
Marc Kupietz, Alexander Geyken

Corpus Linguistic Software Tools

Contents

Editorial
Alexander Geyken, Marc Kupietz . iii

graphANNIS: A Fast Query Engine for Deeply Annotated Linguistic Corpora
Thomas Krause, Ulf Leser, Anke Lüdeling 1

Towards Interactive Multidimensional Visualisations for Corpus Linguistics
Paul Rayson, John Mariani, Bryce Anderson-Cooper, Alistair Baron,
David Gullick, Andrew Moore, Stephen Wattam 27

Data Mining Software for Corpus Linguistics with Application in Diachronic
Linguistics
Christian Pölitz . 51

Krill: KorAP search and analysis engine
Nils Diewald, Eliza Margaretha . 63

PAL, a tool for Pre-annotation and Active Learning
Maria Skeppstedt, Carita Paradis, Andreas Kerren 81

Merging and validating heterogenous, multi-layered corpora with discoursegraphs
Arne Neumann . 101

Construction and Dissemination of a Corpus of Spoken Interaction – Tools
and Workflows in the FOLK project
Thomas Schmidt . 105

SpoCo – a simple and adaptable web interface for dialect corpora
Ruprecht von Waldenfels, Michał Woźniak 133

Author Index . 149

Impressum

Herausgeber Gesellschaft für Sprachtechnologie und
Computerlinguistik (GSCL)

Aktuelle Ausgabe Band 31 – 2016 – Heft 1
Gastherausgeber Marc Kupietz, Alexander Geyken
Anschrift der Redaktion Lothar Lemnitzer

Berlin-Brandenburgische Akademie der
Wissenschaften
Jägerstr. 22/23
10117 Berlin
lemnitzer@bbaw.de

ISSN 2190-6858
Erscheinungsweise 2 Hefte im Jahr,

Publikation nur elektronisch
Online-Präsenz www.jlcl.org

Editorial

Alexander Geyken, Marc Kupietz

Editorial

With the growing availability and importance of (large) corpora in all fields of linguistics,
the role of software tools is gradually moving from useful, possibly intelligent information-
technological “helpers” towards scientific instruments that are as integral parts of the
research process as data, methodology and interpretations. Both aspects are present
in this special issue of JLCL on corpus linguistic software tools: The contributions
address topics such as software tools for managing corpora, transforming corpus data,
annotating and analyzing corpora as well as innovative ways of exploring and visualizing
corpus data and analyses.
Thomas Krause, Ulf Leser and Anke Lüdeling present graphANNIS, a newly developed
graph database for querying deeply annotated linguistic corpora. After discussing the
pros and cons of existing solutions, they document implementation details, the data
model, and query aspects, including the evaluation of the the proposed graph based
implementation vs. the established RDBMS backend. It is reported that graphANNIS
performs in the majority of the tested cases much faster than the relational equivalent.
Paul Rayson, John Mariani, Bryce Anderson-Cooper, Alistair Baron, David Gullick,
Andrew Moore and Stephen Wattam address in their paper “towards interactive mul-
tidimensional visualisations for corpus linguistics” several important issues, including
how iterative and exploratory corpus investigations can be supported by dynamic and
interactive visualisation techniques and how to approach issues with current corpus
retrieval tools by including interactive and multidimensional visualizations.
Christian Pölitz presents in his paper “data mining software for corpus linguistics with
an application in diachronic linguistics” a freely available plugin for the RapidMiner
software. This plug-in could be of particular relevance for researchers already using
RapidMiner, or for computational linguists looking for a tool that is more user-friendly
- through drag-and-drop - than e.g. the established R software. The author uses the
example case of topic modelling over time to demonstrate the advantages of the new
plugin, including the implemented topic models and coherence measures.
Nils Diewald and Eliza Margaretha present “Krill”, the search component of the KorAP
corpus search and analysis platform. This paper makes three important contributions to
research and software engineering in the area of corpus indexing and query: It introduces
a new open-source corpus indexing software based on Apache Lucene and describes
how linguistic corpus search can be implemented on top of a full text search engine
such as Lucene. Furthermore, as an implementation of the KoralQuery specification,
Krill is an important milestone for the types of search pattern expected from a modern
linguistic corpus query engine.
Maria Skeppstedt, Carita Paradis and Andreas Kerren present PAL, a standalone tool
for pre-annotation and active learning. PAL can be trained using gold standard data

JLCL 2016 – Band 31 (1) iii

Geyken, Kupietz

and it can incorporate manually annotated/corrected data created by the user within
the BRAT annotation tool. PAL tries to optimize the process by using an active
learning approach to select sentences to be annotated by the user. The tool focuses on
"chunk"-based annotation tasks, e.g. for named entity detection.
Arne Neumann presents “discourse graphs”, a library and command-line application for
merging and validating heterogeneous, multi-layered corpora. The resulting software
tool consists of a python library and command-line applications for converting multi-
level annotated data into different formats, merging independent annotations of the
same text into one graph representation and validating heterogeneous annotation layers
of the same text. This complex model is built upon the property graph model and can
therefore benefit from the ecosystem built around modern graph libraries based on that
paradigm.
Thomas Schmidt presents software tools and workflows for the construction and dissem-
ination the FOLK corpus, a corpus of spoken interaction. The article covers the tools
used in the individual steps of transcription, anonymization, orthographic normalization,
lemmatization and POS tagging of the data, as well as the utilities used for corpus
management. Furthermore, it presents the DGD (Datenbank für Gesprochenes Deutsch
- Database of Spoken German) as means for distributing the completed research data
and making it available for qualitative and quantitative analysis.
Ruprecht von Waldenfels and Michał Woźniak present SpoCo, an adaptable query
and analysis system for spoken dialect corpora with aligned audio data encoded in
ELAN. SpoCo is targeted at users of different levels of expertise and provides them
with advanced concordancing functions, as well as the the possibility to edit and correct
transcriptions. SpoCo takes a middle position between systems that are developed for
the purposes of a specific dialect corpus, on the one hand, and general-use systems
designed for a wide range of data and usage cases, on the other. It is used in a network
of Slavic dialect projects that cooperate in tool development and data sharing.
Our gratitude goes to the colleagues who contributed to this special issue as external
reviewers.

Berlin and Mannheim, May 2017

Alexander Geyken
Marc Kupietz

iv JLCL

graphANNIS

Thomas Krause, Ulf Leser, Anke Lüdeling

graphANNIS: A Fast Query Engine for Deeply Annotated Lin-
guistic Corpora

Abstract

We present graphANNIS, a fast implementation of the established query language
AQL for dealing with deeply annotated linguistic corpora. AQL builds on a graph-
based abstraction for modeling and exchanging linguistic data, yet all its current
implementations use relational databases as storage layer. In contrast, graphANNIS
directly implements the ANNIS graph data model in main memory. We show that the
vast majority of the AQL functionality can be mapped to the basic operation of finding
paths in a graph and present efficient implementations and index structures for this and
all other required operations. We compare the performance of graphANNIS with that
of the standard SQL-based implementation of AQL, using a workload of more than
3000 real-life queries on a set of 17 open corpora each with a size up to 3 Million tokens,
whose annotations range from simple and linear part-of-speech tagging to deeply nested
discourse structures. For the entire workload, graphANNIS is more than 40 times faster,
and slower in less than 3% of the queries. graphANNIS as well as the workload and
corpora used for evaluation are freely available at GitHub and the Zenodo Open Access
archive.

1 Introduction

Many linguistic research questions require the analysis of several different types of
information attached to different substructures of a given linguistic corpus. For instance,
it is necessary to collate parts of speech and lemmas for the computation of complexity
measures for language acquisition studies (Lue, 2011), to consider referential chains and
intonation for the analysis of information structure phenomena (Baumann and Riester,
2013), and to combine temporal information and inflectional forms to trace language
change (Hilpert, 2008). To make the categorization that lies behind such studies explicit,
it is usually attached to a corpus as annotation of the different substructures, like
tokens, phrases, or sentences (Leech, 1997; Lüdeling, 2011). A number of models and
formats for representing and exchanging such annotated corpora have been proposed
in recent years (Carletta et al., 2003; Chiarcos et al., 2008), with a clear tendency
towards multi-layer models, i.e., models which allow the concurrent annotation of
different types of (possibly nested) substructures. During creation and usage in research,
such multi-layer corpora can grow by adding more texts and by adding more layers
of annotation; as it is often not foreseeable at the beginning of a project what the

JLCL 2016 – Band 31 (1) – 1-25 1

Krause, Leser, Lüdeling

corpus may look like in a more advanced project state, systems for supporting the
management and analysis of multi-layer corpora should ideally allow for extensibility
both in the corpus model and in the corpus size.1 Such a system should furthermore
offer a powerful query language to perform quantitative analysis of corpora, and an
implementation of this query language that is fast enough for interactive usage and
that scales well with growing corpus size and complexity.

In this paper, we present graphANNIS, a very fast and flexible main-memory based
implementation of the well-established corpus query language AQL (Rosenfeld, 2010;
Krause and Zeldes, 2016). AQL was developed in the ANNIS project (Krause and
Zeldes, 2016), whose long-term goal is to create a system that allows for unified search
across diverse kinds of annotations. ANNIS supports a large range of different types
and structures of annotations and offers an intuitive web-based user interface with
sophisticated visualizations. The system is used as a corpus management platform for a
variety of projects ranging from historic to spoken language. There are at least 11 public
installations of ANNIS and an unknown number of non-public instances. Our own,
publicly available ANNIS server (https://korpling.org/annis3) hosts more than 150
corpora, has 96 registered users and serves roughly 1800 queries every month.

The query language AQL builds on a graph-based data model, which makes modeling
and querying deeply nested structures simple. However, the current implementation
of AQL, called relANNIS, uses a relational database as storage and query layer. To
this end, any AQL query is translated into one or more SQL commands which are
executed by the database server. The tabular results are then transformed back into
the AQL exchange format and displayed for user interaction at the ANNIS front-end.
This design, which delegates the seamless exchange of data between main memory
and disk to the database server, was originally chosen because memory was expensive
at that time, which meant that very large corpora could not be maintained in main
memory. The downside is it makes query execution somewhat slow, due to the necessary
query and result transformation steps, the unsuitability of an SQL back end for certain
graph-like predicates in AQL, and the general overhead incurred by the multi-tier,
multi-user, transactional memory management inside a relational database2. Despite
considerable effort spent on tuning and tweaking the system (Rosenfeld, 2010), including
extensive use of indexing and materialized views leading to a very large disk footprint,
we frequently observe queries that run into time-outs even on smaller corpora with less
than 100, 000 tokens.
Here, we present graphANNIS, a novel implementation of AQL that directly im-

plements its underlying graph-based data model and that is purely main-memory
based. Due the ever falling prices of computer memory, main-memory technologies are
nowadays extremely popular both in database research (Zhang et al., 2015) and appli-
cations (Färber et al., 2012). At the same time, especially deeply structured corpora
are typically generated manually by linguistic experts, which limits their size to a few

1Example corpus projects where additional annotations have been added can be found e.g. in Zeldes
(2016b) page 1f.

2Note that AQL is a pure query language and has no operations to manipulate data.

2 JLCL

https://korpling.org/annis3

graphANNIS

(dozen) megabyte. For instance, the size of the largest corpus managed by the public
ANNIS server, the “Parlamentsreden_Deutscher_Bundestag” corpus (Odebrecht, 2011),
is 500 megabyte in size (uncompressed) and has only flat annotations at token level.
In contrast, the largest corpus in this collection which has a more complex annotation
structure, the “TueBa-DZ 6.0” corpus (Telljohann et al., 2009b), has a size of only 1.2
gigabytes. Holding such corpora in main memory is easily possible with current PCs.

Graph-based databases are not a new topic, and several research (Wood, 2012) and
commercial implementations (e.g., Neo4J, DEX) exist. However, systems are typically
either optimized for navigational queries (adjacent nodes, neighborhood queries) but
lack efficient support for transitive predicates (such as reachability queries), or are
specialized data structures to support certain complex graph operations but lack basic
navigational features. Therefore, we decided to build graphANNIS from scratch, which
mainly encompasses a query compiler, a graph store, a basic query optimizer, and
special index structures and graph algorithms to support specific features of AQL3.
In this paper, we describe all of these components in detail and give a quantitative
comparison of the performance of graphANNIS to that of relANNIS. We use a workload
of more than 3300 AQL queries against 17 corpora; this workload was created by logging
real-life user queries on the public ANNIS server over a period of roughly 5 months.
Note that, to the best of our knowledge, this is the by far greatest real-life workload of
linguistic queries ever published. We show that graphANNIS is more than 40 times
faster than relANNIS over the entire workload; specifically, it outperforms relANNIS in
95% of all queries, and especially in deeply nested queries.
The paper is structured as follows: Chapter 2 describes the query language AQL

and its existing implementation relANNIS. A description of the concepts underlying
graphANNIS is given in Chapter 3. Chapter 4 describes the concrete implementation of
graphANNIS. An evaluation how this new system compares to the legacy implementation
relANNIS is presented in Chapter 5. Section 6 reviews other linguistic query systems,
and Chapter 7 concludes our paper.

