacing A with with Anew in B′

if B v B′ ∈ T then add Bnew v B′′ to T
else add Bnew ≡ B′′ to T
for all γ ∈ T such that γ is not the next axiom in T

replace B with Bnew in the right part of γ
end for
split&replace(B,Bnew, T)

Example shows the application of the algorithm. The concept Transport in axiom

30 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

 is chosen to be rewritten. It is easy to see that the proposed algorithm extends the
semantics of the “split” concepts, whereas the semantics of other concepts remains un-
changed. New concept names (TransportAirplane,AviatesTransportAirplaneP ilot)
are constructed automatically.

Example
Original terminology:
. Pilot v ∀aviates.Airplane . Airplane v Transport
. PassengerP lane v Airplane . FighterP ilot v Pilot
. FighterP ilot v ∀aviates.F ightingMachine . FightingMachine v ¬Transport

Changed terminology:
. Pilot v ∀aviates.Airplane
. PassengerP lane v TransportP lane
. FighterP ilot v Pilot
. FighterP ilot v ∀aviates.¬FightingMachine
. FightingMachine v ¬Transport
. TransportAirplane v Airplane
. TransportAirplane v Transport
. AviatesTransportAirplaneP ilot v Pilot
.AviatesTrasportAirplaneP ilot v ∀aviates.T rasportAirplane

7 Root and Derived Concepts

It is easy to verify that the result of the application of our algorithm is dependent on
the order the concepts are input into the debugger. If axioms are added one by one,
then nothing in the procedure needs to be changed. But if a set of axioms is added to
the ontology, then it is interesting to see whether it is reasonable to reorder axioms in
this set. Unsatisfiable concepts can be divided into two classes:

. Root concepts are atomic concepts for which a clash found in their definitions does
not depend on a clash of another atomic concept in the ontology.

. Derived concepts are atomic concepts for which a clash found in their definitions
either directly (via explicit assertions) or indirectly (via inferences) depends on a
clash of another atomic concept (Kalyanpur,).

In order to debug a derived concept, it is enough to debug corresponding root concepts.
Thus, it is reasonable to debug only the root concepts. The technique of distinguishing
between root and derived concepts was proposed in Kalyanpur (). We integrate
this technique into our approach.

Definition An atomic concept A is derived from an atomic concept A′ if there
exists a clash (e1, e2) in the model tree of A such that MCPS(e1,e2)(A′) is a subset of

Band 22 (2) – 2007 31

Ovchinnikova, Kühnberger

MCPS(e1,e2)(A). If there is no concept A′ from which A is derived, then A is a root
concept.

Fact shows how to find dependencies between problematic concepts.

Fact Given a clash (e1, e2) obtained from a set L(x) for a concept A, A is derived
from a concept A′ (towards this clash) if and only if ∃(b : A′,−,−) ∈ TraceL(x)(e1) :
(b : A′,−,−) ∈ TraceL(x)(e2).

MCPS(e1,e2)(A′) is a subset of MCPS(e1,e2)(A) if and only if the model tree for A′

is a subset of the model tree for A and both of these trees contain the clash (e1, e2)
(modulo differences in the axiom indices set). Obviously, A′ is in the traces of the clash
elements in its own model tree. Therefore, if A is derived from A′ towards (e1, e2), then
A′ is in the traces of e1 and e2 in L(x). On the other hand, if A′ occurs in the traces of
e1 and e2, then the model tree of A′ contains this clash and is a subset of L(x).

Using Fact it is possible to construct a directed graph with atomic concepts as nodes
and arrows denoting derivation. It can happen that two concepts are simultaneously
derived from each other (for example {A v D, A v ¬D, B v D, B v ¬D, A ≡ B}).
In this case, it is necessary to debug both of the derived concepts.

8 Conclusion and Future Work

In this paper, we presented an approach for dynamically resolving conflicts appearing
in automatic ontology learning. This approach is an integration of ideas proposed in
Lam et al. () and Ovchinnikova and Kühnberger () extended for the subset of
description logics used in practically relevant systems for ontology learning (Haase and
Stojanovic,). Our algorithm detects problematic axioms that cause a contradiction,
distinguishes between different types of logical inconsistencies and automatically repairs
the terminology. This approach is knowledge preserving in the sense that it keeps as
many entailments implied by the original terminology as possible.

In Ovchinnikova et al. (), a prototypical implementation of the idea of splitting
overgeneralized concepts in ALE-DL was discussed. This implementation was tested
on the famous wine-ontology that was automatically extended with new classes
extracted from text corpora with the help of the TextOnto tool. Several cases of
overgeneralization were detected and correctly resolved.
In the near future, we plan to test the prototype implementation of the proposed

algorithm on existing real-life ontologies. It is of particular interest to see to what
extent statistical information about the distribution and co-occurrence of concepts in
texts can help to improve the adaptation procedure for making it more adequate to
human intuition.
http://www.w3.org/TR/owl-guide/wine.owl
http://ontoware.org/projects/text2onto/
For example, the class LateHarvest originally defined to be a sweet wine was claimed to be

overgeneralized after an exception RieslingSpaetlese which was defined to be a late harvest wine
and a dry wine appeared.

32 LDV-FORUM

Automatic Ontology Extension: Resolving Inconsistencies

Acknowledgments

This research was partially supported by grant MO /- of the German Research
Foundation (DFG).

References

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F., editors
(). The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York.

Baader, F. and Hollunder, B. (). Embedding Defaults into Terminological Representation
Systems. J. Automated Reasoning, :–.

Baader, F. and Küsters, R. (). Non-standard Inferences in Description Logics: The Story
So Far. In Gabbay, D. M., Goncharov, S. S., and Zakharyaschev, M., editors, Mathematical
Problems from Applied Logic I. Logics for the XXIst Century, volume of International
Mathematical Series, pages –. Springer.

Baader, F., Lutz, C., Milicic, M., Sattler, U., and Wolter, F. (). Integrating Description
Logics and Action Formalisms: First Results. In Proceedings of the International
Workshop on Description Logics (DL), CEUR-WS.

Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., and Semeraro, G. (). Downward
Refinement in the ALN Description Logic. In HIS ’: Proc. of the Fourth International
Conference on Hybrid Intelligent Systems (HIS’), pages –, Washington, DC, USA.
IEEE Computer Society.

Haase, P. and Stojanovic, L. (). Consistent evolution of owl ontologies. In Proc. of the
Second European Semantic Web Conference, pages –.

Kalyanpur, A. (). Debugging and Repair of OWL Ontologies. Ph.D. Dissertation. University
of Maryland College Park.

Lam, S. C., Pan, J. Z., Sleeman, D. H., and Vasconcelos, W. W. (). A Fine-Grained
Approach to Resolving Unsatisfiable Ontologies. In Web Intelligence, pages –.

Ovchinnikova, E. and Kühnberger, K.-U. (). Adaptive ALE-Tbox for Extending Termi-
nological Knowledge. In th Australian Joint Conference on ArtificialIntelligence, pages
–.

Ovchinnikova, E., Wandmacher, T., and Kühnberger, K.-U. (). Solving Terminological
Inconsistency Problems in Ontology Design. International Journal of Interoperability in
Business Information Systems (IBIS), ():–.

Perez, G. A. and Mancho, M. D. (). A Survey of Ontology Learning Methods and
Techniques. OntoWeb Delieverable ..

Schlobach, S. and Cornet, R. (). Non-Standard Reasoning Services for the Debugging of
Description Logic Terminologies. In IJCAI, pages –.

Wang, H., Horridge, M., Rector, A. L., Drummond, N., and Seidenberg, J. (). Debugging
OWL-DL Ontologies: A Heuristic Approach. In International Semantic Web Conference,
pages –.

Band 22 (2) – 2007 33

Eduardo Torres Schumann, Uwe Mönnich, Klaus U. Schulz

Integration Languages for Data-Driven Approaches to

Ontology Population and Maintenance

Populating an ontology with a vast amount of data and ensuring the
quality of the integration process by means of human supervision seem to
be mutually exclusive goals that nevertheless arise as requirements when
building practical applications. In our case, we were confronted with the
practical problem of populating the EFGT Net, a large-scale ontology that
enables thematic reasoning in different NLP applications, out of already
existing and partly very large data sources, but on condition of not putting
the quality of the resource at risk. We present here our particular solution
to this problem, which combines, in a single tool, on one hand an integration
language capable of generating new entries for the ontology out of structured
data with, on the other hand, a visualization of conflicting generated entries
with online ontology editing facilities. This approach appears to enable
efficient human supervision of the population process in an interactive way
and to be also useful for maintenance tasks.

1 Introduction

Ontologies play a key role in the Semantic Web and Knowledge Management
research as a way to model the domain of application and in order to
achieve an integrated access to heterogeneous data sources. Building an
ontology has also become usual when developing resources for Natural
Language Processing (NLP) applications, due to the need of representing
meaning traditionally compiled in lexica or thesauri in a form suitable
for manipulation by the computer. Although there are some differences
between ontologies used in the different scenarios – e.g. some ontologies
used in NLP applications are referred to as light weight ontologies because
their lack of a specification in a formal ontology language –, they all share
the fact that the process of ontology development requires considerable
human effort. Moreover, ontologies have to be refined and maintained
regularly in an iterative, data-driven process called the ontology learning
cycle (Maedche and Staab,). This tasks constitute a determining factor
in the development of NLP applications and have also been identified as the
“bottleneck on the way to the semantic web”. If a large amount of existing
data is intended to be integrated through ontologies, approaches need to
work in a data-driven, automatic way but at the same time enable efficient
human supervision.

LDV-Forum 2007 – Band 22 (2) – 35-49

Torres Schumann, Mönnich, Schulz

The work we report on here is carried out in the framework of a larger
project that aims to encode vast encyclopedic and common purpose knowl-
edge deposited in a knowledge base called the EFGT Net, which is intended
to be used for different NLP applications like semantic annotation and
thematic reasoning. The EFGT Net is managed by means of a formal
language been specially designed for this purpose. Rather than providing an
exhaustive, precise definition of the formal meaning of a concept, the aim of
this language is to place concepts in the thematic space represented by the
EFGT Net. One main advantage of the EFGT Net language it can easily
handle nets with more than 105 concepts. Further details on motivations,
design guidelines and scientific ideas behind the EFGT Net are provided by
Schulz and Weigel ().

As one branch of development, we wished to populate the EFGT Net with
large amounts of already available data, such as legacy data from previous
projects, public available data like GeoNames () and data automatically
extracted from document resources like the Wikipedia (Wikipedia,).
These data sources were given in different formats, such as tables and XML.
The translation of data into entries of the net turned out to be a non-trivial
and interesting task. Two questions became central:

. How to specify a computable mapping from data of distinct formats to
possible concepts of the ontology?

. How to support the user in the task of deciding which of the gener-
ated concept candidates harmonize with the resource and should be
incorporated to the ontology?

Here, we introduce our technical solution to these problems, the so-called
Upload Tool. As to the first question, our approach allows the user to define
templates of a specific form. In the simplest case, a template can be seen as
a formal definition of a new concept, expressed in an extension of the EFGT
Net language with the help of variables. The template specifies how the
sequence of template variables is mapped to some tuple of concept names or
attributes found in the textual input data. From each image tuple found in
the data, a new instantiation of the template is obtained, which gives rise to
a new concept definition which can be added to the ontology. More complex
templates simultaneously define several new concepts from one tuple of data.
Variants of the template syntax address the problem of defining data tuples
and mappings for input data coming in different formats (tables, XML).
This kind of extension of the ontology specification language for template
definition and data integration is what we call here an integration language.

In many cases, some of the “new” concepts that are obtained from template
instantiation will be already defined in the ontology. Hence, to avoid
inconsistencies, data integration needs some form of manual control. Note
that both the amount of data to be integrated as well as the number of

36 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

concepts in the resource may be very large. As a consequence, methods
and interfaces that facilitate efficient human supervision of the population
process are essential when providing an appropriate answer to the second
question. In our approach, candidate entries are aligned with the ontology,
calculating existing entries that seem close to the candidate concept, either
from a logical or linguistic point of view. A visualization of the alignment
results with integrated ontology editing facilities allow the user to handle
conflicts on-the-fly. This kind of immediate visual feedback about the state
of the ontology with respect to certain data is also useful for tracking changes
in the modeling of entries and other maintenance tasks.

An implementation of the Upload Tool has been applied for substantially
extending a core ontology. By using already existing lists and data extracted
specially for this purpose, we were able to incorporate to the net some 104 new
concepts representing common named entities, most of them geographical
names and names of famous people.

The paper is structured as follows. Section covers related work. Section
 introduces the formal language for concept definition in the EFGT Net,
which is extended in Sec. to a language for defining templates. Section
explains how to instantiate templates given suitable tables or XML data.
Possible conflicts arising during alignment of generated concept definitions
are described in Sec. . The Upload Tool and interactive support mechanisms
are described in Sec. . Section discusses on future work and other possible
applications for templates.

2 Related Work

Obviously, the kind of integration language proposed here has many com-
monalities with data transformation languages such as XSLT (XSLT,),
since we use it to transform data from different formats into entries of the
EFGT Net. Some distinctions should be made though. While transfor-
mation languages are designed to bring easily some specific data model or
format into other formats, as e.g. XSLT is designed for transforming XML,
our integration language is designed for the converse goal, i.e. bringing
syntactically heterogeneous data into a single target model. As explained
later, this is reflected in the syntax of our integration language, which has an
“intensional” part based on the EFGT Net language used for constructing and
querying the EFGT Net and an “extensional” part for extracting data given
in different formats. The intensional part our integration language is compa-
rable with known ontology query languages such as OWL-QL (Fikes et al.,
) for querying ontologies stated in OWL or SPARQL (Prud’hommeaux
and Seaborne,) for RDF ontologies, which can also be regarded as
extensions of the corresponding ontology specification format. In fact, in
our approach the ontology is also queried during alignment in order to

Band 22 (2) – 2007 37

Torres Schumann, Mönnich, Schulz

determine already existing concepts with the same logical representation
as the generated entries. Since the logical representations generated by
our templates are (almost) fully specified, the use of a full-fledged ontology
query language like the ones mentioned above is unnecessary.