2 The ANNIS System for Corpus Querying

This section provides necessary background information that is needed to understand
the design decisions that were made for the graphANNIS implementation. We describe
the query language AQL and its current implementation relANNIS. For more details on
both topics, the reader is referred to Rosenfeld (2010) and Krause and Zeldes (2016).

2.1 AQL, the ANNIS Query Language

AQL is a linguistically motivated query language not limited to a certain tag-set. It
has been influenced by other query languages, such as TIGERSearch (Lezius, 2002),

3Note that graphANNIS is not yet a complete implementation of AQL, as it lacks certain convenience
features; see Section 2.1 for details.

JLCL 2016 – Band 31 (1) – 1-25 3

Krause, Leser, Lüdeling

and is described more formally in Rosenfeld (2010) and Rosenfeld (2012). An up-to
date description of AQL is also given in the ANNIS User Guide (Zeldes, 2016a).

The basic model of ANNIS is a graph consisting of nodes and edges. Nodes represent
linguistic substructures of a text, like tokens, phrases, or sentences, whereas edges
represent the relationship between nodes, such as followed-by, part-of, dominates, or
within-distance. The type of a node is given by an annotation (or label).

The building blocks of an AQL query are terms, which select nodes either via a label
or via their text. For instance, the query

pos="NN"

selects all nodes having the annotation (or label) “pos” (a common category name for
part of speech annotations) with the value “NN” (often used for nouns). The query

"the"

will select tokens that have the value “the” as spanned text. In both types of selections,
it is possible to use regular expressions instead of string literals by using / instead of
quotation marks.
Labels can also have a namespace to distinguish annotations with the same name

from different sources. This namespace can be selected using the namespace:name
expression. For instance, the query

treetagger:pos="NN"

would select all noun tokens, where the POS information stems from the namespace
“treetagger”. This way, a single structure can have multiple values of the same type,
such as multiple POS tags generated by different taggers or following different linguistic
theories.
Multiple terms can be defined in one query using the special symbol &. Such

conjunctions are typically followed by a predicate which specifies the nature of the
selected nodes. For instance, the following query

cat="S" & "the" & #1 >* #2

first selects all nodes of category “S” (sentences) and then all nodes whose text is “the”.
Next, the Cartesian product of these two sets of nodes is built and filtered for those
pairs where the sentence dominates (i.e., contains) the respective token. Note that
the token need not be directly contained in the sentence; it might as well be that a
sentence consists of phrases consisting of subphrases, etc. consisting of tokens. This
implies that the path between the node with annotation “S” and the node “the” can
have an arbitrary length. AQL also supports a number of more convenient syntax rules;
for instance, the above query may also be abbreviated as

cat="S" >* "the"

4 JLCL

graphANNIS

Several other operators exist for different constraints, like paths lengths, types, and
edge annotations (like direct dominance in syntax trees or co-reference chains). Another
class of operators compare the texts covered by two nodes, such as phrase structures
that overlap, or tokens being contained in a sentence. We describe the most important
relationships in the following paragraphs.

Pointing relation operator: “->type” Each pointing relation has a named type and
the names must be explicitly given as argument to the operator. All edges of one
type define a graph component which is required to be acyclic. The path can be
constrained to have the length 1 when using the “direct pointing relation” form of
the operator (->type) or any length when using the indirect form which is marked
by a star (->type*). An explicit range n . . . m of allowed path lengths can be given
by using the form ->type,n,m. Only edges belonging to the same type are allowed
in the path definition and there is no possibility to mix different types of edges by
using only one operator. Edges are allowed to have labels as annotation and the direct
pointing relation operator can take an additional argument that constrains the labels.
An exemplary use of this predicate is the query

pos="VVFIN" ->dep[func="sbj"] tok

which selects all finite verbs (part of speech is “VVFIN”) which are connected to a
token via a pointing relation of type “dep” (which marks dependency relations). This
connected token is the subject of the finite verb (this is marked with the func="sbj"
edge annotation).

Dominance operator: “>” This operator selects a path composed of so-called domi-
nance edges, which imply inclusion dependencies at the textual level. The syntax for
the dominance operator is the same as for the pointing relation, thus it is possible to
specify a path of unspecified length (>*), ranged length paths (>n,m) or edge labels
(>[anno="value"]). An exemplary use of this predicate is the query

cat & cat="S" & #1 >[func="SB"] #2

which searches a sentence/clause category (node #2 having a “cat” annotation with
value “S”) which is also a subject clause (expressed by the func="SB" edge annotation)
and is dominated by another syntactic category (node #1 having the “cat” annotation
without a specific value).

Precedence operator: “.” Two tokens are in a precedence relationship if they are
next to each other in the text. As with the other operators the precedence operator
can have the path length as an argument. Precedence is not only defined for tokens but
for any node that has a text coverage relation to any set of tokens. In this case the
precedence is defined between the right-most covered token of the left-hand side (LHS)
operand and the left-most covered token of the right-hand side (RHS) operand. For
instance, in the sentence “I am hungry” the “I” token precedes the “am’ token and the

JLCL 2016 – Band 31 (1) – 1-25 5

Krause, Leser, Lüdeling

“am” token precedes the “hungry” token. This construction in AQL would be expressed
as

"I" . "am" . "hungry"

Text coverage operators: “_=_” “_o_” and “_i_” Any node covers a certain token
span. Text coverage operators describe the relations between two text spans covered by
a node. The identical coverage operator _=_ ensures that both sets are completely equal
while the overlap operator _o_ only requires that there is a non-empty intersection
between two sets. These operands may be swapped in a query since they describe a
commutative relation between both nodes. In contrast, the inclusion operator _i_ is not
commutative since it defines that all covered tokens of the RHS must also be covered
by the LHS.
graphANNIS implements all of the features of AQL described in this section. Addi-

tional features of AQL are available in the existing relANNIS implementation, including
filtering documents by metadata, negation of values, filtering for value identity and
more operators. For a complete list of features see the ANNIS User Guide (Zeldes,
2016a).

2.2 A Relational AQL Implementation: relANNIS

The existing relANNIS query system offers a complete implementation of AQL on top
of the relational PostgreSQL (https://www.postgresql.org/) database. Queries entered
via the ANNIS front-end are translated to SQL, executed by the database engine, and
results are transformed from the relational data model to a Salt graph (Zipser et al.,
2010) before being displayed through various visualizers in the front-end. Additionally,
the total number of results of a query is computed by executing a separate SQL-query.

This workflow leaves most of the responsibility for optimizing the query execution to
the relational database implementation. It also means that the graph model data in
ANNIS needs to be mapped to the relational model. For most cases, this is straight-
forward; the database scheme of relANNIS uses mostly the following tables:

• node for informations about the node itself,
• node_annotation for the different labels of a node,
• component lists connected components,
• rank contains all pre-/post-order entries and
• edge_annotation for the labels of each edge.

Note that this is a normalized schema. It has some drawbacks; if an AQL query uses
node annotations and edge labels, even a simple AQL operator between two annotations
will cause an SQL-join with 9 tables (edge_annotation is joined once, all other tables
are joined twice). However, also queries joining five annotations and more are common,

6 JLCL

graphANNIS

which would result in a query of more than a dozen joins. To avoid such difficult-
to-optimize queries, relANNIS uses several materialized views that combine specific
information into a single table. Using these tables, the query compiler can usually
reduce the number of SQL-joins to match the number of AQL operators, but it also
drastically increases the required space and makes memory management much harder
for the database server.

A number of AQL queries are not as easily mapped to SQL. This affects, in particular,
relationships between nodes over a path of unknown length, which cannot be expressed
directly in SQL4. To answer such queries efficiently, relANNIS uses pre-/post-order
indexing (Grust et al., 2004), with which reachability information can be obtained with
a single query. However, this only holds true for tree-shaped graphs. To also handle
annotations shaped as Directed Acyclic Graphs (DAGs), which are common in ANNIS,
we use a technique described in Rosenfeld (2010), which increases memory consumption
but still allows comparably fast queries.
An additional problem occurring in relANNIS are the statistics required by the

cost-based optimizer in modern RDBMS. Note that each AQL operator results in at
least one join, often over more than one attribute. The concrete way of executing such a
join (and sizing of buffers etc.) is determined by the query engine based on statistics on
the value distributions in the join columns. However, RDBMS typically assume these
distributions to be independent (which allows for very succinct statistics and low cost
maintenance), an assumption which is breached regularly in relANNIS; for instance,
the post-order of a node will always be larger than the pre-order. We observed that,
due to this discrepancy, PostgreSQL very often underestimates the size of intermediate
results, which leads to suboptimal choices during query optimization.

3 Basic Design of graphANNIS

An important goal for the design of the new graphANNIS system was to reuse the best
parts of the existing relANNIS system, but to address the performance issues which
arose from using a disk-based relational database. The graph-based data-model and
the query language AQL proved to be very useful for searching in linguistic corpora5

and thus the new system should support the largest possible subset of AQL. Also the
experience with the relational database showed that there should not be a mapping of
data-models if not necessary. This helps to avoid losing possibilities for optimization,
like good statistics for better execution plans. Therefore we did not want to rely on
XML databases or RDF triple stores, as these have different data models.

Experiences with the query planning from PostgreSQL, where we needed to “trick”
the optimizer into using a more efficient plan, also confirmed that we needed explicit
control of the query execution. Such control is not possible when using a query language

4Note that the SQL-3 standard defines recursive queries which can express such operations. However,
the current implementations are notoriously ineffective.

5For a discussion about the pros and cons of different linguistic query languages see Frick et al.
(2012).

JLCL 2016 – Band 31 (1) – 1-25 7

Krause, Leser, Lüdeling

from a graph database like Cypher from Neo4j (Robinson et al., 2013). Also, systems
like Neo4j usually have one specific way of storing and querying the graph, e.g. only
using graph traversal. Since linguistically annotated graphs tend to have very different
kinds of structures, and we want to be able to have solutions that are optimized for
these specific structures, we did not want to restrict ourselves to a single storage and
querying strategy.
ANNIS is solely a search system and using an SQL database to do the actual

search helped to take advantage of all the advanced search optimization a modern
relational database has to offer. But databases do a lot more than only providing search
capabilities: They typically organize the persistent storage of the data on the disk and
provide transactions for persistence and isolation of database updates. A corpus search
system is special since after a corpus is imported once by an administrator, it solely
provides read-only access to normal users. Thus complicated and costly transactions are
not needed. The bulk import also allows to add much more computationally intensive
optimizations since importing a corpus is not done very often. E.g., very specific index
structures can be used and even data types for values can be optimized since the corpus
is static and will not change. These index structures are the only way the read-only
data will be accessed. Since there are no data updates, there is no need to store an
additional normalized representation (e.g. the database table holding the nodes) if all
information is available in the indexes themselves. We also wanted to avoid overhead
created by managing the transparent persistence of the data to the disk.
General availability of notebooks with at least eight gigabytes of RAM and server

systems with more than 100 gigabytes makes a main memory only approach feasible
even for larger corpora. Not having to worry about the representation of the data
both on the physical disk (which may not even be a relatively fast SSD) and the main
memory allows to optimize the data structures for main memory and CPU cache access
only. We also expect much faster queries if we can guarantee that all needed indexes are
already loaded in main memory and do not need to be fetched from a disk. Our goal is
to use data structures that, in contrast to the materialized view used in relANNIS (see
section 2.2), scale well with the size of the corpus.
In order to achieve this goal we designed an architecture that combines the generic

graph-based data model with specific implementations for different types of graphs.
These so-called Graph Storages (GSs) only implement the storage of edge components
while a common node annotation store stores all node-relevant information. Different
annotation layers will result in different types of components and the architecture
described here allows for the selection of an optimized implementation to store and
query edges for a component. When executing a query it is parsed into a generic JSON
representation, an optimized plan is generated with help of statistics and this optimized
plan is subsequently executed. Finding nodes that are reachable from a starting point
is an essential substep in these plans. The query optimizer does not need to choose
which indexes to use, the best GS implementation is already chosen automatically when
a corpus is first imported. Strategies for finding reachable nodes are graph-traversal,
pre-/post-order or other graph indexes and our architecture allows to easily add new

8 JLCL

graphANNIS

Type Description
COVERAGE Edges between a span node and tokens. Implies text

coverage.
INVERSE_COVERAGE Edges between a token and a span node.
DOMINANCE Edges between a structural node and any other structural

node, span or token. Implies text coverage.
POINTING Edge between any node.
ORDERING Edge between two tokens implying that the source node

comes before the target node in the text-flow.
LEFT_TOKEN Explicit edge between any non-token node and the left-

most token it covers.
RIGHT_TOKEN Explicit edge between any non-token node and the right-

most token it covers.

Table 1: Component types used in graphANNIS.

types of GSs.

4 Implementation

While the original ANNIS ecosystem is mostly developed in the Java programming
language, graphANNIS is written in C++ 11. This allows for a better control of the
allocation, deallocation and structure of the data in main memory. The system is
optimized for read-only access of the data, thus the corpora are imported once and
normally not changed after they have been loaded into the query system. Since the
system is read-only there is no need for a complex transaction management. graphANNIS
is implemented as a library which can be used in other programs and it is planned to
make graphANNIS a drop-in replacement for the existing relational database back-end
used in the current ANNIS versions.6 All source code is published as open source at
https://github.com/thomaskrause/graphANNIS.