A way of obtaining structured data from heterogeneous, semi-structured
data sources like web pages consists in defining wrappers (Laender et al.,
). The extensional part of our integration language has an analogous
function to the many existing specialized wrapper definition languages
(WebL, ; Huck et al.,) and is used for specifying how to extract
tuples from specific data files.

In work focusing on learning and populating ontologies from text (Buite-
laar et al. () gives an overview), integrated frameworks a have been
described (Maedche and Volz,) where the ontology engineer can edit
the ontology and perform other maintenance tasks as she inspects the re-
sults from the learning component. This constitues a practical solution,
as learning ontologies from text remains a difficult task and automatically
produced results cannot be always simply adopted. In constrast, we don’t
learn new concepts but generate them out a given data set, sharing with the
mentioned tools the idea of assisting the user during the population process.

Sophisticated interactive methods for user guidance can also be found in
work on methods for merging already existing ontologies. Although fully
automatic approaches to this problem exist, see e.g. Ehrig et al. (),
other approaches bank on human supervision of the integration process, such
as PROMPT (Noy and Musen,) and OntoMap (Maier et al.,).
They share the idea of identifying anchors, i.e., corresponding concepts
in the target ontologies, and the merge the structure of both ontologies
basing on heuristics. Unclear cases together with possible pertinent merging
operations are are displayed and the user has to take a decision for the
next merging step. Anchors are manually stated (OntoMap) or identified
automatically based on linguistical similarity (PROMPT). Although we also
exploit linguistical simliarity during the alignment of the generated entries,
the integration approach presented here is fundamentally different because,
instead of heuristically merging ontology structures, we map structural
relationships encoded in data files to ontological relationships.

3 The EFGT Net Language - An Overview

The EFGT Net formalism is presented in this section on an informal basis.
We focus on its logical language, which will be extended to an integration
language in the next sections. Concepts are captured in a EFGT Net by
creating an entry consisting in

. a unique identifier for the concept, its ID String, that determines the
position of the concept in the net, and

38 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

. a set of attributes holding a linguistical representation of the concept
including the name of the concept in at least one of the supported
languages, a list of synonyms, orthographical variants and flection
forms, etc. as well as other data like a related URL, an associated
period of time, etc.

For a set of entries, a sound underlying deduction calculus determines a
directed acyclic graph (DAG) for the corresponding set of ID String, where
nodes in the DAG represent the concepts and edges binary relations between
concepts. Schulz and Weigel () provide more details.
Figure summarizes the syntax of ID Strings. Starting from the root

element (), there are two operation for creating complex ID Strings for a
new concept out of a given one. The first operation, a local introduction,

IDStr := () | (Type IDStr .Num) | (IDStr & IDStr)
Type := (e | E | F | g | G | t | T)
Num := D (| D)∗
D := (| . . . |)

Figure 1: ID String syntax.

is used when the new concept can be sufficiently characterized as a set or
a set element that narrows the meaning of a more general concept. For
example, the concept “Cities” can be regarded as a set of geographical
locations (different cities) narrowing the more general concept “Locations”,
and “Oslo” could be an element of the set “Cities”. This is represented in
the formal language by marking the ID String of the refined concept with
a special type which corresponds to the kind of specialization (i.e. the
“kind” of set or set element), as well as an index for enumeration. In the
example, “Locations” could be coded as a refinement of the top node () by
marking it with the type G of sets of geographical entities and the index ,
i.e. (G().) . Analogously, “Cities” could be coded as (G(G().).) and
“Oslo” as the (third) element of “Cities” by using type g for geographical
elements, (g(G(G().).).) . The complete set of types, which motivates
the name EFGT Net, contains:
E,e Type E denotes a set of Entities like composers whereas type e denotes

a singleton entity like J. S. Bach.
F Type F denotes a thematic F ield like quantum physics. Since every

thematic field can be regarded as a set of subfields, there is no type f.
G,g As mentioned before, type G denotes Geographical sets like rivers

whereas type g stands for singleton geographic instances like the Alps.
T,t Finally, type T denotes a set of Temporal periods like epochs in art,

and type t denotes an individual temporal interval like September th

.

Band 22 (2) – 2007 39

Torres Schumann, Mönnich, Schulz

The other way to create a new ID String is by combining two ID Strings
with the operator & to form a new one. This is called a concept intersection.
If the component ID Strings are sets of the same type, the new concept
stands for the intersection of the sets. When combining a set with an
individual, the new ID String represents a subset where the individual
acts as a modifier. In the remaining cases, the intersection represents
a new thematic field, the exact meaning is left open. E.g. combining
“Persons”, (E().) , and “Science”, (F(F().).) , would yield “Persons in
Science/ Scientists”), ((E().)&(F(F().).)) . “European Countries” may
result from joining the identifier for “Europe”, (g(...).) , and “Country”,
(G(...).) , to ((g(...).)&(G(...).)) .

The attributes used in addition to the ID String for characterizing the
concept are qualified by means of a semantic type indicating which kind of
information it holds (birth date of a person, the number of inhabitants of a
city, a company’s web-page, etc.). Additionally, a syntactic type specifies
how the information is conveyed (as a date, proper name, URL, etc.) and a
language type the language used. The list of semantic and syntactic types is
open and can be extended to accommodate different requirements.

4 From the EFGT Net Language to an Integration Language

In this section we start developing our particular integration language for
the EFGT Net. We use it for stating templates, which specify how data can
be integrated in the ontology. As a starting point, consider the very simple
data example about Switzerland’s geography compiled in Table . Suppose

Canton District Capital
Thurgau Bezirk Weinfelden Weinfelden
Thurgau Bezirk Bischofszell Bischofszell
Wallis Bezirk Brig Brig-Glis

Table 1: Geographical data about Switzerland

you want to add each district in the table to an EFGT Net already holding
the cantons. For each canton, one may want to introduce a new set of type
G for receiving the canton districts and then add each district with type g
to the corresponding district set.
We first explain how templates without variables may be used to define

new candidate entries. In our integration language, the template

(districts G[Thurgau].n)
districts.name.en.name = “districts in canton Thurgau”

constructs a suitable ID String for a new concept named “districts in canton
Thurgau” under the concept “Thurgau” (we may later add the corresponding

40 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

districts in a second step). The first line provides the skeletal structure of the
ID String for the new concept expressed in the extended ID String language.
It queries the net for the concept between the square brackets, “Thurgau”,
takes its ID String and defines a new set of type G as a local introduction
with a fresh index, represented by n in the expression. Assuming the ID
String for “Thurgau” is (g(G().).) in the net, the ID String generated
by this template would be (G(g(G().).).) , where, for simplicity, it
is also assumed that there are no further local introductions of type G
under “Thurgau” and taking n = provides a fresh index. The string
‘districts’ in tiny letters, a concept anchor, marks the expression between
the parentheses as the ID String for a new concept and is used to assign an
attribute representation to the generated ID String. Here fore, the second
line of the template specifies the name of the concept as “districts in canton
Thurgau”, where name is (incidentally) both the semantic and syntactic type
and en the language type. The entry set generated by this template is then
{((G(g(G().).).) , {name.en.name = “districts in canton Thurgau”})},
which contains a single entry of the form (ID String, attribute set). In the
general situation, each anchor in the template generates an entry that can be
aligned with the ontology, so only templates with at least one concept anchor
with its corresponding attribute specification are allowed. One template
produces as many ontology entries as anchors are introduced in the template.
The real power of templates comes from the use of variables. Figure

shows an elaboration of the simple template above. The local introduction

(capital (district g(districts G[#Canton].n).n)&[capitals])
districts.name.en.name = “districts in canton #Canton”
district.name.en.name = “#District”
capital.name.en.name = “#Capital”

Figure 2: A more elaborated entry template

of type g (inner term) shows that each district is encoded as an element of
the corresponding district set. Each capital (cf. outermost term) is modeled
as an intersection of its district with the concept “capitals” which already
exists in the net. Instead of writing a new template for each capital, we use
variables that point to values in the table. These variables are represented in
Fig. by the strings #Canton, #District and #Capital. When executing
the template for the given data set, candidate entries are produced, the
description using the concepts found in the table. Details of the mapping
from template variables to data will be discussed in the next section. For the
moment, if we assume that the template in Fig. is correctly instantiated
with the values found in the first row of Table , three candidate entries
are generated, which are depicted in Fig. . Here we assume that there are
already two districts in the district set, so “Bezirk Weinfelden” receives the

Band 22 (2) – 2007 41

Torres Schumann, Mönnich, Schulz

{ ((G(g(G().).).), {name.en.name = “districts in canton Thurgau”}),
((g(G(g(G().).).).), {name.en.name = “Bezirk Weinfelden”}) ,
(((g(g(G(g(G().).).).).)&(G((G().)&(F().)).)),

{name.en.name = “Weinfelden”}) }

Figure 3: Entry set generated by the elaborated template for the first row in Table 1

index . Note that for the following instantiation, which uses the second row
of Table , a redundant entry would be generated for “districts in canton
Thurgau”. Such redundancies are handled later during the alignment of
entries with ontology.
The complete extended ID String syntax for template definition is sum-

marized in Fig. . Compare it with Fig. . The last three alternatives for
IDStr′ constitute the core of the extension, where the first of them represents

IDStr′ := () | (Type IDStr′ .Num) | (IDStr′ & IDStr′) |
[Query] |(AnchorType [Query] .n) |(AnchorIDStr′ & IDStr′)

Anchor := Alphanum+

Query := IDStr |Lit
Lit := String |Ref

Figure 4: The extended ID String syntax.

a concept query and the other two are variants of the local introduction
and concept intersection rules that introduce concept anchors. We allow ID
Strings or literals as queries. A literal (rule Lit) is an arbitrary string value
specified in the template and interpreted as a concept name or, alternatively,
a value taken from data, symbolized by Ref for reference in the syntax.
References are discussed in the next section. Names for concept anchors are
alphanumeric strings (rule Anchor).

Attr := Anchor . Sem .Lang . Syn =Lit
Sem := (name | syn | url | . . .)
Lang := (de | en | . . .)
Syn := (nom | adj | . . .)

Figure 5: Attribute specification syntax.

The grammar of attribute assignments via concept anchors is summarized
in Fig. . For each anchor, literals are assigned to attributes specified by
their semantic, language and a syntactic type.

5 Referring to Data for Entry Template Instantiation

In the previous section we indicated that the variables of a template are
mapped to tuples of textual data for instantiation. In general, many distinct

42 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

instantiations can be obtained from one data source. Here we explain the
details of this mapping for two kinds of input data, tables and XML data.
This clarifies the procedural meaning of a template in presence of data
encoded in these formats.
The following observation leads us to the main idea: Once a template is

instantiated by some fixed tuple, the outermost anchor generates a concept
of the EFGT Net which is more specific than (a descendant of) all concepts
generated by other anchors of the template. More generally, if the template
contains two anchors A and B, and if B is in the syntactic scopus of A, then
the concept introduced by A is more specific than the one introduced by B.
E.g., in the template in Fig. , each concept resulting from an instantiation
of the anchor district is more specific than (a descendant of) a concept
instantiation of the reference Canton. The anchor capital represents the
most specific concept for each instantiation of the template. Since for a given
anchor A the set of ancestors B represented in the template is unequivocal,
the ancestors marked in the template functionally depend on the enclosing
anchor. E.g., functional dependencies in our example template constitute a
chain: the capital functionally determines the district, which determines the
districts set, which determines the canton.
As explained in further detail below, each data format also encodes

functional dependencies in a different way. The main idea for variable
instantiation will be to extract tuples that represent functional dependencies
in the data file and use these tuples in order to instantiate the functional
dependencies represented in the template. This principle constraints the data
files we can process using our integration language: functional dependencies
represented in templates must also be encoded as functional dependencies in
the data files. In this sense we say that data files must “naturally” encode the
target relationships in the ontology. In practice, we found that this was not
a severe restriction, allowing to leave data in its original appearance. This
way, the user can define templates interactively and try different alternatives
without a need of transforming data each time.

Table Data. Tables usually have at least one key column that functionally
determines the values in the other columns. E.g., in Table both the Capital
and District columns functionally determine the other two columns, so
that a chain of dependencies can be constructed. Thus, each row provides a
tuple representing functional dependencies that can be used for instantiating
the template. The choice here is to let the outermost anchor range over the
key column and to let the other references in the template point to adequate
columns, and then to evaluate the template successively for each row of the
table. We mentioned that template variables are marked by the symbol
#. If the columns in the table are named, a reference can be specified by
followed by the name of the column. Columns are internally numbered,

Band 22 (2) – 2007 43

Torres Schumann, Mönnich, Schulz

so the user can use numbers #, #, etc. for reference. Figure shows the
template of Fig. with references to Table , so that the candidate entry
set generated for the first row is exactly the set depicted in Fig. .

(capital (district g(districts G[#Canton].n).n)&[capitals])
districts.name.en.name = “districts in canton #Canton”
district.name.en.name = “#District”
capital.name.en.name = “#Capital”

Figure 6: A more elaborated entry template

Sometimes, one wants to skip some rows of the table or to apply different
templates depending on the value of some fields. This is achieved by using
if-then-else statements with conditions on references, also included in
the integration language. In other cases, a field of a table may contain an
enumeration of concepts. This helps to collapse many rows that only differ
in one column to a single row. Our language has special devices for dealing
with such variations.

XML data. Each XML document can be represented as a labeled tree. In
this kind of tree, some structural relationships can be regarded as encod-
ing functional dependencies. Most prominently, an element functionally
determines its parent node. If a label a occurs exactly once in each path
ending with a label b, then each b element functionally determines a unique
a element among its ancestors. If an element comes with a unique textual
contents, then the text functionally determines the element. Furthermore,
each element node functionally determines its its attribute nodes.
Figure shows two panes of two different XML files encoding the data

about Switzerland from Table . On pane A, functional dependencies in
Table are represented as structural relationships that are also inherently
functional in XML. The text node “Weinfelden” functionally determines
its element node of type capital, which has an unequivocal parent (with
type district) that has an unique attribute name, “Bezirk Weinfelden”.
So in pane A, “Bezirk Weinfelden” functionally depends on “Weinfelden”.
It is easy to see that “Thurgau” is also a function of “Bezirk Weinfelden”.
Of course, there a different ways to encode functional dependencies by
structural relationships in an XML representation. For the extraction of
tuples that represent functional dependencies, we rely on XPath expressions
(XPath,). The procedure is a follows. The first step is to determine
by means of an absolute XPath expression a set of nodes acting as keys.
The outermost concept anchor is let to range over this key set. There is
a path in the document tree from each node in the key set to the root
document node. References for the ancestors of the concept anchor in the

44 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

A
<geo_data related="Switzerland">

<canton name="Thurgau">
<district name="Bezirk Weinfelden">

<capital>Weinfelden</capital>
</district>
<district name="Bezirk Bischofszell">

<capital>Bischofszell</capital>
</district>

</canton>
<canton name="Wallis">
. . .
</canton>

</geo_data>

�

6g gg B
<geo_data related="Switzerland">

<canton name="Thurgau">
<district id="3">

<name>Bezirk Weinfelden</name>
<capital>Weinfelden</capital>

</district>
<district id="4">

<name>Bezirk Bischofszell</name>
<capital>Bischofszell</capital>

</district>
</canton>
<canton name= "Wallis">
. . .
</canton>

</geo_data>

gR

�g
g

Figure 7: Two XML representations of the data in Table 1

template are defined as relative paths, interpreted on the path from the key
node to the document root. In XPath terms, relative paths are evaluated
against nodes in the ancestor axis of each key node or the key node itself
(ancestor-or-self axis).

Figure shows a variant of the elaborated template in Fig. including
XPath references that generate adequate instantiations out of pane A.
The absolute path //capital selects the capitals of the XML document,
that are identified in turn with the name of the outermost anchor concept
capital. The other references are evaluated on each path starting at each
capital node and ending on the document node. For the capital node
“Weinfelden”, the references district/@name and canton/@name extract
“Bezirk Weinfelden” and “Thurgau” respectively from the ancestor-or-self
axis, which is implicitly assumed and doesn’t have to be stated in the
template. This method is quite flexible, allowing to deal with different XML

(capital (district g(districts G[#canton/@name].n).n)&[capitals])
districts.name.en.name = “districts in canton #canton/@name”
district.name.en.name = “#district/@name”
capital.name.en.name = “#//capital”

Figure 8: The elaborated template adapted for pane A in Fig. 7

renditions of the same data and even with those that encode functional
dependencies with structural relationships that are not inherently functional
in XML. E.g., pane B in Fig. encodes the name of the district in an
element node name instead as an attribute like in pane A. The relationship
between the district and name element is also functional in this case, because
there is only one child element of type name. But in the example, this is
only incidentally so. This kind of structural relationship is not inherently

Band 22 (2) – 2007 45

Torres Schumann, Mönnich, Schulz

functional in XML, because the XML data model allows that an element
has more that one element child of the same type, although, of course, that
district element may have only on name element can be regulated by means
of a DTD or XML Schema. We call this kind of encoding of functional
relationships with not inherently functional structural relationships in XML
a “pseudo-attribute”. Our approach also can handle pseudo-attributes.
In the template we can simply replace the reference district/@name by
district/name in order to obtain the same tuples as for pane A.

6 Alignment of Generated Entries

In general, generated entries can be aligned with the ontology by examining
first, whether there is another concept in the ontology with an equivalent
logical characterization (logical existence), and second, whether the concept
is already linguistically present in the ontology. In the case of the EFGT
Net, it is enough to match the generated ID String against all ID Strings in
the net to decide the logical existence. Whether a concept is linguistically
present in the ontology can be decided by performing a search over the
attributes holding linguistic information. The cases in Fig. can then
be distinguished. A generated candidate entry can be considered a new

Log.
existent

Ling.
present

Case name Interpretation

no no Potential new
entry

Generated new entry

yes no Logical clash) Complementary lex. representation
) Logical modeling too coarse

yes yes Concept match Entry exists already
no yes Name clash) Logically differing concepts with

same name (homonym entries)
) Same concept but different logical
modeling

Figure 9: Alignment cases

concept to be added to the ontology when there is simply nothing indicating
that it collides with another concept in the ontology. Logical clashes can
be obliterated by merging the attribute representation of both concepts.
This makes sense when the colliding concept name is just a variant not
included in the linguistic representation of the existing concept. It may
also be the case that the semantic analysis of two different concepts is too
coarse to distinguish between them. A concept match is given when the
generated entry is indistinguishable from another concept in the ontology.
Name clashes also have two possible interpretations. It may occur that

46 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

two semantically different concepts share their linguistical representation
(homonym entries), in which case the new candidate entry may be considered
for adding it to the ontology. The converse interpretation is that an already
existing concept in the ontology is modeled by the template in a different
way than in the net.

7 Ontology Population and Inspection with the Upload Tool

We have developed a prototype called the Upload Tool that interprets EFGT
Net entry templates. It has a client-server architecture, where the EFGT Net
resides in a RDBS backend queried by the web client. The client interprets
the template language and performs the alignment. Figure shows a
screen-shot of the Upload Tool. The upper part contains the entry template,
submitted as a file in a previous step. The entry template can be edited
and evaluated online. The results of the alignment are displayed in the
lower part of the window as a list of entries for each template instantiation.
When there is a concept match, entries are colored red, while potential new
entries are displayed in green. Check-boxes allow for selecting green entities
and uploading them to the database, where inference takes place and the
structure of the net is rearranged for accommodating new concepts. Blue
entries have already been considered in a previous template instantiation
and don’t need to be considered again.

When conflicts appear, different facilities that correspond to the different
interpretations listed in Table are provided to user for handling the
conflict. In the case of logical clashes, a warning appears and the user can
decide to run a facility for merging the attribute (lexical) representation, or,
corresponding to the other interpretation, a tool for editing and refining the
ID String of the conflicting concepts. For efficiently handling name clashes,
there are two modes available that respectively enable or disable the creation
of homonym entries. This is useful depending on the data considered. E.g.,
enabling homonym entries is self-evident when uploading geographical data,
where homonyms are usual. Different people can also have homonym names,
but when integrating names in the EFGT Net one may want to check if
incoming data corresponds to a truly new person or represents a refinement
in the modeling of an existing entry, so disabling homonyms is better choice
in a first step. Fig. shows a name clash for “Thurston Moore”, where
an additional window showing the parents of the already existing entry
has been opened for clarification. When the name clash is interpreted as a
difference in the logical modeling between the existing and the generated
entry, a further tool for merging the corresponding ID Strings can be started
directly from the client interface.

Posterior changes in uploaded data can be easily tracked with the Upload
Tool, because once the net has been populated with a specific file, the same

Band 22 (2) – 2007 47

Torres Schumann, Mönnich, Schulz

Figure 10: Alignment results in the Upload Tool

file always can be retried. If some entries have changed in the meanwhile,
they will appear as name clashes when aligning them again with the original
template. This can also be regarded as focused view to the ontology on the
basis of some data, allowing to inspect the ontology thematically.

8 Future work

Templates are useful for maintaining and populating ontologies with per-
tinent data that is already available. We see additional applications for
templates we want to investigate in future. Storing data together with
related templates could be an easy way to create thematic ontology modules
one can then combine in order to obtain customized ontologies. Maintaining
a template library also could be useful for further automatizing the data
integration process as well as for providing support when data acquisition
and document browsing take place in an integrated scenario, as we proposed
in Weigel et al. ().

References

Buitelaar, P., Cimiano, P., and Magnini, B., editors (). Ontology Learning
from Text: Methods, Evaluation and Applications, volume of Frontiers in

48 LDV-FORUM

Integration Languages for Ontology Population and Maintenance

Artificial Intelligence and Applications. IOS Press.

Ehrig, M., Staab, S., and Sure, Y. (). Bootstrapping Ontology Alignment
Methods with APFEL. In Gil, Y., Motta, E., Benjamins, V. R., and Musen,
M. A., editors, Int. Semantic Web Conference, volume of LNCS, pages
–. Springer.

Fikes, R., Hayes, P., and Horrocks, I. (). OWL-QL: A Language for Deductive
Query Answering on the Semantic Web. Technical Report KSL -, Stanford
Univ.

GeoNames (). GeoNames. http://www.geonames.org/.

Huck, G., Fankhauser, P., Aberer, K., and Neuhold, E. (). JEDI: Extracting
and synthesizing information from the web. In Proc. of COOPIS.

Laender, A., Ribeiro-Neto, B., Silva, A., and Teixeira, J. (). A brief survey of
web data extraction tools. In SIGMOD Record, volume .

Maedche, A. and Staab, S. (). Learning ontologies for the semantic web. In
Workshop on the Semantic Web (SemWeb).

Maedche, A. and Volz, R. (). The Ontology Extraction and Maintenance
Framework Text-To-Onto. In IEEE Int. Conf. on Data Mining (ICDM’).
Workshop on Integrating Data Mining and Knowledge Management.

Maier, A., Schnurr, H.-P., and Sure, Y. (). Ontology-based Information
Integration in the Automotive Industry. In Proc. of the nd Int. Semantic Web
Conference (ISWC), volume of LNCS, pages –. Springer.

Noy, N. F. and Musen, M. A. (). PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In Proc. of the National Conf. on Artificial
Intelligence (AAAI), pages –, Austin, TX.

Prud’hommeaux, E. and Seaborne, A. (). SPARQL Query Language for RDF.
http://www.w.org/TR/rdf-sparql-query/. WC Candidate Recommendation.

Schulz, K. U. and Weigel, F. (). Systematics and Architecture for a Resource
Representing Knowledge about Named Entities. In Proc. Workshop on Principles
and Practice of Semantic Web Reasoning, pages –.

WebL (). Automating the web language.
http://research.compaq.com/SRC/WebL.

Weigel, F., Schulz, K. U., Brunner, L., and Torres-Schumann, E. (). Integrated
Document Browsing and Data Acquisition for Building Large Ontologies. In
Proc. of the th Int. Conf. on Knowledge-Based & Intelligent Information &
Engineering Systems (KES).

Wikipedia (). Wikipedia, the free encyclopedia. http://www.wikipedia.org.

XPath (). XML Path Language (XPath) Version .. WC Recommendation
 November . http://www.w.org/TR/xpath.

XSLT (). XSL Transformations (XSLT), Version .. WC Recommendation
 November . http://www.w.org/TR/xslt.

Band 22 (2) – 2007 49

Alexander Mehler, Peter Geibel, Olga Pustylnikov

Structural Classifiers of Text Types:

Towards a Novel Model of Text Representation

Texts can be distinguished in terms of their content, function, structure
or layout (Brinker, ; Bateman et al., ; Joachims, ; Power
et al.,). These reference points do not open necessarily orthogonal
perspectives on text classification. As part of explorative data analysis,
text classification aims at automatically dividing sets of textual objects into
classes of maximum internal homogeneity and external heterogeneity. This
paper deals with classifying texts into text types whose instances serve more
or less homogeneous functions. Other than mainstream approaches, which
rely on the vector space model (Sebastiani,) or some of its descendants
(Baeza-Yates and Ribeiro-Neto,) and, thus, on content-related lexical
features, we solely refer to structural differentiae. That is, we explore
patterns of text structure as determinants of class membership. Our starting
point are tree-like text representations which induce feature vectors and
tree kernels. These kernels are utilized in supervised learning based on
cross-validation as a method of model selection (Hastie et al.,) by
example of a corpus of press communication. For a subset of categories we
show that classification can be performed very well by structural differentia
only.

1 Introduction

The basic idea of text classification is that the content, structure and shape of textual
units vary, though not deterministically with the communicative situation or function
they manifest. As this variation is not stochastic, we can build classes or types of textual
units where members of the same class share class constitutive differentiae. Varying
reference points of clarifying the ontological status of these differentiae lead to different
notions of text types: If we focus on functional or situative criteria of class membership,
we deal with so called genres (Martin, ; Ventola,) or registers (Biber, ;
Halliday and Hasan,), respectively. Analogously, we speak of hypertext sorts, digital
genres or web genres in the case of web documents (Santini,). If we consider the
composition of classes in terms of their extension, that is, from the point of view of
enumerating their elements, we deal with sorts of documents – e.g. text sorts in the sense
of Heinemann (Heinemann,). If in contrast to this, class membership is defined
in intensional terms, we deal with text patterns (Heinemann,) or superstructures
(van Dijk and Kintsch,) as prototypical representations of class members, whose
expectation-driven production/processing they support.

LDV-Forum 2007 – Band 22 (2) – 51-66

Mehler, Geibel, Pustylnikov

In this paper we focus on functionally demarcated text types for which we investigate
to which degree class membership is manifested by structural differentia. The idea to
predict the function of a text by the patterns it instantiates comes from the quantitative
approach according to which distributional patterns vary with the text function (Biber,
). Starting from the weak contextual hypothesis (Miller and Charles,) one
might state that structural differences reflect functional ones while similar functions
tend to be manifested by similarly structured texts. With a focus on registers, Biber
(, p.) puts this as follows: “preferred linguistic forms of a register are those that
are best suited functionally to the situational demands of the variety [...].” As there is a
many-to-many relation of structure and function (neither can we deterministically infer
a unique function based on observing some text pattern, nor is the same function always
manifested by the same pattern), learning text types by exploring text structures is a
nontrivial task.

In the present paper, we focus on the logical document structure (Power et al.,) as
a source of feature selection while we disregard layout and any content indicating lexical
units of the texts to be classified. Since we focus on text types, we leave out hypertext
and, especially, web documents. Further, since we aim at modelling text types, we go
beyond classical approaches which learn classifiers in order to enumerate class members
without any effort in interpreting these classifiers as representations of text patterns.
Rather, we perform our experiments as a preliminary step towards learning classifiers
as representations of such patterns. As far as the classifiers being learnt allow deriving
representations of patterns which, in turn, allow computing the similarity of texts with
respect to these patterns, we contribute to a prototype ontology in the sense of Sowa
(). For a remarkably large set of text types of press communication, we show
that classification of their instances performs very well when disregarding any lexical
features.