4.1 Data model

graphANNIS represents the linguistic annotations as a directed labeled graph. The
edges are grouped into named components and each component has an explicit type.
A list of all component types used in graphANNIS is listed in Table 1. For some
linguistic annotations like co-reference chains or constituent trees the mapping to the
graphANNIS data model is straightforward: e.g., for a constituent tree the clauses are
modeled as nodes, the tokens are terminal nodes and the relations are expressed using
edges as can be seen in Figure 1. The data model of graphANNIS is very similar to the
Salt (Zipser et al., 2010) data model, differing slightly only to match the semantics of
AQL as closely as possible. E.g., both Salt and graphANNIS use explicit edges between

6In order to use the C++ library from the existing Java-based back-end the JavaCPP library
(https://github.com/bytedeco/javacpp) is used.

JLCL 2016 – Band 31 (1) – 1-25 9

https://github.com/thomaskrause/graphANNIS
https://github.com/bytedeco/javacpp

Krause, Leser, Lüdeling

tok=Very tok=brief
ORDERING

POINTING (dep)
func=advmod

tok=.
ORDERING

cat=ROOT

LEFT_TOKEN RIGHT_TOKEN

cat=FRAG

DOMINANCE (syntax)

LEFT_TOKEN DOMINANCE (syntax)RIGHT_TOKENcat=ADJP

DOMINANCE (syntax)

DOMINANCE (syntax) LEFT_TOKEN DOMINANCE (syntax) RIGHT_TOKEN

Figure 1: Example how a constituent tree is modeled in graphANNIS. Each token has the special
annotation “tok” which contains the covered text as value and tokens are connected
with explicit edges which define their ordering (in blue). So-called structural nodes of
the constituent tree have their annotation as label and these are connected with edges of
type DOMINANCE (in red) to either other structural nodes or tokens. In addition each
non-token node has an explicit LEFT_TOKEN and RIGHT_TOKEN (the dashed lines)
to the left- or right-most token they cover. There is also an additional dependency edge in
this example which is modeled as a so-called pointing relation (in orange). This example
is taken from the GUM corpus (Zeldes, 2016b) and is also available online in ANNIS
(https://korpling.org/annis3/?id=cc06121a-09b6-455f-aef4-f9eaee7a34f5)

tok=That tok=is
ORDERING

tok=a
ORDERING

tok=Category
ORDERING

tok=3
ORDERING

tok=storm
ORDERING

tok=.
ORDERING

hi_rend=blue

COVERAGE LEFT_TOKEN COVERAGE RIGHT_TOKEN

s=s

COVERAGE LEFT_TOKEN COVERAGE COVERAGE COVERAGE COVERAGE COVERAGE COVERAGE RIGHT_TOKEN

Figure 2: Example how spans are modeled in graphANNIS. Each span has an explicit edge to each
token it covers (green COVERAGE edges). Only the “s” and “hi_rend” annotations have
been included and the INVERSE_COVERAGE edges have been excluded to enhance read-
ability. This example is taken from the GUM corpus and is also available online in ANNIS
(https://korpling.org/annis3/?id=d23627b4-3b30-4876-9ce5-7acb3406d3a4)

10 JLCL

https://korpling.org/annis3/?id=cc06121a-09b6-455f-aef4-f9eaee7a34f5
https://korpling.org/annis3/?id=d23627b4-3b30-4876-9ce5-7acb3406d3a4

graphANNIS

the so-called span nodes (nodes that cover a range of tokens) from each span node to
every token and this is compatible with the way AQL handles text coverage (see Figure
2 for an example). In AQL the leaf nodes in the annotation graph are always tokens
whereas in Salt there are special nodes containing the complete text of a document and
are connected with the tokens. The tokens in graphANNIS have a special label with
the name “annis4_internal:tok” instead which contains the covered text.

4.2 Node labels

The graphANNIS implementation separates the storage of nodes and edges. There
is one central map for storing node labels and several storages for different types
of edges (see subsection 4.3 for details). Nodes are not explicitly stored but have a
numeric ID to which node labels and edges refer. Every node has at least the special
“annis4_internal:name” label, so it is always possible to iterate over all nodes even if
they do not have a user-supplied annotation.

The query system should support corpora of all kinds of languages and thus needs to
support Unicode in order to be able to represent the different scripts. In addition, strings
representing linguistic annotation names or values might have a wide variation in their
length. In certain tag sets the annotation names are very short like “pos” for “part of
speech” and the possible annotation values are also abbreviations with a limited length.
A good example for this kind of annotations is the Stuttgart-Tübingen-Tagset (STTS)
(Schiller et al., 1999). As another extreme annotations can be free text comments with
several hundreds of characters (e.g., the “Open-ended comments” in the CityU corpus
from Lee et al. (2015)). graphANNIS uses a dictionary encoding where all strings get
a unique ID and are only referenced by this ID. A global ID manager is responsible
for adding new strings and getting the ID for a certain string or the string value of an
ID. This has the advantage that an annotation has a constant size independently of
the length of the strings it contains. For annotation categories with a limited number
of possible values this approach might also reduce the needed memory, since repeated
occurrences of a value or name only store the ID and not the real string. This only holds
for annotation values or names whose memory representation is larger than the size
of an ID (which is 4 bytes). The assumption does not hold for certain tag sets which
contain very short identifiers representable with the ASCII encoding and will actually
cause a slightly worse memory usage in this case. E.g., in the TIGER corpus (Brants
et al., 2004) the phrase category annotations have values from 1 to 4, but typically only
2 characters.

Additionally to the actual values, the node label storage contains statistics about the
values of different label categories. A label category is a combination of a namespace
and name. These statistics include the total number of labels and equi-width histograms
of the values for each label category. Thus it is possible to estimate the instance count
of label categories for a specific value or a range of possible values both efficiently and
accurately based on the actual distribution of label values in the corpus.

JLCL 2016 – Band 31 (1) – 1-25 11

Krause, Leser, Lüdeling

4.3 Specialized Graph Storages

The main task of the query system is to find nodes with certain labels and to check
constraints on the path. Thus the node described by a RHS of the operator must be
reachable by the node of the LHS. Finding nodes that are (indirectly) reachable by
another node is therefore a very important subtask that must be implemented efficiently.
There exist various graph indexes to query reachability (Grust et al., 2004; Seufert
et al., 2013; Yildirim et al., 2010) but they typically do not work on any kind of graph
(e.g., see section 2.2 for a description of the problems that pre-/post-order indexes have
when used for a DAG instead of a tree). Since the annotation edges of different kinds of
linguistic annotations are grouped in components, graphANNIS can exploit the specific
structure of each component and use an optimized implementation for storing and
querying edges.
A so-called Graph Storage (GS) is responsible to store the information about the

edges of a component. It does not only allow to retrieve the directly connected edges
for a node and their annotations, but provides more complicated functions for accessing
the graph. Each GS has the functions (pseudo-code)

• boolean isConnected(n1, n2, minDistance, maxDistance),
• iterator findConnected(n1, minDistance, maxDistance) and
• integer distance(n1, n2).

isConnected(...) checks if node n2 is reachable from node n1 within a given (optional)
distance. findConnected(...) will find all reachable nodes from a start node and
distance(...) calculates the minimal path length between two given nodes. It is
expected for each GS to have an optimized implementation for these three functions.
As a result a GS cannot store any type of component but is limited to graphs which
fulfill special constraints. It is the responsibility of the general database to only use an
appropriate implementation for a specific component. There are three different kinds of
graph storages implemented already.

4.3.1 Adjacency list

This implementation of a GS stores the edges as set of node ID pairs. The set
implementation is based on B-trees and uses the Google C++ B-tree template classes.7
It is guaranteed that the set is sorted and since the pair always starts with the source
node it is possible to get all outgoing edges for a certain node in logarithmic time.
The three basic GS functions are implemented using a Depth-First-Search (DFS)

graph traversal. If the function isConnected(...) is called for the exact distance of
1 a shortcut is used which only checks if the source/target node pair is contained in
the set. Since the components in this implementations are allowed to contain cycles
a cycle-safe implementation of DFS can detect cycles and will result in an error state
if such a cycle is found. Using a cycle check makes the execution less efficient. The

7The library is available from https://code.google.com/archive/p/cpp-btree/

12 JLCL

https://code.google.com/archive/p/cpp-btree/

graphANNIS

statistics of a component already contain the information whether a component is cyclic
(see section 4.3.4) and this could be used to build a specialized variant of the adjacency
list that can be used for read-only noncyclic components.
Since adjacency lists and cycle-safe DFS work for every graph regardless of its

properties this implementation is used as a fall-back if no optimized implementation is
available.

4.3.2 Pre- and post-order

As described in Section 2.2 the legacy ANNIS implementation is based on a relational
database and uses a pre-/post-order based index to find reachable nodes efficiently.
This GS implementation uses the same index to accelerate reachability queries. It does
not support components that contain cycles. In order to store the hierarchical structure
of the graph it maintains a map from a node ID to a list of triples containing the level
and the pre- and post-order. There is also an inverse map for each distinct triple to the
corresponding node ID. Both maps are based on B-trees.

4.3.3 Linear graphs

Linear graphs are graphs where each node can only have one ingoing and one outgoing
edge at maximum. This is quite common in linguistic annotations, e.g. when the order
of words is stored or in any other form of chains of references. When determining
whether a node is a descendant of another node an ordering can be used. A component
might have several root nodes and the order is always the distance of a node to its root
node. The order of each node is stored in the map which maps the node ID to a pair
containing the ID of the root node and the (relative) order of the node. Additionally
there is a vector for each root node. Each entry in this vector consists of the ID of a
connected node and the index inside the vector is the order of this node.

4.3.4 Automatic selection of best Graph Storage

Each component has different characteristics depending on which annotation scheme
was used to create it. graphANNIS tries to exploit this and provide optimized imple-
mentations for certain typical structures that can be found in linguistic annotations.
When an existing corpus is imported for the first time each component is stored in a
fall-back implementation using adjacency lists. This implementation is able to calculate
statistics on the component which helps to automatically decide which implementation
can be used. Table 2 contains the fields of the collected statistics. After the import is
finished each component is converted to an optimized implementation if possible.
The GS for linear graphs (see section 4.3.3) is chosen whenever the component is a

forest of rooted trees (rootedTree is true) and the maximal fan-out (maxFanOut) is 1.
Since we know the length of the longest path inside the component (maxDepth) and the
order of a node inside a linear graph can be only as large as the longest path, we choose
a memory-saving data type for representing the order. Depending on maxDepth a single

JLCL 2016 – Band 31 (1) – 1-25 13

Krause, Leser, Lüdeling

Field Description
cyclic True if the component contains cycles.
rootedTree True if the component is a forest of rooted trees (tree having only one

root node). This is checked by ensuring that the graph is not cyclic
and that each node has maximally one incoming edge.

nodes Number of nodes in this component.
avgFanOut The average number of outgoing edges for each node.
maxFanOut The maximal number of outgoing edges for each node.
maxDepth If noncyclic, the length of the longest path.
dfsVisitRatio If noncyclic, the ratio between the number of nodes and the number of

visits when traversing each subcomponent in a Depth-First-Search.

Table 2: Information collected as statistics for each component.

order value is using either 8, 16 or 32 bytes of main memory. Since the linear graph GS
is read-only there is no possibility that the maximal path size changes and does not fit
any longer in the chosen data type.
When the component is a forest of rooted trees but the maximal fan-out is greater

than 1, the pre- and post-order based GS is chosen. As with the linear graphs, a memory
optimized implementation is chosen depending on the actual number of nodes and the
maximal depth. The data type for the pre/post-order is limited by the number of nodes
since every node can have only one pre/post-order in a rooted tree. In the case that
the component is not a forest of rooted trees but still acyclic, it is checked whether the
ratio between the number of nodes and the number of visits in a Depth-First-Search is
greater than a constant (currently 1.03). This condition shall express the case that a
component is “almost” a tree, thus the number of order entries for the nodes is expected
to be low. If a component fulfills this condition the pre- and post-order GS is still
used, but only the data type for the level of a node is optimized with the help of the
maxDepth statistic.

The default adjacency list implementation is not only used as a fall-back but also in
the case if the longest path of the component is 1. This is justified by the overhead
other implementations have for storing and querying the graph. If the longest path is 1,
the adjacency list can implement the three basic functions with a single map look-up
and does not have the overhead of the other implementations.

4.4 Query Optimization

graphANNIS does not include its own parser for AQL queries. Instead, the original
Java-based parser from relANNIS is used to create a intermediate representation of the
query as JSON objects, which is then passed as argument to the graphANNIS library to
construct and optimize an execution plan. An execution plan of an AQL query is a tree
of operators like joins, path constraints, filters, or matching label values. Nodes with
certain values in their labels can be searched using exact matches or regular expressions,
and any search may make use of namespace information.

14 JLCL

graphANNIS

For each plan, graphANNIS tries to derive an abstract cost measure which correlates
to the sum of processed tuples over all execution steps. Estimates are calculated by
using statistics on the distribution of label values and edge types; the edge component
statistics are the ones described in Table 2 and are used to estimate the outcomes of
join and filter operations. For estimating the number of labels which fulfill a certain
criterion histogram statistics are used (see section 4.2).