The paper is organized as follows: Section discusses some related approaches; Section
 presents two novel text representation models which are evaluated and discussed in
Section . Finally, Section concludes and prospects future work.

2 Related Work

In recent years, feature selection attracted many researchers in the field of classification.
The aim is to find alternatives to the bag-of-words approach (Biber, ; Kessler et al.,
; Karlgren, ; Lee and Myaeng, ; Wolters and Kirsten,). Although lexi-
cal features are selective with respect to text content, this IR model generally disregards
text structure. Now, modeling document structure comes into reach of machine learning
(Dehmer,). Some approaches even show that structural patterns allow to classify
texts in the absence of any lexical information (Dehmer, ; Lindemann and Littig,
; Pustylnikov,). Baayen et al. () present a pioneering approaches in this
field. They achieve good results in authorship attribution by focussing on frequencies

For a related approach to web-documents cf. (Mehler, ; Mehler et al.,).

52 LDV-FORUM

Structural Classifiers of Text Types

of constituent types (e.g., NP, VP). These observations indicate that authors have
idiosyncratic syntactic signatures by which they can be classified. Further, Lindemann
and Littig () report good results in classifying web sites of different web genres
(blogs, personal, and academic homepages as well as online shops and corporate sites).
One of their resources of structural features is the link structure of the sites. Note
that Mehler et al. () have shown that such classifications are problematic when
looking for web genres of a much higher resolution. The genres analyzed by Lindemann
and Littig () are in a sense general that one might expect their instances to be
well separable in terms of their structure. This paper shows that such a structural
classification is even possible for a wide range of more homogeneous rubrics of press
communication.
Biber () generally claims that “no single linguistic parameter is adequate in

itself to capture the range of similarities and differences among spoken and written
registers” and, thus, pleads for a multidimensional approach which takes a multitude of
lexical and syntactical features into account. This is confirmed by Lewis () who
reports that compared to the bag-of-words approach there is no improvement if single
features (e.g., phrase pattern counts) are taken into account. However, the extraction
of a multitude of such features is time consuming and error-prone. Thus, an easy
processable resource of expressive features is needed instead. The logical document
structure and its quantitative characteristics is such a resource. It can be automatically
computed for a wide range of genres and registers and is certainly easier accessible than
either, e.g., rhetorical structure or syntactic structure. Evidence for this assumption
comes from previous studies (Pustylnikov, ; Gleim et al.,) with respect to
several registers and two languages (English and German). In this work we extend the
structural framework by introducing Quantitative Structure Analysis (QSA) as a formal
model of structural text representation models.

3 Text Representation Models Based on Structure-Sensitive Features

In recent experiments (Mehler et al.,), we have studied the selectivity of structural
features in text classification. Our findings have shown that unsupervised learning of
web document structures performs above the baseline scenario of random classification.
As a complementary approach, we now tackle the question what “golden standard” can
be achieved by using supervised methods. In order to do that, we investigate two
structure-oriented text representation models as input to SVM-based machine learning:

. Quantitative structure analysis: Our starting point is to represent texts by a set of
quantitative features as a model of their structure. That is we build feature vectors
whose coefficients do no longer stand for lexical units, but represent structural
text characteristics. Section . presents a formal account of this approach which
is inspired by Tuldava () who clusters texts by means of simple quantitative
characteristics. A further source of inspiration is synergetic linguistics (Köhler,

Band 22 (2) – 2007 53

Mehler, Geibel, Pustylnikov

<!-- ... --> <DIV id="DIV1">
<P id="P1">

<S id="S1">
<T c="l">

<O>Montag</O><L p="Weekday">Montag</L>
</T>
<PUN>,</PUN><E/>
<N>3</N>
<PUN>.</PUN><E/>
<T c="l">

<O>Januar</O><L p="Month">Januar</L>
</T><E/>
<N>1994</N><E/>
<T c="l">

<O>NACHRICHTEN</O>
<L p="N">Nachricht</L>

</T><E/>
<T c="l"><O>S\"{u}ddeutsche</O><L p="A">s\"{u}ddeutsch</L></T><E/>
<T c="l"><O>Zeitung</O><L p="N">Zeitung</L></T>

</S> <!-- ... -->
</P> <!-- ... -->

</DIV> <!-- ... -->

Figure 1: Outline of a sample text document (left) and its corresponding DOM-representation (right) – generated
by the TextMiner system (Mehler, 2002) – in the form of an ordered rooted tree as input to feature
selection (all XML element contents deleted).

) which develops reference systems of quantitative variables of dynamic
linguistic systems.

. The tree kernel approach: Secondly, we elaborate SVM learning which uses kernels
that operate on pairs of examples (Vapnik,). The theory of SVMs ensures
that kernels can be defined for tree-like structures (Haussler, ; Jain et al.,
; Schoelkopf and Smola,). A large class of structure kernels is formed
by convolution kernels (Haussler,) including the one defined by Collins and
Duffy () for labeled, ordered trees. This tree kernel has previously been
applied to structure based classification of sentences described by their parse trees
(Collins and Duffy, ; Moschitti,). In order to classify texts, we apply an
extended version of this kernel in Section .. This new kernel allows a variable
number of descendants for some tree nodes.

Input to these two approaches are tree-like instances of the Document Object Model
(DOM). That is, starting from a text corpus C = {x1, . . . , xr}, each text xk ∈ C is
mapped onto a DOM-tree representing its logical document structure. This is done
by means of the TextMiner system (Mehler,) which uses an element name-adapted
version of XCES (Ide et al.,) in order to explore the paragraph structure of texts
down to the level of their lexical tokens (by disregarding sentence structure). Figure ()
illustrates a sample text and its DOM-based representation in the form of an ordered
rooted tree. Trees of this sort are subsequently input of feature selection, that is, of
quantitative structure analysis (Section .) and of tree kernel methods (Section .).

54 LDV-FORUM

Structural Classifiers of Text Types

3.1 Quantitative Structure Analysis

The Vector Space Model (VSM) is one of the most successful quantitative text represen-
tation models. It is the starting point of Latent Semantic Analysis (LSA) which takes
an appropriately weighted term-document matrix as input and aims at eliminating as
much of its noise as possible. From a linguistic point of view, the VSM performs a
bag-of-words approach which focuses on lexical cohesion as a source of text similarity
measuring (e.g., by the well-known cosine approach). LSA complements an effort in
exploring indirect relations, e.g., of texts which may be said to be similar not because
of having the same, but because of sharing similar lexical items whose similarity is
computed in terms of their co-occurrence patterns. In this section, we present a likewise
quantitative text representation model in terms of a bag-of-structural-features approach
henceforth called Quantitative Structure Analysis (QSA). QSA is no longer based on
lexical, but on structural features of the input texts. Thus, although we map texts onto
feature vectors, their coefficients represent quantitative characteristics of text structure.
Needless to say that both the VSM or LSA and the QSA approach can be combined
(Mehler,). However, in this paper we will concentrate on the separability potential
of structural text features.
Generally speaking, QSA is based on a set TS = {T1, . . . , Tm} of structure types

(e.g. constituency types) of some level S of text structuring (e.g. of the level of logical
document structure or of intentional structure). For some structure type (e.g. sentence,
paragraph, phrase) Ti ∈ TS of the level S we can ask, among other things, for (i) the
frequency , (ii) (absolute) length (in terms of the number of leaf nodes), (iii) complexity
(in terms of the number of immediate daughter nodes or some other mediate level
if existing), (iv) depth, (v) extension (i.e. relative length), (vi) proportion (of text
formation), (vii) text position, (viii) distance, (ix) (e.g. Markov) order or arrangement
or (x) for the characteristic repetition (e.g. positional repetition) of instances of this type
within a given text x of the corpus C = {x1, . . . , xr} and, thus, for different quantitative
features. More specifically, if Ti ∈ TS is a structure type of level S and Fi is one of the
latter features, we need to specify a measuring unit in order to calculate its value for a
given instance of Ti in x. Let, for example, Ti be the structure type named title as part of
the Logical Document Structure (LDS), then we can ask for its length in terms of lexical
tokens or its frequency in terms of its number of occurrences. Analogously, we may ask
for a title’s depth in terms of the number of subtitles it is dominating. Alternatively,
we may calculate its depth as the depth of its phrase structure tree. Another example
is rhetorical structure in the sense of rhetorical structure theory (Mann and Thompson,
). In this case, we may ask for the text position of contrast relations. Now, the
measuring unit is less clear so that we may define, for example, that the position of
a contrast relation in a text equals the number of elementary text spans to its left.
Following this procedure, we get a different positioning number for each title of the input
text. In order to keep the presentation of our algorithm abstract, we resist defining the
space of all possible measuring units for each of the features, but will define them as
soon as needed.

Band 22 (2) – 2007 55

Mehler, Geibel, Pustylnikov

The idea behind QSA is to, firstly, collect all values of a given structure feature in a
text x where these values are, secondly, input to some aggregation functions in order
to, thirdly, derive x’s Quantitative Structure Profile (QSP). As we have to put apart
the choice of text structure types and their features, we come up with a quadripartite
approach:

Segmentation Let S be a description level of text structure and TS = {T1, . . . , Tm}
a set of structure types of S. For each structure type Ti ∈ TS and each text
xk ∈ C = {x1, . . . , xr} we build a separate vector of instances of Ti in xk. Using
a functional notation, we write:

Ti(xk) =
(
I1
xk , . . . , I

h
xk

)′
()

where Ilxk , l ∈ {1, . . . , h}, is the lth instance of Ti in xk. We assume that the
linear order (1, . . . , h) is defined by the order of occurrences of Ti’s instances in
xk. Note that different texts may differ in the number of their instances of Ti.
Now, let

Ti(C) =
|C|⋃
k=1

{Ti(xk)} ()

Thus, we can write

Ti : C → Ti(C) ()

Feature Validation Now, let F = {F1, . . . , Fn} be a set of numerical features (e.g. length,
depth, complexity as enumerated above) and Fj ∈ F . Using once more a functional
notation, we define

Fj : Ti(C)→ ∪∞h=1R
h ()

by setting

Fj((I1
xk , . . . , I

h
xk)
′) = (Fj(I1

xk), . . . , Fj(I
h
xk))

′ = ~v(Ti, Fj , xk) ∈ Rh ()

Fj(Ilxk), l ∈ {1, . . . , h}, is the Fj-value of the lth instance of Ti in xk. So
far, each text xk ∈ C is mapped for each feature Fj ∈ F onto a separate
vector of the Fj-values of Ti’s instances in xk. As these vectors may differ
with respect to the number of their coefficients, we do not yet get a matrix.

The next step is to aggregate each of these vectors separately to get a single
value for feature Fj of all instances of Ti in xk. Thus, we conceive the vectors
Fj((I1

xk , . . . , I
h
xk)
′) = ~v(Ti, Fj , xk) = ~vijk as value distributions. In order to make

these distributions comparable, we perform standardization by means of z-scores so

An alternative would be to operate with empty coefficients – we do not follow this approach.

56 LDV-FORUM

Structural Classifiers of Text Types

that random variables are derived with means of 0 and variances of 1. Without any
loss of generality we assume henceforth that all vector coefficients are standardized
and write

Fj(Ti(C)) =
|C|⋃
k=1

{~vijk}

Feature Aggregation Now, let O = {O1, . . . , Oo} be a set of parameters of location or
statistical spread and Op ∈ O one of these aggregation functions. Then we define

Op : Fj(Ti(C))→ R ()

where Op(~vijk) ∈ R is the value of Op when performed on the vector of the values
of feature Fj of Ti’s instances in xk. So far, we mapped each of the features Fj
onto a single number Op(~vijk) ∈ R. The final stage is to collect these numbers to
get a quantitative structure profile for each text.

Text Representation For each text xk ∈ C, we define a quantitative structure profile as

qsp(xk) = 〈 O1(~v11k), . . . , O1(~v1nk), . . . , O1(~vm1k), . . . , O1(~vmnk),
. . . ,

Oo(~v11k), . . . , Oo(~v1nk), . . . , Oo(~vm1k), . . . , Oo(~vmnk) 〉
∈ R

m·n·o ()

That is, qsp is a function qsp : C → Rm·n·o which allows to build a (|C|,m · n ·
o)-matrix qsp(C) = (aij) where aij , j = (s− 1)mn+ (t− 1)n+ v, is the value of
aggregation function Os ∈ O performed on the feature distribution induced by
the tth feature Ft ∈ F with respect to instances of the vth text structure type
Tv ∈ TS in text xi. We call qsp(C) the quantitative structure profile of corpus C.

Note that matrix qsp(C) can be input to single value decomposition with subsequent
noise reduction so that QSA is complemented by a latent variable analysis.
So far, we described a bag-of-features approach as input to supervised text catego-

rization or unsupervised classification. In the following section, we describe alternative
approaches to building kernels for mapping tree-like structures. In Section , these two
approaches are evaluated.

3.2 Tree Kernels for XML Documents

In order to investigate the structure-based classification of XML documents based on
their DOM trees (Document Object Model), we might apply the SVM (Vapnik,)
after defining an appropriate tree kernel. This can either be accomplished by directly
defining an appropriate function that is positive-semidefinite (PSD, e.g., Schoelkopf and
Smola) or by explicitly defining an appropriate feature mapping for the structures
considered, e.g., by means of patterns. An example of a kernel is the parse tree kernel

Band 22 (2) – 2007 57

Mehler, Geibel, Pustylnikov

(Collins and Duffy, ; Moschitti,), which is applicable to parse trees of sentences
with respect to a given grammar.

In contrast to parse trees in which a grammar rule applied to a non-terminal determines
number, type and sequence of the children, structural parts of a text represented by its
DOM tree might have been deleted, permuted or inserted compared to a text considered
similar. This higher flexibility should be taken into account in the similarity measure
represented by the tree kernel, because otherwise the value for similar documents
might be unreasonably small. Moreover, we might want to include textual information
present in nodes by plugging in suitable kernels operating, e.g., on the usual TFIDF
representation of the respective text, or more elaborate ones like string kernels (Lodhi
et al.,) operating on the word sequence or even additional tree kernels operating
on the parsed sentence structure.

We therefore extended previous work on tree kernels suitable for XML data in several
respects that are useful in the context of HTML and XML documents. The DOM tree
kernel (DomTK) is a straightforward generalization of the parse-tree kernel to DOM
trees. The set tree kernel (SetTK) allows permutations of child subtrees in order to
model document similarity more appropriately, but can still be computed relatively
efficiently.

3.2.1 The Parse Tree Kernel

In the following, we consider trees whose nodes v ∈ V are labeled by a function
α : V −→ Σ, where Σ is a set of node labels. The elements of Σ can be thought of as
tuples describing the XML tag and attributes of a non-leaf node in the DOM tree. Leaves
are usually labeled with words or parts of texts. We will incorporate node information
by using a kernel kΣ operating on pairs of node labels, i.e., on tags, attributes, and/or
texts. Two trees T and T ′ are called isomorphic if there is a bijective mapping of the
nodes that respects the structure of the edges, the labellings specified by α and α′, and
the ordering of the nodes.
Collins and Duffy (,) defined a tree kernel that can be applied in the case

of parse trees of natural language sentences (see also Moschitti), in which non-leaf
nodes are labeled with the non-terminal of the node, and leaves with words. The
production applied to a non-leaf node determines the number, type, and ordering of
the child nodes.
Collins and Duffy showed that k(T, T ′) can be computed efficiently by determining

the number of possible mappings of isomorphic partial parse trees (excluding such
consisting of a single node only). Partial parse trees correspond to incomplete parse
trees, in which leaves might be labeled with non-terminals. Let v ∈ V and v′ ∈ V ′. The
function ∆(v, v′) is defined as the number of isomorphic mappings of partial parse trees
rooted in v and v′, respectively. Collins and Duffy stated in their article the fact that

58 LDV-FORUM

Structural Classifiers of Text Types

∆ is a so-called convolution kernel (Haussler,) having form

k(T, T ′) =
∑

v∈V,v′∈V ′
∆(v, v′) . ()

The ∆-function can be computed recursively by setting ∆(v, v′) = 0 for any words
and if the productions applied in v and v′ are different. Different productions mean
different non-terminals, or identical non-terminals but different grammar rules (i.e., the
number or type of corresponding child nodes do not correspond). If the productions
in v and v′ are identical and both nodes are pre-terminals, we set ∆(v, v′) = 1. For
non-terminals with identical productions, Collins and Duffy use the recursive definition

∆(v, v′) =
n(v)∏
i=1

(1 + ∆(vi, v′i)) , ()

where vi is the i-th child of v, and v′i is the i-th child of v′. n(v) denotes the number of
children of v (corresponding to that of v′).

It is possible to down-weight deeper trees using a factor λ ∈ [0, 1]. The corresponding
recursive computation is ∆(v, v′) = λ

∏n(v)
i=1 (1 + ∆(vi, v′i)) together with the modified

base case ∆(v, v′) = λ for pre-terminals with identical productions.

3.2.2 Kernels for DOM trees

The DOM tree kernel (DomTK) is a relatively straightforward extension of the parse
tree kernel that allows to incorporate node labels by means of kΣ. This achieved by
defining ∆DomTK(v, v′) = λ · kΣ(α(v), α(v′)) for nodes. If not both v and v′ are leaves,
we, in contrast to the parse tree kernel, compare just as many children as possible using
the given order ≤ on the child nodes.

It can be seen from a corresponding feature mapping that when comparing two trees
T and T ′, we have two take into account shorter prefixes of the child tree sequences of
two nodes v and v′ as well. This is done by defining the ∆-function as

∆DomTK(v, v′) = λ · kΣ(α(v), α(v′))
(
1 +

min(n(v),n′(v′))∑
k=1

k∏
i=1

∆DomTK(vi, v′i)
)

()

for all nodes v and v′.
The DOM tree kernel does not allow the child trees of v and v′ to be permuted

without a high loss in similarity as measured by the kernel value k(T, T ′). This behavior
can be improved, however, by considering the child tree sequences as sets and applying
a so-called set kernel to them, which is also an instance of the convolution kernel. This

Band 22 (2) – 2007 59

Mehler, Geibel, Pustylnikov

mean number of articles per rubric 1426.8

standard deviation 2315.9

µ− σ
2 268.8303

µ+ σ
2 2584.8

Table 1: Values of the parameters of the procedure of category selection.

results in the definition

∆SetTK(v, v′) =
n(v)∑
i=1

n′(v′)∑
i′=1

∆SetTK(vi, v′i′) , ()

i.e., all possible pairwise combinations of child trees are considered.
When looking for a suitable feature space in the case λ = 1 and kΣ = kid where

kid = 1 for nodes with identical labels, and kid = 0 otherwise, we find that the definition
in () corresponds to considering paths from the root to the leaves. This is a well-known
technique for characterizing labeled graphs (see, e.g., Geibel and Wysotzki), which
can also be applied to trees. We also investigated tree kernels based on string kernels as
in Kashima and Koyanagi () and Moschitti (), but found them too inefficient
for the application at hand.

4 Evaluation

The main hypothesis of our approach is that structure-based classification is a serious
alternative to the bag-of-lexical-features approach. Thus, we expect a high selectivity
of structural features with respect to functionally delimitable text types. In order to
support this hypothesis, we process a corpus of press communication. The corpus is
built as follows: We start from a ten years release of the German newspaper Süddeutsche
Zeitung (SZ) and select all articles of all rubrics within this corpus. This gives a corpus
of 135, 546 texts of rubrics. Note that each text is mapped onto exactly one rubric.
As the frequency distribution of the rubrics is unbalanced (it ranges from a rubric with
only instances to rubrics with more than , instances) and since the number of
categories is – compared to other experiments in the field of text classification – large,
we decided to select a subset of rubrics as target categories to be learnt. This was done
as follows: We computed the mean µ and standard deviation σ of each rubric in terms
of the number of its text instances and chose those rubrics R whose cardinality |R|
behaves as follows (cf. Table):

µ− σ/2 < |R| < µ+ σ/2

As a result, we select rubrics as target categories (cf. Table). This generates a
corpus C of 31, 250 texts.

60 LDV-FORUM

Structural Classifiers of Text Types

Table 2: Results of two categorization experiments using 31 rubrics of the SZ: QSA (black bars) and DomTK
(gray bars). Bars are ordered alphabetically according to the code name of the category. Numbers in
parentheses denote the size (number of instances) of the corresponding category.

Next, we perform an SVM-experiment in the framework of QSA. That is, we use
qsp(x) as the vector representation of texts x ∈ C. More specifically, we refer to logical
document structure (LDS) as the focal level of text structuring and set TLDS = {division,
paragraph, sentence, headline sentence, headline paragraph}. Next, we set F = {complexity,
length} and O = {mean, standard deviation, entropy}. Thus, for each input text we get a
vector qsp(x) with exactly features.

The design parameters of the subsequent SVM-experiment are as follows: We use an
RBF-kernel with γ = 0.00001 and a trade-off between training error c = 1000. Further,
we train a binary classifier for each of the categories. Thus, for input corpus C and
any rubric ci of the set of target categories C the set of negative examples of ci is set to
C \ [ci] where [ci] ⊆ C is the set of all instances of ci in C. In the present experiment, all
sets [ci] are pairwise disjunct. Next, we utilize the leave-on-out cross-validation method
(Hastie et al.,) and get a recall and precision value for each of the categories trained
by means of the SVMlight (Joachims,). This allows us to compute an F -score (FS)
for each of the rubrics ci ∈ C separately as (Hotho et al.,):

FS i = 2
1

recalli
+ 1

precisioni

The F -scores of the categories are summarized in Table . Finally, we set L =
{[ci] | ci ∈ C} – obviously, L is a partition of C – and compute the F -Measure as a

Band 22 (2) – 2007 61

Mehler, Geibel, Pustylnikov

weighted mean of the F -scores of all categories as:

F-Measure(L) =
|C|∑
i=1

|[ci]|
|C| FS i

In the framework of QSA, this gives an overall F -measure of SVM-based learning of
0.78 – a remarkably good results for a rather large set of different categories to be learnt.
Note that we took all 31, 250 texts of the corpus into account in order to compute this
result.
Next, we perform a comparable experiment using the tree kernels as introduced in

Section .. The complexity of computing k(T, T ′) based on () depends on the product
of the node numbers n(v)n(v′), see Collins and Duffy (). Since some of the trees in
the corpus are relatively large, we had to down-sample the corpus to a subset containing
only examples. Instead of using leave-one-out cross-validation, we used -fold
cross validation, which is more efficient, but known to produce reliable results, too. In
order to make up for this loss in data to some extend, we performed a coarse search for
optimal values of λ (parameter for tree depth, see above) and C. We varied λ additively
in the interval [0.0, 2.0] and C multiplicatively in the interval [0.0001; 400.0]. For SetTK
we only used a subset of the parameters, because its complexity depends quadratically
on the branching factor. For DomTK, choosing λ around 0.5 and C around 50 produced
reasonable results for many classes. In addition to DomTK and SetTK, we also tested
an implementation of a tree kernel based on a string kernel (cf. Moschitti). The
computation of a single kernel matrix took more than three days, so we are not able to
present results for this third kernel in this article. Notice that for the second part of our
SVM experiment based on tree kernels we used the LIBSVM (Chang and Lin,).

4.1 Discussion

Table presents the results of the experiment for QSA and the DomTK approach. Every
category is identified by a short-cut representing a rubric (e.g., woch = ‘Wochenchronik ’
– ‘chronicle of the week ’). The corresponding F -Score values demonstrate the separability
of most of the categories. Although DomTK performs better for a few classes, it is
usually outperformed by QSA. This confirms results also found in other areas where tree
kernel methods often perform worse than feature-based methods. Note that DomTK
had to operate on a down-sampled data set (and fewer parameter combinations could
be tried, too), while QSA explored the whole spectrum of the input corpus.

In the case of QSA, half of the categories perform with an F -score above 0.8 (vs. nine
in the case of DomTK) – five (four in the case of DomTK) categories lead to F -score
values above 0.9. The combined F -measure value of the QSA approach is 0.78. This
shows that there are many categories which can be reliably attributed to their category
by only looking for a small set of their quantitative structural features. Obviously, the
set of features taken into account by the present instance of QSA is much smaller
than by VSM which may take several thousand lexical dimensions into account. Results

62 LDV-FORUM

Structural Classifiers of Text Types

for other text types (genres and registers) give a comparable result so that the method
is, obviously, not restricted to the area of press communication (Pustylnikov and Mehler,
). However, in the case of the DomTK and the QSA approach there are poorly
performing categories. This is not surprising as we do not expect that structure is the
only reliable manifestation of text types. Rather we shed light on its potential which in
future work will be combined with content-related approaches to text classification.

5 Conclusion

This paper evaluated logical document structure as a source of feature selection in text
classification. It has shown that structure-based classifications come into reach and
produce very promising results. This finding is all the more important as, e.g., QSA
provides an easy to compute and space efficient text representation model. Thus, the
paper is a first step towards the far-reaching goal of developing a prototype ontology of
text types. Future work will focus on elaborating the present approach, especially in
terms of a sensitivity analysis of the whole spectrum of quantitative text characteristics.
Further, we will develop a corresponding graph model of web documents.

Acknowledgments

We thank Alessandro Moschitti (University of Rome) for helpful discussions. We thank
Sebastian Herold (University of Osnabrück) for performing the kernel experiments. AM
and OP’s work is supported by the Research Group Text Technological Modeling
of Information (http://www.text-technology.de/) and by the SFB Alignment in
Communication (http://ariadne.coli.uni-bielefeld.de/sfb/) both funded by the
German Research Foundation (DFG).

References

Baayen, H., van Halteren, H., and Tweedie, F. (). Outside the cave of shadows:
Using syntactic annotation to enhance authorship attribution. Literary and Linguistic
Computing, ():–.

Baeza-Yates, R. and Ribeiro-Neto, B., editors (). Modern Information Retrieval.
Addison-Wesley, Reading, Massachusetts.

Bateman, J. A., Kamps, T., Kleinz, J., and Reichenberger, K. (). Towards construc-
tive text, diagram, and layout generation for information presentation. Computational
Linguistics, ():–.

Biber, D. (). Dimensions of Register Variation: A Cross-Linguistic Comparison.
Cambridge University Press, Cambridge.

Band 22 (2) – 2007 63

Mehler, Geibel, Pustylnikov

Brinker, K. (). Linguistische Textanalyse. Eine Einführung in Grundbegriffe und
Methoden. Erich Schmidt, Berlin.

Chang, C.-C. and Lin, C.-J. (). LIBSVM: a library for support vector machines.
Software available athttp://www.csie.ntu.edu.tw/~cjlin/libsvm.

Collins, M. and Duffy, N. (). Convolution kernels for natural language. In NIPS,
pages –.

Collins, M. and Duffy, N. (). New ranking algorithms for parsing and tagging:
Kernels over discrete structures, and the voted perceptron. In ACL, pages –.

Dehmer, M. (). Strukturelle Analyse Web-basierter Dokumente. Multimedia und
Telekooperation. DUV, Berlin.

Geibel, P. and Wysotzki, F. (). Learning relational concepts with decision trees.
In Saitta, L., editor, Machine Learning: Proceedings of the Thirteenth International
Conference, pages –, San Fransisco, CA. Morgan Kaufmann Publishers.

Gleim, R., Mehler, A., and Dehmer, M. (). Web corpus mining by instance of
wikipedia. In Kilgariff, A. and Baroni, M., editors, Proceedings of the EACL
Workshop on Web as Corpus, April -, , Trento, Italy, pages –.