These cost estimates are used by a simple query optimizer to reorganize the original
plan following the simple heuristic that plans creating smaller intermediate results are
generally faster. In a first optimization step the operands of each commutative operator
are switched if the estimated number of matches for the LHS is larger than the RHS,
since a smaller LHS is beneficial for most joins. The second step is to optimize the order
of the joins themselves. For queries with less than eight predicates we exhaustively
enumerate all permutations to find the presumably best plan; for queries with more
than 7 operators we use a simple genetic optimization algorithm to keep the search
space at a reasonable size.

5 Evaluation

In this section, we compare the performance achieved by graphANNIS with that of
relANNIS using a large real-life workload and a diverse set of different corpora. We
also show that the main memory requirements for graphANNIS are acceptable for all
multi-layer corpora assuming availability of a well-equipped desktop computer or of a
smaller server.

5.1 Dataset used for benchmark

To test AQL implementations with a large, diverse and realistic set of queries, we
anonymously collected AQL queries from our public ANNIS server. Note that this
server provides both selected free corpora and access-restricted corpora (via a login
system); for our tests, we only used queries against corpora which, in principle, are
freely available8. The selection of corpora available on this server is based on actual
research questions and we assume the queries executed on the system are relevant for
the researchers using the server.
For each query only the query itself, the selected corpora, a time-stamp and the

execution time were logged (but not the user). We collected data beginning in November
2015 and ended the collection in March 2016. In total 8584 unique queries were collected9;
some data unfortunately was lost due to configuration problems. We filtered all queries
which (1) targeted more than one corpus (AQL allows multi-corpus queries, (2) targeted
a corpus which was used only rarely, or (3) used an AQL feature not yet available

8The licensing situation for corpora is not always clear. Some corpus creators disallow non-academic
use and allow download of the original corpus files only after registration. Accordingly, not all
corpora in our benchmark set are directly downloadable, but all are free for non-commercial use.

9By “unique” we mean syntactic equivalence.

JLCL 2016 – Band 31 (1) – 1-25 15

Krause, Leser, Lüdeling

queries
BeMaTaC_L1_2013-02.1 (Sauer, 2013) 194
BeMaTaC_L2_2013-02.1 (Sauer, 2013) 87
DDD-Tatian (Donhauser et al., 2015) 201

falkoEssayL1v2.3 (Reznicek et al., 2012) 124
falkoEssayL2v2.4 (Reznicek et al., 2012) 360

FalkoWHIGL2v2.1 (Hirschmann et al., 2008) 28
Fuerstinnenkorrespondenz1.1 (Lühr et al., 2015) 131

HIPKON (Coniglio et al., 2014) 28
KAJUK (Ágel and Hennig, 2014) 31

kobaltL1v1.4 (Zinsmeister et al., 2012) 173
kobaltL2v1.4 (Zinsmeister et al., 2012) 360

Maerchenkorpus (Walter, 2015) 111
Parlamentsreden_Deutscher_Bundestag (Odebrecht, 2011) 734

pcc176 (Stede and Neumann, 2014) 465
RIDGES_Herbology_Version4.1 (Odebrecht et al., 2016) 244

tiger2 (Brants et al., 2004) 14
TueBa-DZ.6.0 (Telljohann et al., 2009a) 102

sum 3387

Table 3: Corpora used in the benchmark and the number of queries for each corpus.

in graphANNIS. Table 3 lists the names of the remaining corpora and the number of
unique queries for each corpus. In total 3387 queries from 17 corpora were included
in the benchmark.10 Note that the workload contains each query only once; multiple
executions are not measured, although they exist in the log files.

5.2 Benchmark setup

All runtime measurements were executed on a server with 16GB of DDR3 RAM (1333
MHz) and an Intel Xeon X3460 CPU clocked at 2.80GHz on an Ubuntu Linux system.
Table 4 contains the versions of the used software.11 PostgreSQL was configured to use
a shared buffer with 8GB which is enough to hold the relevant tables and indexes of
each corpus in main memory.

relANNIS includes an internal benchmark functionality where all queries for a single
corpus are executed first in sequential order to make sure the data is in the database
cache, and then executed again 5 times in random order. We used this feature and
report the median of the last five executions as runtime of a query. The median was
chosen to flatten out any outliers caused by tuples not yet included in the cache. Note
10From the original 8584 queries 25.7% were filtered out because the corpus was not included, 31,1%

of the remaining queries did target more than one corpus and 22,8% of them were filtered out
because they did use a not yet available AQL feature. The complete dataset including the queries
and the benchmark results can be downloaded from http://dx.doi.org/10.5281/zenodo.61807. All
open access corpora used in the benchmark can be downloaded from http://dx.doi.org/10.5281/
zenodo.154343.

11The version of graphANNIS used for the benchmarks can be downloaded from http://dx.doi.org/
10.5281/zenodo.61811.

16 JLCL

http://dx.doi.org/10.5281/zenodo.61807
http://dx.doi.org/10.5281/zenodo.154343
http://dx.doi.org/10.5281/zenodo.154343
http://dx.doi.org/10.5281/zenodo.61811
http://dx.doi.org/10.5281/zenodo.61811

graphANNIS

Software component Version
relANNIS 3.4.1

PostgreSQL 9.4.6
graphANNIS benchmark-journal-2016-07-27

Table 4: Versions of the software components used in the benchmark.

sum (in ms)
baseline 6637917

graphANNIS 161160

Table 5: Sum of workload execution times. This is the sum over the execution times of all the
queries in the benchmark.

that this is a fairly RDBMS-friendly setup, as running all queries first allows filling the
main memory caches with all relevant tuples. Queries were aborted after a 60 seconds
time-out and aborted queries were counted as 60 seconds execution time.
graphANNIS also has an integrated benchmark mode using the Celero Benchmark

library (https://github.com/DigitalInBlue/Celero). Each query in the dataset was
converted to the JSON intermediate representation together with the execution time
baseline from relANNIS. Then all queries were executed 5 times with the mean execution
time as the result. Additionally the memory consumption for each corpus was measured.
In contrast to relANNIS there is no warm-up phase necessary for graphANNIS (the
complete data is already loaded in memory before the benchmark is started) and thus
the mean execution time was chosen instead of the median.

5.3 Benchmark results

In Table 5 the sum of the execution times for the relANNIS baseline and graphANNIS
are shown. For executing the entire benchmark, relANNIS requires 41.188 times more
time than graphANNIS. The individual speed-ups are shown in Figure 3: 94.12% of
the queries are faster in graphANNIS than when using relANNIS. Table 6 shows the
quantiles of the speed-ups. For instance, 75% of the queries are at least 29.57 times
faster in graphANNIS than in relANNIS.

While these figures clearly show the superiority of graphANNIS in terms of execution
speed, one also has to consider main memory requirements, as graphANNIS must hold
an entire corpus in main memory before being able to execute AQL queries. Table 7
lists the number of nodes and the memory usage of graphANNIS for each corpus in the
benchmark set. Note that the used memory size does not only depend on the number
of tokens but on the overall number of nodes and edges, which grow superlinearly
in multi-layer corpora. Thus a corpus with a relatively small number of tokens like
“falkoEssayL2v2.4” (144.619 tokens) can have a similar size to a corpus like “tiger2”
(888.578 tokens) due to the fact that the annotation in “tiger2” is only based on tokens
and a single syntax layer, while the Falko corpus contains a lot of spanning annotations.

JLCL 2016 – Band 31 (1) – 1-25 17

https://github.com/DigitalInBlue/Celero

Krause, Leser, Lüdeling

**
**

**

**

**

**

**

**

**

0.
1

10
.0

10
00

.0
10

00
00

.0

query

tim
es

 fa
st

er
 th

an
 b

as
el

in
e

Figure 3: Distribution of the query execution time when using graphANNIS in comparison to the
baseline relational database implementation. Each data point corresponds to a single
query and how much time it took in relation to the baseline. Thus every data point below
the red line (at 1.0) is slower than the baseline and the ones above are faster.

percent of queries times faster than baseline
0% 2911623.49
25% 2097.62
50% 460.23
75% 29.57
100% 0.03

Table 6: Quantiles of the speedup from using graphANNIS instead of the baseline relational database
implementation (larger is better).

Overall, even the largest corpus in this set, the TuebaD/Z corpus which contains 975, 836
tokens in version 6 leading to 15, 773, 656 nodes12, requires only 1.6GB of memory.
There are still types of queries where graphANNIS is slower compared to the rela-

tional database implementation. E.g. the query which performs 28.59 times worse
compared to the baseline (and thus is the worst query in the benchmark set) is
node & node & #1 ->dep[func="ART"] #2 : two very non-selective attribute defini-
tions and an operator with a very selective edge annotation in between. Currently
graphANNIS has to check all nodes if they have an outgoing edge that matches this
edge annotation. This kind of query can be made much faster by adding an index
which maps each edge annotation to its corresponding edge (with its source and target
12This version of TuebaD/Z contains several annotation layers like part of speech, constituent trees,

and co-reference chains.

18 JLCL

graphANNIS

corpus used memory (MB) # node labels # token
BeMaTaC_L1_2013-02.1 17.86 235563 11187
BeMaTaC_L2_2013-02.1 23.12 257490 12517
DDD-Tatian 43.96 849796 54677
falkoEssayL1v2.3 194.18 3639621 70615
falkoEssayL2v2.4 417.71 8103560 144619
FalkoWHIGL2v2.1 258.52 5593364 130949
Fuerstinnenkorrespondenz1.1 286.87 5043000 262465
HIPKON 40.15 727485 109045
KAJUK 65.66 907774 119420
kobaltL1v1.4 67.31 1186691 12984
kobaltL2v1.4 165.59 3033369 33368
Maerchenkorpus 55.90 1479400 295880
Parlamentsreden_Deutscher_Bundestag 588.53 15670960 3134192
pcc176 25.51 321544 33298
RIDGES_Herbology_Version4.1 223.94 3867351 154267
tiger2 427.01 6451776 888578
TueBa-DZ.6.0 1615.36 15773656 975836

Table 7: Main memory usage of the corpora in megabytes. The number of node labels and token is
given as reference.

node ID) and using this index as an iterator for the LHS of the join. From the 25
slowest queries (compared to baseline) 19 queries match this pattern. Another typical
problem are queries containing regular expressions that PostgreSQL can replace with
index-optimized LIKE queries. For simple cases this is already supported in graphANNIS
as well, but more complex regular expressions like (N.|ART) can result in a full search
for all nodes with the annotation name even if a prefix based index lookup could be
used. Figure 4 indicates that there is also some correlation between the number
of attributes used in a query and the execution time. The number of attributes can
be seen as an indicator for the complexity of a query since more attributes result in
more joins. When the query statistics work well and the join order is optimized to
produce as small intermediate results as possible the negative effect of the joins can be
compensated. Additionally, queries with a larger number of attributes are less frequent
in the workload. graphANNIS is able to handle the different query complexities and
is faster than the baseline implementation even if queries having the same number of
attributes are grouped into separate workloads (see Figure 5). Still there is room for
improvement in join performance, as queries containing no join perform much better
than the ones containing at least one join.

6 Related Work

There already exist several linguistic query systems which can be categorized via
their data model and the expressiveness of their query language. The IMS Open
Corpus Workbench (CWB) (Evert and Hardie, 2011) for example allows searching
on annotations on tokens (positional annotations) and ranges of tokens (structural

JLCL 2016 – Band 31 (1) – 1-25 19

Krause, Leser, Lüdeling

1 2 3 4 5 6 7 8
number of attributes in query

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

e
x
e
cu

ti
o
n
 t

im
e
 i
n
 m

s
p
e
r

1
 m

ill
io

n
 n

o
d
e
 l
a
b
e
ls

Figure 4: Box plot of the distribution of normalized execution times for each query grouped by
the number of attributes a query has. To make the results comparable between different
corpora, they have been normalized to the corpus size. The execution times are measured
in milliseconds per 1 million node labels of the corresponding corpus.

1 2 3 4 5 6 7 8
number of attributes in query

0
200
400
600
800

1000
1200
1400
1600

n
u
m

b
e
r

o
f

q
u
e
ri

e
s

1 2 3 4 5 6 7 8
number of attributes in query

1

10

100

1000

ti
m

e
s

fa
st

e
r

th
a
n
 b

a
se

lin
e

Figure 5: Distribution of number of attributes per query in the workload (on the left side) and
speedup of graphANNIS compared to the baseline when the workload is grouped by the
number of attributes per query (right side).