Halliday, M. A. K. and Hasan, R. (). Language, Context, and Text: Aspects of
Language in a Socialsemiotic Perspective. Oxford University Press, Oxford.

Hastie, T., Tibshirani, R., and Friedman, J. (). The elements of statistical learning.
Data Mining, Inference, and Prediction. Springer, Berlin/New York.

Haussler, D. (). Convolution kernels on discrete structures. Technical Report
UCS-CRL--, UC Santa Cruz.

Heinemann, W. (). Textsorte – Textmuster – Texttyp. In Brinker, K., Antos, G.,
Heinemann, W., and Sager, S. F., editors, Text- und Gesprächslinguistik. Linguistics
of Text and Conversation, pages –. De Gruyter, Berlin/New York.

Hotho, A., Nürnberger, A., and Paaß, G. (). A Brief Survey of Text Mining.
LDV-Forum, ():–.

Ide, N., Bonhomme, P., and Romary, L. (). XCES: An XML-based standard for
linguistic corpora. In Proc. of LREC , Athens, pages –.

Jain, B. J., Geibel, P., and Wysotzki, F. (). SVM learning with the Schur-Hadamard
inner product for graphs. Neurocomputing, :–.

Joachims, T. (). Learning to classify text using support vector machines. Kluwer,
Boston.

64 LDV-FORUM

Structural Classifiers of Text Types

Karlgren, J. (). Non-topical factors in information access. In WebNet (), pages
–.

Kashima, H. and Koyanagi, T. (). Kernels for semi-structured data. In ICML,
pages –.

Kessler, B., Nunberg, G., and Schütze, H. (). Automatic detection of text genre.
In Proceedings of the th ACL and th EACL, Madrid, pages –.

Köhler, R. (). Syntactic structures. properties and interrelations. Journal of
Quantitative Linguistics, :–.

Lee, Y.-B. and Myaeng, S. H. (). Text genre classification with genre-revealing and
subject-revealing features. In Proc. of the th Annual International ACM SIGIR
Conf. on Research and Development in IR, pages –. ACM Press.

Lewis, D. D. (). Feature selection and feature extraction for text categorization. In
Proceedings of Speech and Natural Language Workshop, pages –.

Lindemann, C. and Littig, L. (). Coarse-grained classification of web sites by their
structural properties. In Proc. of WIDM’, pages –.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. J. C. H.
(). Text classification using string kernels. Journal of Machine Learning Research,
:–.

Mann, W. C. and Thompson, S. A. (). Rhetorical structure theory: Toward a
functional theory of text organization. Text, :–.

Martin, J. R. (). English Text. System and Structure. John Benjamins, Philadelphia.

Mehler, A. (). Hierarchical orderings of textual units. In Proc. of COLING’,
pages –.

Mehler, A. (). Structure formation in the web. In Witt, A. and Metzing, D., editors,
Linguistic Modeling of Information and Markup Languages. Springer, Dordrecht.

Mehler, A., Gleim, R., and Dehmer, M. (). Towards structure-sensitive hypertext
categorization. In Proc. of the th Annual Conf. of the GfKl, March -, ,
Universität Magdeburg, pages –.

Miller, G. A. and Charles, W. G. (). Contextual correlates of semantic similarity.
Language and Cognitive Processes, ():–.

Moschitti, A. (). A study on convolution kernels for shallow semantic parsing. In
Proc. of the th Conf. of the ACL, pages –.

Band 22 (2) – 2007 65

Mehler, Geibel, Pustylnikov

Moschitti, A. (). Efficient convolution kernels for dependency and constituent
syntactic trees. In ECML, pages –.

Power, R., Scott, D., and Bouayad-Agha, N. (). Document structure. Computational
Linguistics, ():–.

Pustylnikov, O. (). How much information is provided by text structure? Automatic
text classification using structural features (in German). Master thesis, University of
Bielefeld, Germany.

Pustylnikov, O. and Mehler, A. (). A new look on register analysis: text classification
by means of structural classifiers. In Proceedings of the th International Pragmatics
Conference (Göteborg, - July).

Santini, M. (). Characterizing genres of web pages: Genre hybridism and individ-
ualization. In Proceedings of the th Annual Hawaii International Conference on
System Sciences (HICSS’).

Schoelkopf, B. and Smola, A. J. (). Learning with Kernels. The MIT Press,
Cambridge, MA.

Sebastiani, F. (). Machine learning in automated text categorization. ACM
Computing Surveys, ():–.

Sowa, J. F. (). Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks/Cole, Pacific Grove.

Tuldava, J. (). Probleme und Methoden der quantitativ-systemischen Lexikologie.
Wissenschaftlicher Verlag, Trier.

van Dijk, T. A. and Kintsch, W. (). Strategies of Discourse Comprehension.
Academic Press, New York.

Vapnik, V. N. (). The Nature of Statistical Learning Theory. Springer, New York.

Ventola, E. (). The Structure of Social Interaction: a Systemic Approach to the
Semiotics of Service Encounters. Pinter, London.

Wolters, M. and Kirsten, M. (). Exploring the use of linguistic features in domain
and genre classification. In Proceedings of the EACL, pages –.

66 LDV-FORUM

Jens Michaelis, Uwe Mönnich

Towards a Logical Description of Trees in Annotation Graphs

The importance of annotation graphs increases rapidly due to new devel-
opments in multi-media applications, text technology, and semantic web
technologies. The paper provides a logical specification of trees in annotation
graphs commonly used to code documents that are inherently structured on
various levels.

1 Introduction

It is a matter of fact that a long history in artificial intelligence and computational lin-
guistics tries to develop tools to extract semantic knowledge from syntactic information.
In particular, from a text technological point of view the general research perspective
is to extract (semantic) information from annotated documents. Regarding this aim,
some of the relevant annotation models used are:

• Multilayer annotations

• Hyperlinks

• Discourse structure

• (Classical) linguistic description levels

An important aspect concerning annotation models is the development of a suit-
able logic system in order to specify the syntactic and semantic structures of such
models. Due to the fact that heterogeneous subsystems must be incorporated, an
amalgamation process can be assumed as the underlying architecture. The challenges
of such architectures are twofold: first, the dynamic interaction between syntactic and
semantic information must be represented and second, the efficiency of algorithms must
be guaranteed.

Fortunately, in the case of annotation graphs, the object of these remarks, techniques
from parameterized complexity theory can be exploited. This theory provides powerful
tools for a detailed investigation of algorithmic problems. As it turns out, the concept
of treewidth, indicating the similarity of a graph or a relational structure with a tree, is
a parameter which helps to show that many otherwise intractable problems become
computable in linear time when restricted to tree-like inputs.

The key feature of annotation graphs is their abstraction from the diversity of concrete
formats used for the transcription of text and speech. This feature makes them an
ideal candidate for the comparison of different annotation systems, e.g., those currently
developed by several linguistic collaborative research centres in Germany.

LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

Translating these different representation schemes into the framework of annotation
graphs is a necessary prerequisite for the transfer of the pleasant computational proper-
ties of annotation graphs to the original systems. This is particularly important in those
circumstances where the natural data structure of the concrete markup system cannot
be readily understood as describing trees, or at least, multi-rooted trees, taken into
account the possibilty of multiple annotation layers. Our main result can be interpreted
as specifying the conditions under which algorithmic methods that were designed for
trees can be applied to the realm of annotation systems that are apparently based on
underlying graph structures.

A classical domain for multilayered annotations is linguistics. Utterances of speakers
can be considered from different perspectives: examples are syntactic, semantic, discourse
and intonation aspects, just to mention some of them. Representing these types of data
in one representation format yields overlapping hierarchies. Moreover, the resulting
structures are naturally considered as graphs rather than trees.
These challenges can be met by representing annotation graphs in logical form.

Benefits of such a representation are the low descriptive complexity, the representability
as open diagrams, or the abstract format for the interaction of different linguistic levels.
Furthermore logical representations are amenable to the arsenal of techniques from
logical graph theory.

2 Annotation Graphs

We start this section by explicitly providing the corresponding formal definitions, first,
and by looking, in particular, at one example in more detail, afterwards.

2.1 Definitions and Examples

The underlying definition of an annotation graph is specified as follows:

Definition . (Bird and Liberman) An annotation graph (AG), G, over a
label set L and a family of timelines 〈 〈Ti,≤i〉 〉i∈I , I being some index set, is a -tuple
〈N,A, τ〉 consisting of a node set N , a collection of labeled arcs A ⊆ N ×N ×L, and a
partial time function τ : N ⇀

⋃
i∈I Ti, which satisfies the following two conditions:

(i) 〈N,A〉 is a labeled acyclic digraph containing no nodes of degree zero, and

(ii) for any path from node n1 to n2 in A, if τ(n1) and τ(n2) are defined, then there
is a timeline 〈Ti,≤i〉 such that τ(n1), τ(n2) ∈ Ti, and such that τ(n1) ≤i τ(n2).

Remarks. AGs may be disconnected or empty, and they must not have orphan nodes. It
follows from the definition that every piece of connected annotation structure can refer
to at least one timeline. In Figure , an AG from the linguistics domain is depicted.

Thus, for each i ∈ I, timeline 〈Ti,≤i〉 consists of a nonempty set Ti and a total order ≤i on Ti.

Band 22 (2) – 2007 69

Michaelis, Mönnich

15

16
 W/and

31
994.19

32
994.46

speaker/B

W/yeah

17
994.65W/%um11

991.75
12

speaker/A

13
 W/he 14

 W/said W/,

33
996.51

19

20
996.59W/%um

35
997.61

speaker/B

34
 W/whatever’s

22

23
 W/.18

995.21 W/he

speaker/A

21
997.40 W/right 25

1002.55

speaker/A

24
 W/so

W/helpful

Figure 1: An example of an anchored annotation graph (cf. Bird and Liberman 2001).

Definition . (Bird and Liberman) An anchored AG is an AG, G, defined
as in Definition . and additionally satisfying the following condition:

(iii) if any node n does not have both incoming and outgoing arcs then τ : n 7→ t for
some time t.

Remarks. For anchored annotation graphs, it follows from the definition that every
node has two bounding times, and timelines partition the node set. The AGs depicted
in Figure are anchored.

Definition . (Bird and Liberman) A totally anchored AG is an anchored
AG, G, defined as in Definition . such that the time function τ :N ⇀

⋃
i∈I Ti is total.

Definition . A totally anchored AG, G, defined as in Definition . is time-crossing
arc free if for all 〈p, q, l〉, 〈r, s,m〉 ∈ A such that τ(p), τ(r) ∈ Ti for some i, and such
that τ(p) ≤i τ(r) then either τ(q) ≤i τ(r) or τ(s) ≤i τ(q) holds.

In particular, the EXMARaLDA annotation tool, developed by the linguistic collabora-
tive research centre in Hamburg, can be seen as strongly relying on the formal concept
of AGs (cf. Schmidt). In fact, not using the full range of possibilities provided by
the general AG-definition given above, the core model underlying an EXMARaLDA
basic transcription provides a so-called single timeline, multiple tiers (STMT) model,
which in strict AG-terms can be understood as being a totally anchored AG consisting
of exactly one timeline (cf. Figure). In line with the assumption of Bird and Liberman
(, p. f) that reference to a single timeline implies that nodes with the same time
reference should be considered to be identical, the AG depicted in Figure can formally
be specified as in the next example.

Example . For Tex = {0, 1, 2, 3, 4, 5} and ≤ex=≤N� Tex × Tex consider the timeline
〈Tex,≤ex〉. Then for 〈Tex,≤ex〉 and the label set Lex implicitly specified via the
N denotes the set of all non-negative integers, including 0. ≤N is the canonical order on N, and for
each set M ⊆ N, ≤N� M ×M is the restriction of ≤N to M ×M .

70 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

Figure 2: Example of an STMT model (cf. Schmidt 2005).

definition of the arc collection Aex, let Gex be the totally anchored AG 〈Nex, Aex, τex〉
over 〈Tex,≤ex〉 (as the single timeline) and Lex, where Nex is the set {0, 1, 2, 3, 4, 5},
τex is the identity function on {0, 1, 2, 3, 4, 5} and Aex consists of the following directed
labeled edges:

a(1)
1 = 〈1 , 3 , faster〉 ,
a(2)

1 = 〈0 , 1 , Okay.〉 ,
a(2)

2 = 〈1 , 2 , Très bien,〉 ,
a(2)

3 = 〈2 , 3 , Très bien.〉 ,
a(3)

1 = 〈0 , 1 , Okay.〉 ,
a(3)

2 = 〈1 , 3 , Very good, very good.〉 ,
a(4)

1 = 〈2 , 4 , right hand hand raised〉 ,
a(5)

1 = 〈2 , 3 , Alors ça〉 ,
a(5)

2 = 〈3 , 4 , dépend ((cough))〉 ,
a(5)

3 = 〈4 , 5 , un petit peu.〉 ,
a(6)

1 = 〈2 , 5 , That depends, then, a little bit〉 ,
a(7)

1 = 〈4 , 5 , εtipø:〉 .

If the collection of arcs is, in fact, “simply” a set then a(2)
1 and a(3)

1 are identical. Since the intention
here is actually that they are not identical, we assume them to be distinguishable either by some
(at least technically) different labeling or by treating the collection of arcs as a multiset.

Band 22 (2) – 2007 71

Michaelis, Mönnich

2.2 Logical Properties

In order to specify some logical properties, we need some additional concepts. First, we
define a tree-decomposition of a graph.

Definition . (Robertson and Seymour) A tree-decomposition of a graph
G = 〈V,E〉 is a tree T = 〈N,F 〉 together with a collection of subsets {Tu |u ∈ N} of V
such that

⋃
u∈N Tu = V and the following properties hold:

. For every edge e = 〈a, b〉 of G there is a u ∈ N such that {a, b} ⊆ Tu

. For all u, v, w ∈ N , if w lies on a path from u to v in T then Tu ∩ Tv ⊆ Tw

The width of a tree-decomposition is equal to maxu∈T {|Tu| − 1}

Note that a consequence of condition from the above definition could be formulated
as ’, namely, for all u ∈ V , 〈{v ∈ N |u ∈ Tv}, F ∩({v ∈ N |u ∈ Tv}×{v ∈ N |u ∈ Tv}〉
is a tree. The important concept of treewidth, defined next, is an indicator for the
tree-likeness of a given graph G.