20 JLCL

graphANNIS

annotations). This is a rather “flat” annotation scheme which cannot properly encode
general trees.13 CWBs strength is the support for very large corpora: the authors of
CWB claim they can support up to 2.1 billion words (see Evert and Hardie (2011) page
12f.). In contrast TIGERSearch (Lezius, 2002) was designed to handle a collection of
sentences which are annotated with syntax trees according to the TIGER annotation
scheme (Brants et al., 2004). TIGERSearch uses an index on the label values to restrict
the search to single sentences, but it does not use an index on the tree structure itself.
Since annotations are always limited to a single sentence TIGERSearch can still perform
a very fast traversal search on each sentence and take advantage of the reduced search
space. The approach to only use a single sentence as the search space is shared by other
so called TreeBank systems like Tregex (Levy and Andrew, 2006) or tgrep2 (Rohde,
2005). The TüNDRA system (Losemann and Martens, 2012) uses the same query
language as TIGERSearch and supports the same data model and input files. Queries
are translated from TIGERSearch into XQuery and TüNDRA uses the XML database
BaseX to perform the actual search. The KorAP system (Bański et al., 2014) also uses
an external library to search the data. It can either use a Lucene based implementation
(called Krill) or a Neo4j graph database. In both cases queries can be formulated
in different query languages and are transformed into a unified representation which
is executed by one of the back-ends. One of the query languages that is currently
supported by KorAP is AQL.
In contrast to e.g. KorAP or CWB, graphANNIS is a main memory based system

and thus the corpus size it can handle is limited by the amount of main memory
available on the computer. 14 Another approach for a query system based on main
memory was the ANNIS implementation from Rosenfeld (2012) on top of the MonetDB
(https://www.monetdb.org/) column store. In this approach the original normalized
relational database schema of ANNIS was used but SQL-queries were optimized to allow
efficient joins in MonetDB. Since MonetDB also does not use any secondary indexes
but sorts the tables by a column, overhead in representing the data was avoided. In the
experiments it could be shown that using MonetDB allowed to execute the workload
of selected queries on the Tiger2 corpus three times faster than PostgreSQL. At the
same time the memory consumption for representing the Tiger2 corpus was about
400MB using MonetDB instead of the 8GB needed to store all tables and indexes in
PostgreSQL.

7 Conclusions

This work presented graphANNIS, a main memory based search system for deeply
annotated linguistic corpora implementing the popular AQL query language. We argued
13Evert and Hardie (2015) describe a not yet released new generation of the Corpus Workbench,

where hierarchical and graph structures are supported.
14Estimating the maximal corpus size supported by graphANNIS is hard, since this not only depends

on the number of tokens but also on the annotation layers of the corpus. E.g. for a Tiger2 like
corpus graphANNIS could handle about 4 million tokens using 2 GB of main memory and more
than 100 million tokens using 64GB main memory (e.g. on a powerful server).

JLCL 2016 – Band 31 (1) – 1-25 21

https://www.monetdb.org/

Krause, Leser, Lüdeling

for re-using existing data models and query languages, analyzed problems in the existing
relational database implementation and implemented a more flexible approach, which
allows to combine different optimization techniques for different kinds of annotations
in one single data model and search system. In our mind, especially the concept of
specialized Graph Storages for different kinds of annotation layers makes graphANNIS
a truly multi-layer corpus search system. Using realistic queries in a benchmark, we
could show that graphANNIS clearly outperforms a relational implementation of AQL
by a factor of more than 40, and that it leads to speed-up in more than 95% of all tested
queries. Being main memory-based, graphANNIS requires a machine proportional to
the size of a corpus. All corpora we tested easily fit into 2GB memory, and even a
corpus ten times larger than Tiger2 could be queried on a modern desktop computer
with 16GB memory.

Besides being very fast, graphANNIS also has a number of other advantages compared
to a relational implementation. First, graphANNIS does not require installing and
maintaining a database server, a task which has proven very difficult for many linguistic
research groups without any IT support. Second, the disk footprint of graphANNIS
is much smaller, as none of its internal index structures are stored on disk. This also
makes copying corpora much easier and faster; note that corpus import into relANNIS
is a rather painful and slow process. Third, starting the AQL server is faster and easier
with graphANNIS as no SQL server needs to boot. Finally, for all but the largest
corpora the main memory requirements of graphANNIS are actually smaller than those
of relANNIS, since the PostgreSQL server itself requires quite a lot of RAM.
Still, there is still room for improvement. For instance, query execution currently

is single-threaded, which is a waste of resources on modern computers. Also cost
estimates could be improved, and execution plans could be adapted to current CPU
technologies (Willhalm et al., 2009). Also data compression has proven very effective in
main memory database systems since it leads to much better cache line usage (Abadi
et al., 2009). It would be also interesting to benchmark graphANNIS against other
linguistic query languages or query systems. For instance, the KorAP system is able
to execute AQL queries and if the corpora from our benchmark can be imported into
KorAP the existing query set would allow for a good comparison.15 Additionally to these
specialized systems, AQL could be implemented on top of other general purpose main
memory database implementations (either relational or graph based) and evaluated if
mapping the data model negatively impacts performance.

References

Abadi, D. J., Boncz, P. A., and Harizopoulos, S. (2009). Column-oriented database systems.
Proceedings of the VLDB Endowment, 2(2):1664–1665.

Ágel, V. and Hennig, M. (2014). Kasseler Junktionskorpus (Version 1.1). Justus-Liebig-
Universität Gießen. http://hdl.handle.net/11022/0000-0000-2102-8.

15A conversion should be possible by using the Pepper framework (Zipser et al., 2010).

22 JLCL

http://hdl.handle.net/11022/0000-0000-2102-8

graphANNIS

Baumann, S. and Riester, A. (2013). Coreference, lexical givenness and prosody in German.
Lingua, 136:16–37.

Bański, P., Bingel, J., Diewald, N., Frick, E., Hanl, M., Kupietz, M., Pȩzik, P., Schnober,
C., and Witt, A. (2014). KorAP: the new corpus analysis platform at IDS Mannheim.
In Vetulani, Z. and Uszkoreit, H., editors, Human Language Technology Challenges for
Computer Science and Linguistics : 6th language & technology conference december 7-9,
2013, Poznań, Poland, pages 586 – 587.

Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lezius, W., Rohrer, C.,
Smith, G., and Uszkoreit, H. (2004). Tiger: Linguistic interpretation of a german corpus.
Research on Language and Computation, 2(4):597–620.

Carletta, J., Evert, S., Heid, U., Kilgour, J., Robertson, J., and Voormann, H. (2003). The
NITE XML toolkit: Flexible annotation for Multi-modal Language Data. Behavior Research
Methods, Instruments, and Computers, 35(3):353–363.

Chiarcos, C., Dipper, S., Götze, M., Leser, U., Lüdeling, A., Ritz, J., and Stede, M. (2008). A
flexible framework for integrating annotations from different tools and tag sets. Traitment
automatique des langues, 49(2):271–293.

Coniglio, M., Donhauser, K., and Schlachter, E. (2014). HIPKON: Historisches Predigtenkorpus
zum Nachfeld (Version 1.0). Humboldt-Universität zu Berlin. SFB 632 Teilprojekt B4.
http://hdl.handle.net/11022/0000-0000-2D18-4.

Donhauser, K., Gippert, J., and Lühr, R. (2015). Deutsch Diachron Digital - Referenzkorpus
Altdeutsch (Version 0.1). Humboldt-Universität zu Berlin. http://hdl.handle.net/11022/
0000-0000-7FC2-7.

Evert, S. and Hardie, A. (2011). Twenty-first century corpus workbench: Updating a query
architecture for the new millennium. In Proceedings of the Corpus Linguistics 2011 conference.
University of Birmingham.

Evert, S. and Hardie, A. (2015). Ziggurat: A new data model and indexing format for large
annotated text corpora. Challenges in the Management of Large Corpora (CMLC-3), page 21.

Färber, F., Cha, S. K., Primsch, J., Bornhövd, C., Sigg, S., and Lehner, W. (2012). Sap
hana database: data management for modern business applications. ACM Sigmod Record,
40(4):45–51.

Frick, E., Schnober, C., and Banski, P. (2012). Evaluating query languages for a corpus
processing system. In LREC, pages 2286–2294.

Grust, T., Keulen, M. V., and Teubner, J. (2004). Accelerating XPath evaluation in any
RDBMS. ACM Transactions on Database Systems (TODS), 29(1):91–131.

Hilpert, M. (2008). Germanic Future Constructions: A Usage-Based approach to Language
Change. John Benjamins, Amsterdam.

Hirschmann, H., Lüdeling, A., and Zeldes, A. (2008). What’s hard? - Quantitative evidence
for difficult constructions in German learner data. In Proceedings of QITL 3. Helsinki.
http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=37129.

JLCL 2016 – Band 31 (1) – 1-25 23

http://hdl.handle.net/11022/0000-0000-2D18-4
http://hdl.handle.net/11022/0000-0000-7FC2-7
http://hdl.handle.net/11022/0000-0000-7FC2-7
http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=37129

Krause, Leser, Lüdeling

Krause, T. and Zeldes, A. (2016). ANNIS3: A new architecture for generic corpus query
and visualization. Digital Scholarship in the Humanities, 31(1):118–139. http://dsh.
oxfordjournals.org/content/31/1/118.

Lee, J., Yeung, C., Zeldes, A., Reznicek, M., Lüdeling, A., and Webster, J. (2015). Cityu corpus
of essay drafts of english language learners: a corpus of textual revision in second language
writing. Language Resources and Evaluation, 49(3):659–683.

Leech, G. N. (1997). Introducing corpus annotation. In Garside, R., Leech, G. N., and McEnery,
T., editors, Corpus Annotation: Linguistic Information from Computer Text Corpora, pages
1–18. Longman, London.

Levy, R. and Andrew, G. (2006). Tregex and Tsurgeon: tools for querying and manipulating tree
data structures. In Proceedings of the fifth international conference on Language Resources
and Evaluation, pages 2231–2234.

Lezius, W. (2002). TIGERSearch Ein Suchwerkzeug für Baumbanken. Tagungsband zur
Konvens.

Losemann, K. and Martens, W. (2012). The complexity of evaluating path expressions in
SPARQL. In Proceedings of the 31st symposium on Principles of Database Systems, pages
101–112. ACM.

Lue, X. (2011). A corpus-based evaluation of syntactic complexity measures as indices of
college-level esl writers’ language development. TESOL Quarterly, 45(1):1–27.

Lüdeling, A. (2011). Corpora in linguistics: Sampling and annotation. In Grandin, K., editor,
Going Digital. Evolutionary and Revolutionary Aspects of Digitization., Nobel Symposium
147, pages 220–243. Science History Publications/USA, New York.

Lühr, R., Faßhauer, V., Prutscher, D., and Seidel, H. (2015). Fuerstinnenkorrespondenz 1.1.
Universität Jena, DFG. http://hdl.handle.net/11022/0000-0000-82A0-7.

Odebrecht, C. (2011). Lexical Bundles. Eine korpuslinguistische Untersuchung. Mas-
ter’s thesis, Humboldt-Universität zu Berlin. http://edoc.hu-berlin.de/master/
odebrecht-carolin-2012-03-12/PDF/odebrecht.pdf.

Odebrecht, C., Belz, M., Zeldes, A., Lüdeling, A., and Krause, T. (accepted 2016). RIDGES
Herbology - Designing a Diachronic Multi-Layer Corpus.

Reznicek, M., Lüdeling, A., Krummes, C., Schwantuschke, F., Walter, M., Schmidt,
K., Hirschmann, H., and Andreas, T. (2012). Das Falko-Handbuch. Ko-
rpusaufbau und Annotationen Version 2.01. Technical report, Technical re-
port, Department of German Studies and Linguistics, Humboldt University,
Berlin, Germany. https://www.linguistik.hu-berlin.de/de/institut/professuren/
korpuslinguistik/forschung/falko/FalkoHandbuchV2/at_download/file.

Robinson, I., Webber, J., and Eifrem, E. (2013). Graph Databases. O’Reilly Media.

Rohde, D. L. (2005). Tgrep2 user manual. http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf.

Rosenfeld, V. (2010). An implementation of the Annis 2 query language. Techni-
cal report, Humboldt-Universität zu Berlin. https://www.informatik.hu-berlin.
de/de/forschung/gebiete/ti/wbi/teaching/studienDiplomArbeiten/finished/2010/
rosenfeld_studienarbeit.pdf.

24 JLCL

http://dsh.oxfordjournals.org/content/31/1/118
http://dsh.oxfordjournals.org/content/31/1/118
http://hdl.handle.net/11022/0000-0000-82A0-7
http://edoc.hu-berlin.de/master/odebrecht-carolin-2012-03-12/PDF/odebrecht.pdf
http://edoc.hu-berlin.de/master/odebrecht-carolin-2012-03-12/PDF/odebrecht.pdf
https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/forschung/falko/FalkoHandbuchV2/at_download/file
https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/forschung/falko/FalkoHandbuchV2/at_download/file
http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf
https://www.informatik.hu-berlin.de/de/forschung/gebiete/ti/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_studienarbeit.pdf
https://www.informatik.hu-berlin.de/de/forschung/gebiete/ti/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_studienarbeit.pdf
https://www.informatik.hu-berlin.de/de/forschung/gebiete/ti/wbi/teaching/studienDiplomArbeiten/finished/2010/rosenfeld_studienarbeit.pdf

graphANNIS

Rosenfeld, V. (2012). A linguistic query language on top of a column-oriented main-memory
database. Master’s thesis, Humboldt-Universität zu Berlin. http://www.user.tu-berlin.
de/viktor-rosenfeld/assets/publications/diplomarbeit.pdf.

Sauer, S. (2013). BeMaTaC. http://u.hu-berlin.de/bematac.