Definition . (Robertson and Seymour) The treewidth of a graph G is the
minimum value of k such that G has a tree-decomposition of width k.

The treewidth of a class of graphs C is naturally defined as the smallest number k
such that for all graphs G in C, their treewidth is smaller or equal to k. Annotation
graphs have unbounded treewidth since arbitrary large grids can be considered as
annotation graphs. In practical applications, though, one is mainly concerned with
finite families of documents represented as annotation graphs. Trivially, these families
are of bounded treewidth. In the following we therefore restrict our attention to such
finite families of annotation graphs.

Fact . Finite families of anchored annotation graphs are of bounded treewidth.

Monadic Second-Order Logic (MSO) is a subset of second-order logic. MSO extends
first-order logic by allowing quantification over subsets of the universe of discourse.
In other words quantification over second-order variables with at most one argument
position is allowed.
Annotation graphs can be conceived as finite relational structures with the set of

nodes understood as universe of discourse, the family of arcs as binary relations and
the times as monadic predicates. A compact representation can be given in terms of an
open diagram (cf. Prolog facts).

Theorem . (Courcelle) Every property expressible in MSO is verifiable in linear
time on graphs of bounded treewidth.

Here, a tree is taken to be a connected acyclic graph. Later we will restrict our attention to the
concept of a finite ordered tree as it underlies our Definition . of a finite labeled tree.

72 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

Courcelle’s result is contained in Courcelle . The principal tool in the proof of
linear time decidability is the annotation of tree-like graph structures with logical types
of bounded quantifier rank. These types assume the role of states in a bottom-up tree
automaton.

Let MSO2 designate the extended monadic second-order logic with quantification over
sets of nodes and sets of edges.

Theorem . (Seese) If a set of graphs G has a decidable MSO2 theory then
it is the subset of the (homomorphic images of) a recognizable set of trees, i.e. it is
tree-definable in the sense of Courcelle ().

Remark. Trees are constructed from a finite set F of graph operations. Typical examples
are disjoint union, relabeling of edges, addition of edges. Seese’s theorem is an outgrowth
of a combination of techniques from MSO-definable graph transductions and from the
fundamental work of Robertson and Seymour on graph minors.

The representation of trees within the AG-framework is possible in terms of so-called
chart constructions, where each tree node is mapped to an AG-arc, as outlined in the
following easy example (cf. Cotton and Bird):

A

~~
~~

~~
~

@@
@@

@@
@

B C
·

B
//

A

))·
C

// ·

The representation of trees in MSO2-terms, relying on an order ≤, can be given via
the notion of a matching relation. A set of edges M is called a matching relation if the
following conditions are satisfied:

• e ∈M ∧ inc(e, u, v)→ u ≤ v (M is compatible with ≤)

• e ∈M ∧ e′ ∈M ∧ inc(e, u, v) ∧ inc(e′, w, z) ∧ u ≤ w ≤ v → u ≤ z ≤ v
(M is non-crossing)

where inc denotes the usual incidence relation.
Recall from the previous section the notion of a totally anchored AG that is time-cross-

ing arc free. In case such an AG is anchored w.r.t. a single timeline, that notion is a
particular instance of a matching relation.

The present section has served to emphasize the advantages that come with a logical
description of graphs of bounded treewidth. The fact that a set of finite graphs is
of bounded treewidth does not lead automatically to a representation of this set as
a family of trees beyond the obvious tree decomposition as defined in Definition ..
Restricting the attention to the family of annotation graphs that satisfy the combined
conditions characteristic of the single timeline, multiple tiers model, it can indeed be
shown that these graphs allow a presentation in the form of multi-rooted trees. The
next section is devoted to an elaboration of this claim.

Band 22 (2) – 2007 73

Michaelis, Mönnich

3 Multilayer Annotation and STMT models

3.1 Multi-rooted Trees

Since our final aim will be to formally reconstruct an STMT model as a so-called
multi-rooted tree, we here give some further explicit definitions setting the stage.

Definition . A tree domain is a nonempty set Dτ ⊆ N∗ such that for all χ ∈ N∗
and i ∈ N it holds that χ ∈ Dτ if χχ′ ∈ Dτ for some χ′ ∈ N∗, and χi ∈ Dτ if χj ∈ Dτ
for some j ∈ N with i < j.

Definition . A finite labeled tree, τ , is a quadruple of the form 〈Nτ , /∗τ ,≺τ , labelτ 〉
where the triple 〈Nτ , /∗τ ,≺τ 〉 is a finite (ordered) tree defined in the usual sense, i.e.
up to an isomorphism 〈Nτ , /∗τ ,≺τ 〉 is the natural (tree) interpretation of some tree
domain Dτ , and where labelτ is the labeling function (of τ), i.e. a function from Nτ
into some set of labels, Lτ .

Note that, if 〈Nτ , /∗τ ,≺τ , labelτ 〉, is a finite labeled tree, a tree domain, Dτ , whose
natural (tree) interpretation is isomorphic to 〈Nτ , /∗τ ,≺τ 〉 is uniquely determined. Note
further that Definition . demands 〈Nτ , /∗τ ,≺τ 〉 to be "only" isomorphic to the natural
(tree) interpretation of some tree domain, Dτ , and not to be necessarily a tree domain
itself. Such a definition allows us to have two finite labeled trees with disjoint set
of nodes, which, of course, is not the case for the corresponding tree domains whose
natural (tree) interpretations are isomorphic to the underlying (non-labeled) trees. This
possibility is exploited within the next definition.

Definition . For any finite string α ∈ Σ∗ for some finite alphabet Σ, a multi-rooted
tree (over α) is a finite tuple of the form 〈τr〉r<R for some R ∈ N, where for each r < R,
τr is a finite labeled tree 〈Nr , /∗r ,≺r , labelr 〉 such that for each r, s < R with r 6= s
it holds that Nr ∩ Ns = ∅, and such that for each r < R there are some k(r) ∈ N,
α(r)

0 , . . . α(r)
k(r) ∈ Σ∗ and w(r)

0 , . . . w(r)
k(r)+1 ∈ Σ∗ for which the yield of τr is of the form

α(r)
0 · · ·α(r)

k(r), and for which α is of the form w(r)
0 α(r)

0 , . . . w(r)
k(r)α

(r)
k(r)w

(r)
k(r)+1.

Straightforwardly, adding a “super root” immediately dominating the tree components
of a multi-rooted tree, 〈τr〉r<R, gives rise to a tree in the sense of Definition . again.

3.2 Finding a partition of a given STMT model into subgraphs

Given a totally anchored AG, G, consisting of exactly one timeline such that every
two nodes with the same time reference are identical (i.e., G is an STMT model),
For each set M , M∗ is the Kleene closure of M , including ε, the empty string.
Nτ is the finite, nonempty set of nodes, and /∗τ and ≺τ are the respective binary relations of
dominance and precedence on Nτ . Thus, /∗τ is the reflexive-transitive closure of /τ ⊆ Nτ ×Nτ ,
the relation of immediate dominance on Nτ .

In other words, up to an isomorphism Nτ is a tree domain such that for all χ, ψ ∈ Nτ it holds that
χ /τ ψ iff ψ = χi for some i ∈ N, and χ ≺τ ψ iff χ = ωiχ′ and ψ = ωjψ′ for some ω, χ′, ψ′ ∈ N∗
and i, j ∈ N with i < j.

74 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

the considerations of this subsection concern the aim of finding a partition of G into
subgraphs each of which being without time-crossing arcs in the sense of Definition
.. This aim is motivated by the observation that time-crossing of two edges is usually
caused by interference of two different layers of annotation, while single layers consist
of edges in matching form, i.e. time-crossing arc free. A corresponding partition is
not necessarily unique and there are, of course, several possible algorithms in order
to calculate a particular instance of such a partition. Heuristics may help to decide
which algorithm is to be preferred in terms of its computational properties. As an
example, we here present an algorithm which can be seen as being a representative
of a “left-to-right, top-down” strategy (cf. Figure). The perspective motivating this
“tree-traversing” metaphor results from our final aim to reconstruct the given AG as
a multi-rooted tree by using the corresponding partition. In the next section we will
show, that such a reconstruction can be done “on the fly,” when calculating the partition
according to the presented algorithm.

For the rest of this section let G = 〈N,A, τ〉 be a totally anchored AG over a label set
L and a single timeline 〈T,≤T 〉 such that every two nodes with the same time reference
are identical. W.l.o.g. we may assume T is of the form {0, 1, . . . ,K−1} for some K ∈ N
such that τ is surjective, i.e., in particular the order on T is induced by the canonical
order on N. Since we are concerned with a single timeline and a totally anchored graph,
we can also identify the set of vertices, N , with T . Thus, the cardinality of N is K.
We construct the “upper part” of the corresponding adjacency matrix, 〈Ap,q〉0≤p<q<K ,
where each entry Ap,q consists of all arcs a = 〈p, q, l〉 ∈ A for some l ∈ L. The algorithm
which provides us with a partition of A, PartA, is the following:

partitionA
 r ← 0
 constructAr % construct first partition set
 PartA← 〈Ar〉 % initialize the list of partition sets
 until Ar = ∅ repeat
 r ← r + 1
 constructAr % construct next (potential) partition
 if Ar 6= ∅ then
 PartA← PartA · 〈Ar〉 % append next partition set to list
 fi
 return PartA

Here the subprocedure constructAr is defined as:

constructAr
 Ar ← ∅
 if K > 0 then

 exploreA0,K−1
 fi

Note that, because of (i) of Definition ., K > 1 if N is nonempty.

Band 22 (2) – 2007 75

Michaelis, Mönnich

For 0 ≤ p < q < K, exploreAp,q is defined as follows:

exploreAp,q
 if Ap,q 6= ∅ then
 choose a ∈ Ap,q
 Ar ← Ar ∪ {a} % add a to partition set A r

 Ap,q ← Ap,q \ {a} % remove a from set A p,q

 fi
 i← 0
 j ← 1
 while p+ i < q − j and Ap+i,q−j = ∅ repeat % searching a leftmost “child”
 if p+ i < q − j − 1 then % exploring “top-down” interval [p+i,q-j]
 j ← j + 1 % reducing right interval value by
 else
 i← i+ 1 % increasing left interval value by
 j ← 0 % right interval value back to q
 fi
 ip,q ← i
 jp,q ← j
 if p+ ip,q < q − jp,q then % there is no “child” at all iff p+ip,q=q-jp,q
 exploreAp+ip,q,q−jp,q % exploring leftmost “child” —- nonemptiness

of A p+ip,q,q-jp,q
is guaranteed by WHILE-loop

 if jp,q > 0 then
 exploreAq−jp,q,q % searching for right “sibling” of leftmost

“child”
 fi
 fi

Fact . For p, q < K with p < q, ip,q and jp,q (depending on ip,q) are minimal, i.e.,
Ap+i,q−j = ∅ for all j < q− (p+ i) in case i < ip,q, and for all j < jp,q in case i = ip,q.

Remark. Note that for p, q < K with p < q, the while-loop for potentially finding
minimal i and minimal j, depending on i, within the subprocedure exploreAp,q is a
“left-to-right, top-down” search along the “rows” left-to and below matrix entry Ap,q (cf.
Figure). In particular, we have Ap+i,q−j = ∅ if i < ip,q and q−(p+ip,q) ≤ j < q−(p+i).
Hence exploreAp,p+ip,q would yield no contribution to the partition set Ar, if it were
part of the subprocedure exploreAp,q.

Proposition . The time complexity of partitionA is in O(K2m), m being the
cardinality of A.

Proposition . Let k ∈ N. Then for K = 2k, the label set L = {l0, l1, . . . , lk−1} and
the arc set A = {〈p, p + k, lp〉 | 0 ≤ p < k} the time complexity of partitionA is at
least in O(K2m) (as before, m being the cardinality of A, i.e., m = k in this case).

76 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

“y-axis” ∧ ∧∧

“x-axis”

∧∧∧

Ap,q p

q−1

qp+1

∧∧ ∧

∧∧ ∧

∧∧ ∧

∧∧ ∧

∧∧ ∧

∧∧ ∧

∧∧ ∧

∧∧ ∧

Figure 3: Potential search space for i and j within WHILE-loop of exploreAp,q .

As mentioned above, in order to find an appropriate partition of A, the algorithm
given above only represents one of several more general possibilities depending on
the strategy pursued. In fact, applying the algorithm to the example above yields a
partition into three arc sets which might “contra-intuitively” partition the second, third
and fifth layer, depending on which arc is chosen first from the arc subsets A0,1, A1,3,
A2,3 and A4,5 according to line of the subprocedure explore. If the second layer is
not partitioned, the fifth will be, and vice versa. This is due to the fact that both a(2)

2
and a(5)

2 definitely belong to the set A0, while a(2)
3 and a(5)

1 never will do so at the same
time.

Example . (continued) Applying partition to Aex yields a partition into three
sets, A0, A1 and A2, of the form

A0 = {x0 , x1 , a
(2)
2 , x2 , a

(5)
2 , x3} , A1 = {x′0 , x′1 , x′2 , x′3} and A2 = {a(6)

1 , a(4)
1 }

with xi, x′i ∈ Xi such that xi 6= x′i for 0 ≤ i ≤ 3, where

X0 = {a(2)
1 , a(3)

1 } , X1 = {a(1)
1 , a(3)

2 } , X2 = {a(2)
3 , a(5)

1 } and X3 = {a(5)
3 , a(7)

1 }.