Schiller, A., Teufel, S., Stöckert, C., and Thielen, C. (1999). Guidelines für das Tagging
deutscher Textcorpora mit STTS. Technical report, Universität Stuttgart, Institut fur
maschinelle Sprachverarbeitung; Universität Tübingen, Seminar für Sprachwissenschaft.

Seufert, S., Anand, A., Bedathur, S., and Weikum, G. (2013). Ferrari: Flexible and efficient
reachability range assignment for graph indexing. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 1009–1020. IEEE.

Stede, M. and Neumann, A. (2014). Potsdam Commentary Corpus 2.0: Annotation for Discourse
Research. In Proceedings of the Ninth International Conference on Language Resources
and Evaluation (LREC’14), Reykjavik, Iceland. European Language Resources Association
(ELRA). http://www.lrec-conf.org/proceedings/lrec2014/pdf/579_Paper.pdf.

Telljohann, H., Hinrichs, E., Kübler, S., Zinsmeister, H., and Beck, K. (2009a). Stylebook
for the Tübingen Treebank of Written German (TüBa-D/Z). Technical report, Univer-
sität Tübingen Seminar für Sprachwissenschaft. http://www.sfs.uni-tuebingen.de/ascl/
ressourcen/corpora/tueba-dz.html.

Telljohann, H., Hinrichs, E. W., Kübler, S., Zinsmeister, H., and Beck, K. (2009b). Stylebook
for the Tübingen Treebank of Written German (TüBa-D/Z). Universitüt Tübingen Seminar
für Sprachwissenschaft, Wilhelmstr. 19 D-72074 Tübingen.

Walter, M. (2015). Märchenkorpus Version 1.0. Humboldt-Universität zu Berlin. http://www.
textbewegung.de/. http://hdl.handle.net/11022/0000-0000-8211-9.

Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., and Schaffner, J. (2009). SIMD-
scan: ultra fast in-memory table scan using on-chip vector processing units. Proceedings of
the VLDB Endowment, 2(1):385–394.

Wood, P. T. (2012). Query languages for graph databases. ACM SIGMOD Record, 41(1):50–60.

Yildirim, H., Chaoji, V., and Zaki, M. J. (2010). Grail: Scalable reachability index for large
graphs. Proceedings of the VLDB Endowment, 3(1-2):276–284.

Zeldes, A. (2016a). ANNIS User Guide - Version 3.4.3. http://corpus-tools.org/annis/
resources/ANNIS_User_Guide_3.4.3.pdf.

Zeldes, A. (2016b). The GUM corpus: creating multilayer resources in the classroom. Language
Resources and Evaluation, pages 1–32.

Zhang, H., Chen, G., Ooi, B. C., Tan, K.-L., and Zhang, M. (2015). In-memory big data man-
agement and processing: A survey. IEEE Transactions on Knowledge and Data Engineering,
27(7):1920–1948.

Zinsmeister, H., Reznicek, M., Brede, J. R., Rosén, C., and Skiba, D. (2012). Das Wis-
senschaftliche Netzwerk „Kobalt-DaF“. Zeitschrift für germanistische Linguistik, 40(3):457–
458. https://dx.doi.org/10.1515/zgl-2012-0030.

Zipser, F., Romary, L., et al. (2010). A model oriented approach to the mapping of annotation
formats using standards. In Workshop on Language Resource and Language Technology
Standards, LREC 2010.

JLCL 2016 – Band 31 (1) – 1-25 25

http://www.user.tu-berlin.de/viktor-rosenfeld/assets/publications/diplomarbeit.pdf
http://www.user.tu-berlin.de/viktor-rosenfeld/assets/publications/diplomarbeit.pdf
http://u.hu-berlin.de/bematac
http://www.lrec-conf.org/proceedings/lrec2014/pdf/579_Paper.pdf
http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html
http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html
http://www.textbewegung.de/
http://www.textbewegung.de/
http://hdl.handle.net/11022/0000-0000-8211-9
http://corpus-tools.org/annis/resources/ANNIS_User_Guide_3.4.3.pdf
http://corpus-tools.org/annis/resources/ANNIS_User_Guide_3.4.3.pdf
https://dx.doi.org/10.1515/zgl-2012-0030

Paul Rayson, John Mariani, Bryce Anderson-Cooper, Alistair Baron, David Gullick,
Andrew Moore, Stephen Wattam

Towards Interactive Multidimensional Visualisations for Corpus
Linguistics

We propose the novel application of dynamic and interactive visualisation
techniques to support the iterative and exploratory investigations typical of
the corpus linguistics methodology. Very large scale text analysis is already
carried out in corpus-based language analysis by employing methods such
as frequency profiling, keywords, concordancing, collocations and n-grams.
However, at present only basic visualisation methods are utilised. In this
paper, we describe case studies of multiple types of key word clouds, explorer
tools for collocation networks, and compare network and language distance
visualisations for online social networks. These are shown to fit better
with the iterative data-driven corpus methodology, and permit some level
of scalability to cope with ever increasing corpus size and complexity. In
addition, they will allow corpus linguistic methods to be used more widely
in the digital humanities and social sciences since the learning curve with
visualisations is shallower for non-experts.

1 Introduction

Corpus linguistics is a methodology for the study of language using large
bodies (corpora, singular corpus) of naturally occurring written or spoken
language (Leech, 1991). Corpus linguistics has collected together a num-
ber of computer-aided text analysis methods such as frequency profiling,
concordancing, collocations, keywords and n-grams (also called clusters or
lexical bundles) which have been utilised over the last forty years or so for
language analysis in a number of areas in linguistics e.g. vocabulary, syntax,
semantics, pragmatics, stylistics and discourse analysis. Corpus methods
are inherently data driven, largely exploratory and allow the analyst to
carry out empirical investigations, to discover patterns in the data that are
otherwise difficult to see by other means e.g. by intuition about language
(Sinclair, 2004).

The corpus linguistics methodology is based on comparing corpora or
subsets of a corpus with each other in order to discover differences in the
language represented by those corpora or sub-corpora. Many standard
reference corpora have been collected to represent specific language varieties
or genres. With the availability of more powerful computers and larger data
storage facilities, these standard reference corpora have increased in size

JLCL 2006 – Band 21 (1) – 1-23JLCL 2016 – Band 31 (1) – 27-49 27

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

over the years from the one million word LOB corpus (Johansson et al.,
1978), 100 million word British National Corpus (BNC) (Leech, 1993), 385
million word COCA (Davies, 2009) and the two billion word Oxford English
Corpus. However, corpus methods have largely remained the same over this
time period. As a result, compromises have to be made with each type of
corpus analysis e.g. higher cut-off values are used to filter key words and
collocation results based on a need to reduce analysis time rather than for
any specific level of significance. Concordance lines are thinned by large
factors in order to fit with time scales of analysis rather than by variation
and relevance factors. With the web-as-corpus paradigm (Kilgarriff and
Grefenstette, 2003) gaining prominence, even larger collections of textual
data sourced from websites are becoming available (Baroni et al., 2009) so
the problem will continue to worsen. In addition, corpus linguistics methods
are spreading to other research areas in linguistics, digital humanities and
social sciences e.g. discourse analysis (Baker, 2006), sociolinguistics (Baker,
2010), conceptual history (Pumfrey et al., 2012), and psychology (Prentice
et al., 2012). For these disciplines, it is imperative that the corpus tools and
methods have a shallow learning curve (Rayson, 2006) and we hypothesise
that interactive visualisation technologies will help with this expansion.

Basic visualisation techniques (e.g. bar charts for relative frequency plots)
have been used in the past in corpus linguistics but these have focussed
on one level (e.g. lexical, grammatical, semantic) or method of analysis at
a time. Very few publications discuss specific requirements for extending
corpus retrieval software (c.f. Smith et al. (2008)), and this paper goes
some way to address this deficiency. The main contributions of this paper
are the novel interactive and dynamic techniques that we have developed
for extending advanced corpus linguistics methods. We also propose a
framework to combine all these separate multiple dimensions together. We
describe an interactive key word cloud for visualising keyness statistics, an
interactive and dynamic method for visualising collocation statistics and a
method for contrasting social network relations with language comparisons.
These visualisation methods are an improvement on current state of the art
in at least four ways. First, they are designed to support the data-driven
multidimensional iterative exploration embodied in the corpus linguistics
methodology. Second, they address the shortcomings of current static one
dimensional corpus methods. Third, they are scalable in order to cope with
increasing corpus size and complexity. Finally, they contribute to enabling
the analysis methods of corpus linguistics to be accessible to a variety of
audiences, for example, non-technical users in the wider social sciences and
humanities.

2 JLCL28 JLCL

Visualisations for Corpus Linguistics

2 Related Work

The corpus linguistics methodology for the study of language using large
corpora consists of five core steps (adapted from Rayson (2008)):

1. Question: devise a research question
2. Build: corpus design and compilation
3. Annotate: manual or automatic analysis of the corpus
4. Retrieve: quantitative and qualitative analyses of the corpus
5. Interpret: manual interpretation of the results

The methodology is inherently data-driven and empirical, exploiting the
collections of real language samples to drive the analysis and direct the
results as opposed to the use of manually constructed language examples
driven by intuition. Corpus retrieval software, our focus here, is intended
to facilitate exploration of the annotated corpus data using a variety of
quantitative techniques. These techniques include frequency profiling: listing
all of the words (types) in the corpus and how frequently they occur,
and concordancing: listing each occurrence of a word (token) in a corpus
along with the surrounding context. The n-gram technique (also called
clusters or lexical bundles) counts and lists repeated sequences of consecutive
words in order to show fixed patterns within a corpus. A typical corpus
investigation would proceed with a large number of retrieval operations
conducted through the corpus retrieval software (e.g. to check the frequency
of a particular word or linguistic feature, or to search for an item or pattern
using the concordancing view), guided by the research question and the
quantitative results obtained in earlier searches. Although this iterative
process is often not reported in final publications, it is evident from the
many textbook descriptions of corpus linguistics. Typically, the research
question itself (step 1) is refined in the light of categorisation and analysis
of concordance results and comparison operations between corpora, and
then the stepwise process begins again. This refinement process specifically
corresponds to the interactive exploratory approach that we propose here to
be aided by improvements in visualisation methods. Although they are not
necessarily viewed as such, some existing techniques in corpus linguistics
can be considered as visualisations. In this and the next section we will
consider three of the most prominent examples: concordances, collocations
and key words.

First and foremost, the concordance view with one word of interest aligned
vertically in the middle of the text and the left and right context justified in
the middle, is a way of visualising the patterns of the context of a particular
word, and is the main way that corpus linguists engage with corpora. By
sorting the right and left context, we can more easily see the repeated

JLCL 2006 – Band 21 (1) 3JLCL 2016 – Band 31 (1) – 27-49 29

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

patterns. Concgrams (Cheng et al., 2006) takes this visualisation one step
further by automatically highlighting repeated patterns in the surrounding
context, as shown in figure 1.

Figure 1: Concordance concgrams.

Another method in the corpus retrieval toolbox is collocation, for which
Beavan (2008) has already explored visualisation techniques. Collocations
are pairs or sequences of words that co-occur in a text more often than
would be expected by chance, usually within a window of five words of each
other. By taking the collocates of a word, ordering them alphabetically and
altering the font size and brightness, the collocate cloud shown in figure 2
provides an intuitive view of a set of collocates. Here, font size is linked
to frequency of the collocate and brightness shows the Mutual Information
(MI) score (a statistical measure of the strength of association between the
words). In this way, we can easily see the large and bright words that are
frequent with strong collocation affinity. Also, in the area of collocations,
McEnery (2006) employs a visualisation technique when manually drawing
collocational networks (figure 3). These show key words that are linked by
common collocates. McEnery’s work is influenced by Phillips (1985) who
uses similar (again, manually created) diagrams to study the structure of
text.

Visualisation is finding application in many areas of the modern world; in
science, arts, social media, and the news. The cognitive principles behind
visualisation are well summarised by Meirelles (2011) when she writes “to
record information; to convey meaning; to increase working memory; to
facilitate search; to facilitate discovery; to support perceptual inference; to
enhance detection and recognition; and to provide models of actual and
theoretical worlds”. Linguistics is no exception to the rule. An interesting

4 JLCL30 JLCL

Visualisations for Corpus Linguistics

Figure 2: Collocate Cloud.

Figure 3: Collocational network created manually.

aspect of the work is a willingness to use existing tools, not only those
specifically designed for corpora, but also more general visualisation toolsets.

Siirtola et al. (2010) foresaw some of this development when they discussed
the use of the R statistical language and the Mondrian data visualisation
tool. However, the R language is generally thought to have a steep learning
curve and “the dreaded command line interface” (ibid). They argue for
interactive tools, but of course, when using various tools from different
sources, it can be difficult to link together the tools so that changes made
in one are reflected in the other. Scrivner and Kubler (2015) describe
a multi-dimensional parallel Old Occitan-English corpus. They use the
ANNIS (Zeldes et al., 2009) search engine to provide graphical querying
and displaying of multi-layered corpora. The user can specify their query
graphically. In their example, they convert the retrieved data into the R
data frame format and produce a motion chart, using GoogleViz.
The Text Variation Explorer (TVE) (Siirtola et al., 2014) harkens back

to earlier work done in the visualisation field by Ben Shneiderman, and

JLCL 2006 – Band 21 (1) 5JLCL 2016 – Band 31 (1) – 27-49 31

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

the concepts of direct manipulation, continuous and immediate feedback
and linked visualisations (see, for example, the Film Finder). This, as
indicated above, can be difficult to achieve when using a tool chain. They
refer back to the 2010 paper when they observe that while Mondrian can
supply interactive graphs (for quickly formulating hypotheses about data
and perhaps even managing to verify them in some cases) it lacks one
essential: a connection to the text itself. The graphical aspect of TVE is a
line graph; in the paper, they use James Joyce’s “Ulysses” as an example.
They split the text into windows (the size of which is specified by the user)
and calculate three parameters, each one of which is represented as a line
within the graph. So, going from left to right, we move from the first window
of the novel to the last. The user can position themselves anywhere on
the line graph, and the underlying text of the window they are selecting is
also displayed (in context with the rest of the text). By accessing the text
display, and selecting (a) word(s), their new position in the text is reflected
in the line graph. This is known as “brushing”, the ability to interact with
one visualisation and have that interaction reflected in all other associated
visualisations.

The WordWanderer (Dork and Knight, 2015) extends tag clouds into a
navigational interface for text. Beginning with an alphabetically ordered
tag cloud showing frequency. By moving the pointer over a word (in
their “Hansel and Gretel” example), say “forest”, common collocates are
highlighted (this indicates that “children” is a common collocate). If the
user now selects “forest”, its collocates are organised according to their
relative proximity in the text. Finally, if the user draws a line between two
words, we get a comparison view, arranging collocates according to their
relative strength of association to each of the two words. Hilpert (2011)
proposed the use of motion charts (a series of time ordered scatter plots) to
dynamically visualise language change in a diachronic corpus. This type of
visualisation requires relatively large corpora.

A novel direction has emerged recently in two distinct areas: dialectology
and spatial humanities. The common thread between these two approaches
is map-based visualisations of language data. In order to understand regional
linguistic variation in the US, Huang et al. (2015) collected a year of geo-
tagged Twitter data. County-based results were plotted and hierarchically
clustered dialect regions were derived from the analysis. In order to showcase
the newly emerging area of spatial humanities which combines Geographic
Information Systems with natural language processing and corpus linguistics,
Murrieta-Flores et al. (2015) carried out an analysis of the UK Registrar
General’s Reports containing descriptions, census data and other information
to examine how mentions of various diseases correlated with place names
in the data (see figure 4 for an example of their results). Map-based
visualisations are derived and were compared over decade spans. In general,

6 JLCL32 JLCL

Visualisations for Corpus Linguistics

the spatial humanities method allows a researcher to ask three main types of
questions of a dataset (a) where is the corpus talking about, (b) what is the
corpus saying about these places, and (c) what is the corpus saying about
specific themes e.g. health and disease, money and finance, in proximity to
these places? In contrast, Knowles et al. (2015) have explored ‘inductive
visualisation’ techniques that allow the exploration of time and space in
holocaust testimonies which do not lend themselves to regular geographical
and sequential time-based representations.

Figure 4: Frequency map of diseases in Registrar General data.

In other cognate areas, such as digital humanities and literary analysis,
visualisation approaches are gaining ground. Keim and Oelke (2007) and
Oelke et al. (2012) develop the idea of a literature fingerprint which is a
pixel-based visualisation to view fine-grained detail of one particular value,
where each pixel corresponds to one word. This value could represent the
occurrence of a particular character name, function words, average sentence
length or hapax legomena. Voyant Tools (Sinclair and Rockwell, 2016)
provides a web-based text reading and analysis environment, complemented
by a variety of visualisations including: bubbles and cirrus (similar to word

JLCL 2006 – Band 21 (1) 7JLCL 2016 – Band 31 (1) – 27-49 33

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

clouds), bubblelines (word repetitions), links (collocation relationships), and
RezoViz (relationships between people, places and organisations). Watten-
berg and Viégas (2008) present the Word Tree as an interactive version of
the concordance view, first implemented in the IBM Many Eyes system. It
provides a branching view of words and contexts occurring to the right of
the word in the centre of the concordance largely preserving the linear view
of the text. Culy and Lyding (2010) extended this (to be closer to the corpus
linguistics approach) in their Double Tree implementation to include words
on the left of the concordance line, frequency and part-of-speech information.
Two further surveys of text visualisation techniques and related taxonomies
were created by Kucher and Kerren (2015) and Jänicke et al. (2015).

The discussed examples allow us to highlight some further issues with the
current technologies used to visualise large bodies of text. The first problem
is the static nature of many of the technologies. This often presents users
with far more information than necessary and offers no mechanism to limit
the data to those aspects the user is interested in. This static nature can
cause a significant amount of information overload, rather than reduce its
impact and this is the second issue to be faced. This problem was partly
tackled by TextArc amongst other tools which allow the interrogation of the
data. However, this technology still displays the whole block of textual data
at the same time, which will leave the graphic cluttered and possibly unclear.
More generally, static and full text representations do not sit well with
the iterative and data-driven nature of the corpus linguistics methodology.
Very few of the existing techniques are tailored for the specific methods
in corpus linguistics, and in addition, the existing corpus visualisations do
not scale to large bodies of texts, a key requirement to tackle the growing
size of corpora. All these reasons call for new visualisation techniques, or
at least the adaptation of existing ones, in order to specifically address the
particular needs of corpus linguistics in terms of scalability, and support for
iterative exploration.

3 Case Studies

With the case studies presented in the following three subsections, we ex-
amine complementary aspects of visualising different dimensions of lan-
guage corpora. Our case studies cover three of the five main methods in
the corpus linguistic methodology: frequency lists, key words, and colloca-
tions. A fourth method, concordancing, is included in our multidimensional
visualisation framework as proposed in section 4.

8 JLCL34 JLCL

Visualisations for Corpus Linguistics

3.1 Case Study 1: key word and tag clouds

In this first case study, we propose a method that can be applied at multiple
linguistic levels for the visualisation of key words results. The key words
technique (Scott, 1997) is well known in corpus linguistics to users of
WordSmith1, Wmatrix2, AntConc3 and other tools. By comparing one
corpus or text to a much larger reference corpus (or another comparable
text), we can extract those words that occur with unusual frequency in our
corpus relative to a general level of expectation. A keyness metric, usually
chi-squared or log-likelihood, along with an effect size is calculated for each
word to show how ‘unexpected’ its frequency is in the corpus relative to the
reference corpus. By sorting on this keyness value we can order the words
and see the most ‘key’ words at the top of a table. In the Wmatrix software
(Rayson, 2008), we have included a visualisation of the key words results in a
static but interactive ‘key word cloud’. In contrast to tag clouds in Flickr and
other social networking websites, where the frequency of a word is mapped
to its font size, the key word cloud maps the keyness value onto font size.
By doing so, we can quickly ‘gist’ a document by viewing the words in the
key word cloud. In addition, we can apply the same comparison approach at
other levels of linguistic analysis. Instead of comparing two word frequency
lists, we can compare two part-of-speech frequency lists, or two semantic
tag frequency lists. This extends the existing method and permits gisting
by stylistic profile and key concepts. Previous work has used word clouds
for visualising texts (Heimerl et al., 2014; Xu et al., 2016), but these have
not exploited the keyness measures used in corpus linguistics. Vuillemot
et al. (2009) does use the log-likelihood measure to compare sub-corpora
but then relates word size to frequency rather than keyness. Our method
also avoids the need for stop word removal of frequent closed class words
which may well result in the loss of significant items of linguistic interest.

Here, we describe a case study using data drawn from the set of UK
General Election 2015 Manifestos from the seven main political parties. Via
this example, we show the key word and key concept cloud visualisation
in practice. First, the seven manifestos for Conservatives, Labour, Liberal
Democrats, Green Party, Plaid Cymru, Scottish National Party (SNP) and
UKIP were downloaded from their websites in May 2015. Each file was
converted from PDF by saving as text from Adobe Reader. Minor editing
was required to format headers, footers and page numbers in XML tags,
and converted n-dashes, pound signs, begin and end quotes to XML entities.
Next, the resulting files were run through the Wmatrix tag wizard pipeline
which assigns part-of-speech tags (Garside and Smith, 1997) and semantic

1http://www.lexically.net/wordsmith/
2http://ucrel.lancaster.ac.uk/wmatrix/
3http://www.laurenceanthony.net/software/antconc/

JLCL 2006 – Band 21 (1) 9JLCL 2016 – Band 31 (1) – 27-49 35

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

tags (Rayson et al., 2004a) and prepares word frequency and semantic
tag frequency lists. Key word and semantic tag clouds are produced by
comparing the frequency lists with the BNC Written Sampler corpus4. In
these visualisations, the larger the font, the higher the log-likelihood score,
so larger items are more significantly overused compared to the reference
corpus.

The first two visualisations show the key words and key semantic categories
for the Conservative party. Figure 5, at the word level, shows their focus on
EU, tax, NHS and schools, amongst other items. Figure 6, at the semantic
tag level, expands this and highlights their discourse on law and order,
business, and employment, in particular.

Figure 5: Word cloud for Conservative manifesto.

Figure 6: Semantic tag cloud for Conservative manifesto.

These two clouds can be contrasted with all those from the other parties.5
For reasons of space here, we include only one other party. For the Green

4http://ucrel.lancaster.ac.uk/bnc2sampler/sampler.htm
5See http://ucrel.lancaster.ac.uk/wmatrix/ukmanifestos2015/ for the full set.

10 JLCL36 JLCL

Visualisations for Corpus Linguistics

Party, the six most key words in their manifesto are green_party, we, local,
tax, energy and climate, as shown in figure 7. Alongside green issues, their
key semantic cloud in figure 8 focusses on money and government.

Figure 7: Word cloud for Green Party manifesto.

Figure 8: Semantic tag cloud for Green Party manifesto.

The Wmatrix software allows a user to click through the cloud in order to
view concordance lines for a specific word or semantic tag, and by hovering
over an item, the frequency and log likelihood statistic can be viewed.
Thus the word and tag clouds do have interactive elements and represent
multidimensional or multi-level visualisations.

3.2 Case Study 2: collocation networks

In the second case study, we propose to use interactive visualisation tech-
niques to improve the interpretation and exploration of the collocation
method in corpus linguistics. We have implemented these methods in both

JLCL 2006 – Band 21 (1) 11JLCL 2016 – Band 31 (1) – 27-49 37

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

Figure 9: CONE

CONE (Gullick et al., 2010) and GraphColl (Brezina et al., 2015) (Figures 9
and 10 respectively) which provide visualisation of text collocation for all
terms within a corpus simultaneously, presenting a graph that the user
can manipulate and explore. The concept of collocational networks is a
natural extension of collocation, and was first proposed before computing
hardware was generally sufficient to provide an interactive visualisation
(Phillips, 1985).

Collocation networks are generated by computing a statistical measure
of association between all terms within the corpus. Such terms form the
nodes of the graph, with edges being drawn between those with a significant
tendency to co-occur. The exact measure and policy for graph construction
varies between implementations. Early implementations used the mutual
information (MI) score (Williams, 2002). CONE implements the commonly-
used log-likelihood score as a measure of significance (Rayson et al., 2004b),
whereas GraphColl supports a number of measures, as well as implementation
of bespoke approaches.
Graph exploration presents a number of design challenges. Firstly, the

choice of statistical measure (and the significance or effect size threshold
chosen) dramatically affects the resulting graph. This is compounded by the
tendency of the constraint-based graph layout algorithms used in both CONE

12 JLCL38 JLCL

Visualisations for Corpus Linguistics

Figure 10: GraphColl

and GraphColl to produce non-deterministic layouts: even topologically
similar graphs may appear different.
Graph layout is also a significant challenge to scalability. The Zipfian

nature of linguistic data often yields graphs with high centralisation, leading
to a dense mass of edges for diverse corpora, a problem also faced in a similar
approach by Perkuhn (2007). This is mitigated in both tools by allowing
the user to pan and zoom around the graph whilst rendering features at the
same scale, essentially making them less dense at higher zoom levels.

Higher level visualisations such as those produced by CONE and Graph-
Coll also present challenges to scientific replicability in that they present
large amounts of data in a very dense manner, with the potential to embody
many study designs. Both CONE and GraphColl permit partial exploration
of graphs, accentuating this issue: a user chooses which nodes to expand
(and thus compute collocates for), and this means it is possible to delib-
erately or unintentionally miss significant links to second-order collocates
(or symmetric links back from a collocate to a node word). GraphColl’s
design attempts to minimise these issues by colouring links according to
their “completed” state. This issue is also addressed in documentation,
which presents a standardised method for reporting results from graph
explorations which is intended to illustrate which design choices have been
made during graph creation.
The ease-of-interpretability that visualisations offer presents scientific

challenges: when the graph’s generating function can be changed during

JLCL 2006 – Band 21 (1) 13JLCL 2016 – Band 31 (1) – 27-49 39

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

exploration, data dredging becomes as simple as moving a slider. To this
end, GraphColl prohibits what many see as desirable features: wildcard
searching, stoplists, and on-the-fly adjustment of statistical thresholds are
all disallowed by design.
This issue is primed to affect any interactive visualisation. High-level

visualisation tools such as CONE and GraphColl must walk a fine line
between offering a useful perspective on data (which would not be possible
otherwise) and providing such a strong lens as to render any observations
largely dependent upon the tool itself. This tendency is evidenced in many
areas of science already (such as genetics, which often relies on proprietary
machinery), but is readily solvable through responsible reporting and efforts
such as the open data movement (Kauppinen and de Espindola, 2011).

The high level from which data are seen also pose technical challenges for
interchange formats, leading to a situation where data exported from such
tools is either presented in a relatively arcane proprietary format, or stripped
of much of the information from the data structures used for analysis. The
solution to this lies in an approach of layered formats, which may yield
further data where required: something that may take the form of an API
to provide live interconnections between tools, or advancements in database
representations.
Finally, it should be noted that GraphColl has a concordance feature

built-in so that users can use the interface to more closely examine specific
collocations in context. Either these things have to be built-in to support
richer interaction, or there must be an interchange format to communicate
with other corpus tools (a corpus data connector of some kind).

3.3 Case Study 3: social network relationships

This case study proposes the extension of an existing network visualisation
based on ‘follow relationships’ in an online social network (Twitter) to
instead be based on distances between language profiles. The overall aim
of the study was to analyse potential political defections in the United
Kingdom parliament. Using the Twitter REST API6, the last 3,600 tweets
(the maximum available) from verified UK Members of Parliament (MPs),
and the list of verified MPs that each of these follow were collected. In
total, 426 MPs of the 650 MPs in parliament were present in our dataset,
the remaining MPs were not verified or not on Twitter.

The list of follow relationships were converted into a list of one-directional
links between each MP who followed another MP, finding 29,345 links in
total. If two MPs followed each other, two links were listed.

The words were collected from all tweets and a frequency list created for
each MP. We removed URLs and user mentions from the list of words as

6https://dev.twitter.com/rest

14 JLCL40 JLCL

Visualisations for Corpus Linguistics

URLs were very rarely repeated and were mostly auto-created short URLs
for Twitter, and user mentions were removed to avoid overlap with follow
relationships. All punctuation was removed and all words were converted
to lowercase. A random sample of 2,000 words was taken for each MP, with
MPs excluded who had used less than 2,000 words (thereby removing only
3 MPs). Each MP sample was compared against every other MP using
two similarity measures: Jaccard and Log Likelihood. Jaccard looks at
the similarity in the set of words used, whereas Log Likelihood looks at
frequency differences. This process was repeated 10 times with a different
2,000 word random sample each time.

Both the follow relationships and the language relationships were visu-
alised using force-directed graphs in D3.js7. In force-directed graphs, nodes
are pushed away from each other while simultaneously pulled towards the
centre of the graph. This allows any node’s location to be based on their
relative positions to one another, attempting to minimise crossing links and
balance link distances. For follow relationships, all one-way links were of
equal length but bi-directional links were set as half as long to represent
a closer relationship. For language relationships, the link length was de-
termined by the value that the similarity measure produced between the
two nodes for that link. The more similar two nodes were, the lower the
link lengths, bringing the nodes closer together. The closest nodes to any
particular node are those that have the closest relationships. The resulting
network graphs are shown for follow relationships in Figure 11, for Jaccard
word similarity in Figure 12, and for log-likelihood word similarity in Fig-
ure 13. Note that the graphs are interactive, allowing particular parties to
be highlighted. MP names and links between MPs can also be displayed. In
all graphs, the positions of certain MPs and the orientation of the entire
graph may vary as nodes are initially randomly placed, resulting in multiple
possible stable arrangements. However, the overall pattern is consistent.
The follow relationship graph more visibly splits the MPs into distinct

clusters related to political party. This may possibly be due to links not being
present between all nodes, unlike in the word similarity graphs where a link
is always present, but more or less distant depending on similarity. The word
similarity graphs both do show the current three biggest UK political parties
(Conservative: blue, Labour: red and Scottish Nationalist: yellow) generally
clustered together, with outlier MPs (i.e. clustered closer to other parties)
indicating possible interesting cases for further analysis. The interactive
visualisation approach in this case study is a vital exploratory tool when
developing the method (e.g. selecting appropriate distance measures) and
analysing results (e.g. choosing subsets of MPs). Thus, our third case study
shows that the existing visualisation technique previously used for exploring

7https://d3js.org

JLCL 2006 – Band 21 (1) 15JLCL 2016 – Band 31 (1) – 27-49 41

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

Figure 11: Follow relationships network of UK MPs on Twitter.

the network of relationships in an online social network can also be used to
explore the linguistic similarity of specific subcorpora at the word level.

4 Proposal for Multidimensional Visualisation

Using the case studies demonstrated in the previous section, a proposal
for putting these concepts into a multidimensional framework is described
here. Our framework splits along three orthogonal dimensions: linguistic
(lexical, grammar/syntax, semantics), structural (to permit sub-corpora)
and temporal (for diachronic corpora). Our proposal for multidimensional
visualisation explicitly supports key tenets of interactive visualisation such
as navigating from a high level overview of the dataset, via filtering on
specific dimensions to view slices or subcorpora (Heer and Shneiderman,
2012).

16 JLCL42 JLCL

Visualisations for Corpus Linguistics

Figure 12: Jaccard word similarity network of UK MPs on Twitter.

Within the structural dimension there is a natural layering beginning with
the whole corpus and subdividing into meaningful subsets dependent on the
type of data (e.g. documents, chapters, tweets, person). At the top level, the
whole corpus level can be analysed via the word clouds shown in section 3.1
where a user can find the most over/under-used words relative to a reference
corpus. Incorporating the collocation network approach in section 3.2 the
user would be able to click on a word in the key word cloud to explore the
collocates for that word or tag, and from there to the concordance view.
Furthermore a user should be able to select a group of words within the
cloud and visualise collocates for those words to explore further similarities
between the words. Second and subsequent layers would permit selection of
subcorpora in order to exploit structure within the corpus, e.g. tweets as
used in section 3.3. In addition, using the network visualisations shown in
section 3.3 a user should be able to define subcorpora and visualise their
similarities, differences alongside other relationships drawn from the dataset.
A specific use case for our proposed framework can be extended from the

JLCL 2006 – Band 21 (1) 17JLCL 2016 – Band 31 (1) – 27-49 43

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

Figure 13: Log-likelihood word similarity network of UK MPs on Twitter.

case study described in section 3.3. A user would explore the MP network
and explore the differences between two or more political parties or groups
within those parties.

Within the linguistic dimension there are at least three prominent levels:
lexical, grammatical and semantic levels, as exemplified in our case studies.
The exploration could proceed as described for the structural use case above
but would now be extended to cover other levels of linguistic annotation
assuming that they were represented in the corpus.
The final dimension incorporated into our proposed framework is time

which will assist with the exploration and visualisation of diachronic corpora.
A prototypical example of this would be a Twitter corpus that has been
collected over a number of months or years. The social network data would
be visualised as points on a 2D time series graph. From this graph a user

18 JLCL44 JLCL

Visualisations for Corpus Linguistics

can select groups of data to compare against within the key word clouds,
collocation networks and social network relationships, and how each of these
aspects varies over time.
This combination across three dimensions will therefore allow a user to

explore the corpus on many different interconnected levels and visualisa-
tions. Employing multiple visualisations is of utmost importance to counter
deficiencies in some methods (such as information loss and uncertainties in
force-based methods) and to ensure the various model abstractions align
with analysis tasks (Chuang et al., 2012). We envisage our framework would
be developed by achieving interoperability between the existing tools rather
than developing a new standalone system.

5 Conclusion and Future Work

In this paper, we have proposed the idea of using interactive information
visualisation techniques for supporting the corpus linguistics methodology
at multiple levels of analysis. We have highlighted tools and techniques that
are already used in corpus linguistics that can be considered as visualisation:
concordances, concgrams, collocate clouds, and described new methods of
collocational networks and exploratory language analysis in social networks.
In addition, we described the key word and semantic cloud approaches as
implemented in the Wmatrix software.
With the CONE and GraphColl prototypes, we have proposed and il-

lustrated a highly dynamic way of exploring collocation networks, as an
example of our wish to add dynamic elements to both existing and novel
visualisations. This would enhance their “data exploration” nature even
further. To paraphrase Gene Roddenberry8, we wish to allow linguists to ex-
plore their data in ‘strange’ new ways and to seek out new patterns and new
visualisations. In this enterprise, we can assess the usefulness or otherwise
of the new techniques. We have shown how the dynamic techniques align
more closely to the iterative data-driven corpus linguistics methodology.
With significantly larger corpora being compiled, we predict that the need
for visualisation techniques will grow stronger in order to allow interesting
patterns to be seen within the language data and avoid practical problems
for the corpus linguist who currently needs to analyse very large sets of
results by hand. In future work, we will explore techniques which are able
to support longer explorations in order to avoid corruption or ‘messiness’ in
the interface which still persists after a prolonged period of use. There is
clearly a need for new static analysis techniques as well; to extract the data
required as well as novel methods for displaying and exploring the data.

8See http://en.wikipedia.org/wiki/Gene_Roddenberry

JLCL 2006 – Band 21 (1) 19JLCL 2016 – Band 31 (1) – 27-49 45

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

Acknowledgements

Francois Taiani was involved in supervision of the original CONE project.
This work was partly funded by the EPSRC vacation bursary grant awarded
to David Gullick at Lancaster University. GraphColl software development
was supported by the ESRC Centre for Corpus Approaches to Social Sci-
ence, ESRC grant reference ES/K002155/1. The UCREL research centre
supported the development of the integrated visualisation framework.

References

Baker, P. (2006). Using Corpora in Discourse Analysis. Continuum.

Baker, P. (2010). Sociolinguistics and Corpus Linguistics. Edinburgh University
Press.

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The wacky
wide web: A collection of very large linguistically processed web-crawled corpora.
Language Resources and Evaluation, 43(3):209–231.

Beavan, D. (2008). Glimpses through the clouds: collocates in a new light. In
Proceedings of Digital Humanities 2008, University of Oulu, 25-29 June 2008.

Brezina, V., McEnery, T., and Wattam, S. (2015). Collocations in context: A new
perspective on collocation networks. International Journal of Corpus Linguistics,
20(2):139–173.

Cheng, W., Greaves, C., and Warren, M. (2006). From n-gram to skipgram to
concgram. International Journal of Corpus Linguistics, 11(4):411–433.

Chuang, J., Ramage, D., Manning, C. D., and Heer, J. (2012). Interpretation and
trust: Designing model-driven visualizations for text analysis. In ACM Human
Factors in Computing Systems (CHI).

Culy, C. and Lyding, V. (2010). Double Tree: An Advanced KWIC Visualization
for Expert Users. In 14th International Conference Information Visualisation,
pages 98–103.

Davies, M. (2009). The 385+ million word corpus of contemporary american
english (1990–2008+): Design, architecture, and linguistic insights. International
Journal of Corpus Linguistics, 14(2):159–190.

Dork, M. and Knight, D. (2015). WordWanderer: A navigational approach to text
visualisation. Corpora, 10(1):83–94.

Garside, R. and Smith, N. (1997). A hybrid grammatical tagger: CLAWS4. In
Garside, R., Leech, G., and McEnery, T., editors, Corpus Annotation: Linguistic
Information from Computer Text Corpora., pages 102–121. Longman.

Gullick, D., Rayson, P., Mariani, J., Piao, S., and Taiani, F. (2010). CONE:
COllocational Network Explorer [Computer Software]. http://ucrel.lancaster.
ac.uk/cone/.

20 JLCL46 JLCL

Visualisations for Corpus Linguistics

Heer, J. and Shneiderman, B. (2012). Interactive dynamics for visual analysis.
Queue, 10(2):30:30–30:55.

Heimerl, F., Lohmann, S., Lange, S., and Ertl, T. (2014). Word cloud explorer: Text
analytics based on word clouds. In 2014 47th Hawaii International Conference
on System Sciences, pages 1833–1842.

Hilpert, M. (2011). Dynamic visualizations of language change: Motion charts on
the basis of bivariate and multivariate data from diachronic corpora. Interna-
tional Journal of Corpus Linguistics, 16(4):435–461.

Huang, Y., Guo, D., Kasakoff, A., and Grieve, J. (2015). Understanding U.S.
regional linguistic variation with twitter data analysis. Computers, Environment
and Urban Systems, 59:244–255.

Johansson, S., Leech, G., and Goodluck, H. (1978). Manual of information to
accompany the Lancaster-Oslo/Bergen corpus of British English, for use with
digital computers. Department of English, University of Oslo.

Jänicke, S., Franzini, G., Cheema, M. F., and Scheuermann, G. (2015). On Close
and Distant Reading in Digital Humanities: A Survey and Future Challenges.
In Borgo, R., Ganovelli, F., and Viola, I., editors, Eurographics Conference on
Visualization (EuroVis) - STARs. The Eurographics Association.

Kauppinen, T. and de Espindola, G. M. (2011). Linked open science-communicating,
sharing and evaluating data, methods and results for executable papers. Procedia
Computer