Note that the situation of “algorithmic arbitrariness” immediately changes if we have
further access to “external” information which can be used to guide the selection from

Band 22 (2) – 2007 77

Michaelis, Mönnich

an arc subset Ap,q, like hierarchical structure and ontological information in the sense
of Bird and Liberman (, Section .f), e.g., in terms of type and speaker as in
an EXMARaLDA Basic Transcription Model itself based on a pure STMT model (cf.
Schmidt and Figure here).

Figure 4: Example of an EXMARaLDA Basic Transcription Model (cf. Schmidt 2005).

3.3 Building a multi-rooted tree from an STMT model - “Reversing the chart construction”

Consistently taking over all formal prerequisites, we, in particular, let G = 〈N,A, τ〉
be the totally anchored AG over a label set L and a single timeline 〈T,≤T 〉 from the
previous section. In order to build—on the fly—a multi-rooted tree, MultTreeA, from
PartA, the partition of A, created by applying partition to A, we slightly adapt and
extend the algorithm.

Modified lines are indicated by a prime following the line number (x’). Additional lines are indicated
by a subsequent line number counting (x., x. etc.).

78 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

partitionA
% including the construction of a multi-rooted tree, MultTree A, from Part A
 r ← 0
’ constructAr, Tr % construct first partition set and

corresponding tree
 PartA← 〈Ar〉 % initialize list of partition sets
. MultTreeA← 〈Tr〉 % initialize multi-rooted tree (list)
 until Ar = ∅ repeat
 r ← r + 1
 constructAr, Tr % construct next (potential) partition

set and corresponding tree
 if Ar 6= ∅ then
 PartA← PartA · 〈Ar〉 % append next partition set to list
. MultTreeA← MultTreeA · 〈Tr〉 % append next tree to multi-rooted

tree (list)
 fi
 return PartA
. return MultTreeA

The subprocedure constructAr, Tr is “just” an extension of constructAr.

constructAr, Tr
 Ar ← ∅
. Tr ← ∅
 if K > 0 then

. χ0,K−1 ← ε % define (essential part of) root address of T r

. k0,K−1 ← ε % dummy for line . of procedure explore A 0,K-1

. real root0,K−1 ← false % potentially no arc from node to node K-
 exploreA,K-

 fi

For 0 ≤ p < q < K, the modified subprocedure exploreAp,q is now given by

Recall that, because of (i) of Definition ., K > 1 if N is nonempty.

Band 22 (2) – 2007 79

Michaelis, Mönnich

exploreAp,q
 if Ap,q 6= ∅ then
 choose a ∈ Ap,q
 Ar ← Ar ∪ {a} % add a to partition set A r

 Ap,q ← Ap,q \ {a} % remove a from set A p,q

. χp,q ← χp,q · kp,q % define (essential part of) new
node address for T r

. Tr ← Tr ∪ {〈〈χp,q, r〉, label(a)〉} % add to T r a corresponding new
node labeled by label(a)

. real rootp,q ← true % no dummy node, cf. line ., .
. k ← 0 % potential next daughter to find

is leftmost child
. if p+ 1 = q then
. Tr ← Tr ∪ {〈〈χp,q · k, r〉, 〈p, p+ 1〉〉} % yield of T r comprises (arc cover-

ing) interval [p,p+]
. fi
. else
. if p = 0 and q = K − 1then
. Tr ← Tr ∪ {〈〈ε, r〉, dummy-labelr〉} % dummy root covering potential non-

time-crossing, non-inclusive arcs
(cf. T 0 and T 1 from Example .)

. k ← 0
. else
. k ← kp,q
. fi
 fi
 i← 0
 j ← 1

For each arc a = 〈p, q, l〉 ∈ A for some p, q ∈ N and l ∈ L, we take label(a) to denote its label l.

80 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

 while p+ i < q − j and Ap+i,q−j = ∅ repeat % searching leftmost “child”
 if p+ i < q − j − 1 then
 j ← j + 1
 else
. if real rootp,q = true then
. Tr ← Tr ∪ {〈〈χp,q · k, r〉, 〈p+ i, p+ i+ 1〉〉} % yield of T r comprises (arc

covering) interval [p+i,p+i+]
. k ← k + 1
. fi
 i← i+ 1
 j ← 0
 fi
 ip,q ← i
 jp,q ← j

 if p+ ip,q < q − jp,q then
. χp+ip,q,q−jp,q ← χp,q
. kp+ip,q,q−jp,q ← k
. real rootp+ip,q,q−jp,q ← real rootp,q
 exploreAp+ip,q,q−jp,q
 if jp,q > 0 then
. χp+ip,q,q−jp,q ← χp,q
. kq−jp,q,q ← kp+ip,q,q−jp,q + 1
. real rootq−jp,q,q ← real rootp,q
 exploreAq−jp,q,q % searching for right “sibling” of

leftmost “child”
 fi
 fi

Remark. The previously stated results on the time complexity bounds of partitionA
are not affected (cf. Proposition . and .).

Proposition . For each Tr appearing as a component in MultTreeA, let Lr denote
the (label) set L ∪ {dummy-labelr} ∪ {〈p, p + 1〉 | 0 < p < K − 1}. Then the set of
first components of the first components of the elements of Tr, {χ ∈ N∗ | 〈〈χ, r〉, l〉 ∈
Tr for some l ∈ Lr}, constitutes a tree domain. In this sense Tr can straightforwardly
be interpreted as a finite labeled tree. All non-terminal nodes of Tr, except for the
root node, are necessarily labeled by arc labels from L. The root node is labeled by
dummy-labelr in case A0,K−1 was empty, while processing exploreA0,K−1. Otherwise
it is also labeled by an element from L. Each leaf is labeled by 〈p, p + 1〉 for some
p < K − 1.

Example . (continued) Applying the modified algorithm partition to Aex, in
particular yields a multi-rooted tree MultTreeAex = 〈T0, T1, T2〉 with

Band 22 (2) – 2007 81

Michaelis, Mönnich

T0 = {〈 〈 ε , 0 〉 , dummy-label0 〉 , 〈 〈 0 , 0 〉 , label(x0) 〉 , 〈 〈 00 , 0 〉 , 〈 0 , 1 〉 〉 ,
〈 〈 1 , 0 〉 , label(x1) 〉 , 〈 〈 10 , 0 〉 , label(a(2)

2) 〉 , 〈 〈 100 , 0 〉 , 〈 1 , 2 〉 〉 ,
〈 〈 11 , 0 〉 , label(x2) 〉 , 〈 〈 110 , 0 〉 , 〈 2 , 3 〉 〉 , 〈 〈 2 , 0 〉 , label(a(5)

2) 〉 ,
〈 〈 20 , 0 〉 , 〈 3 , 4 〉 〉 , 〈 〈 3 , 0 〉 , label(x3) 〉 〉 , 〈 〈 30 , 0 〉 , 〈 4 , 5 〉 〉 }

T1 = {〈 〈 ε , 1 〉 , dummy-label1 〉 , 〈 〈 0 , 1 〉 , label(x′0) 〉 , 〈 〈 00 , 1 〉 , 〈 0 , 1 〉 〉 ,
〈 〈 1 , 1 〉 , label(x′1) 〉 , 〈 〈 10 , 1 〉 , 〈 1 , 2 〉 〉 , 〈 〈 11 , 1 〉 , label(x′2) 〉 ,
〈 〈 110 , 1 〉 , 〈 2 , 3 〉 〉 , 〈 〈 2 , 1 〉 , label(x′3) 〉 〉 , 〈 〈 20 , 1 〉 , 〈 4 , 5 〉 〉}

T2 = {〈 〈 ε , 2〉 , dummy-label2〉 , 〈 〈 0 , 2〉 , label(a(6)
1) , 〈 〈 00 , 2〉 , label(a(4)

1) ,
〈 〈 000 , 2〉 , 〈 2 , 3〉〉 , 〈 〈 001 , 2〉 , 〈 3 , 4〉〉 , 〈 〈 01 , 2〉 , 〈 4 , 5〉 〉 }

with xi, x′i ∈ Xi such that xi 6= x′i for 0 ≤ i ≤ 3, where

X0 = {a(2)
1 , a(3)

1 } , X1 = {a(1)
1 , a(3)

2 } , X2 = {a(2)
3 , a(5)

1 } and X3 = {a(5)
3 , a(7)

1 }

(cf. Figure).

T0 dummy-label0

label(((xxx0)))

〈000 ,,, 111〉

label(((xxx1)))

label(((aaa(2)
2)))

〈111 ,,, 222〉

label(((xxx2)))

〈222 ,,, 333〉

label(((aaa(5)
2)))

〈333 ,,, 444〉

label(((xxx3)))

〈444 ,,, 555〉

T1 dummy-label1

label(((xxx′′′
0)))

〈000 ,,, 111〉

label(((xxx′′′
1)))

〈111 ,,, 222〉 label(((xxx′′′
2)))

〈222 ,,, 333〉

label(((xxx3)))

〈444 ,,, 555〉

T2 dummy-label2

label(((aaa(6)
1)))

label(((aaa(4)
1)))

〈222 ,,, 333〉 〈333 ,,, 444〉

〈444 ,,, 555〉

Figure 5: The tree components of the multi-rooted tree MultTreeAex = 〈T0, T1, T2〉.

4 Envoi

In this paper we have sketched the beginnings of a logical theory of annotation graphs.
Along the way we have tried to emphasize the following points:

• Abstract logical framework with multilayer capabilities for linguistic annotations

• Compact logical representation

• Efficient MSO theory

82 LDV-FORUM

Towards a Logical Description of Trees in Annotation Graphs

• Subset of regular trees

• Internal definability of tree structure

• Partition of annotation layers

While the logical approach towards annotation models provides a unified format for
the syntactic level it still has to be complemented with a component that serves to
integrate syntactic with semantic structures. Primary candidates for this component
are amalgamation techniques from model theory and the assembly of heterogeneous
formal specifications via transformation systems. Care must be taken in this effort
to preserve the nice complexity properties that are associated with finite graphs of
bounded treewidth. On the other hand, annotation graphs offer a minimal formalization
of typical transcription needs by means of acyclic graphs with fielded records on the
edges. Semantic information is easily integrated into this minimal framework. It is for
this reason that we believe that our general perspective on the formal properties of
annotation graphs will retain its value if additional types of annotation are added to
the current format of transcription schemes.

Acknowledgements

This research was partially supported by grant MO /- of the German Research
Foundation (DFG).

References

Bird, S. and Liberman, M. (). A formal framework for linguistic annotation. Speech
Communication, :–.

Cotton, S. and Bird, S. (). An integrated framework for treebanks and multilayer an-
notations. In Proceedings of the Third International Conference on Language Resources
and Evaluation (LREC), Las Palmas de Gran Canaria, pages –. European
Language Resources Association.

Courcelle, B. (). The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Information and Computation, :–.

Courcelle, B. (). The monadic second-order logic of graphs XV: On a conjecture by D.
Seese. Journal of Applied Logic, :–.

Robertson, N. and Seymour, P. D. (). Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, :–.

Schmidt, T. (). Time-based data models and the text encoding initiative’s guidelines for
transcription of speech. Arbeiten zur Mehrsprachigkeit, Folge B, Nr. (Working Papers in
Multilingualism, Series B, No.), Universität Hamburg, Hamburg.

Seese, D. (). The structure of the models of decidable monadic theories of graphs. Annals
of Pure and Applied Logic, :–.

Band 22 (2) – 2007 83

85LDV FORUM - Band 22(2) - 2007

Peter Geibel
Institut für Kognitionswissenschaft
Universität Osnabrück
Albrechtstraße 28
D-49076 Osnabrück
pgeibel@uos.de

Kai-Uwe Kühnberger
Institut für Kognitionswissenschaft
Universität Osnabrück
Albrechtstraße 28
D-49076 Osnabrück
kkuehnbe@uos.de

Harald Lüngen
Institut für Germanistik - ASCL
Justus-Liebig-Universität Gießen
Otto-Behaghel-Straße 10
D-35394 Gießen
luengen@uni-giessen.de

Alexander Mehler
Computerlinguistik und Texttechnologie
Fakultät für Linguistik
und Literaturwissenschaft
Universität Bielefeld
Postfach 10 01 31
Universitätsstraße 25
D-33501 Bielefeld
alexander.mehler@uni-bielefeld.de

Jens Michaelis
Institut für Kognitionswissenschaft
Universität Osnabrück
Albrechtstraße 28
D-49076 Osnabrück
jens.michaelis@uni-osnabrueck.de

Uwe Mönnich
Seminar für Sprachwissenschaft
Arbeitsbereich Theoretische
Computerlinguistik
Universität Tübingen
Wilhelmstraße 19
D-72074 Tübingen
um@sfs.uni-tuebingen.de

Ekaterina Ovchinnikova
Institut für Kognitionswissenschaft
Universität Osnabrück
Albrechtstr. 28
D-49076 Osnabrück
e.ovchinnikova@gmail.com

Olga Pustylnikov
Fakultät für Linguistik und
Literaturwissenschaft
Universität Bielefeld
Universitätsstraße 25
D-33615 Bielefeld
olga.pustylnikov@uni-bielefeld.de

Klaus U. Schulz
Centrum für Informations- und
Sprachverarbeitung
Ludwig-Maximilians-Universität
München
Oettingenstraße 67
D-80538 München
schulz@cis.uni-muenchen.de

Angelika Storrer
Institut für deutsche Sprache und
Literatur
Universität Dortmund
D-44221 Dortmund
angelika.storrer@uni-dortmund.de

Autorenverzeichnis

86 LDV FORUM

Eduardo Torres Schumann
Centrum für Informations- und
Sprachverarbeitung
Ludwig-Maximilians-Universität
München
Oettingenstraße 67
D-80538 München
torressc@cip.ifi.lmu.de

	Cover
	Impressum
	Editorial
	Inhaltsverzeichnis
	Harald Lüngen, Angelika Storrer
	Ekaterina Ovchinnikova, Kai-Uwe Kühnberger
	Eduardo Torres Schumann, Uwe Mönnich, Klaus U. Schulz
	Alexander Mehler, Peter Geibel, Olga Pustylnikov
	Jens Michaelis, Uwe Mönnich
	Autorenverzeichnis

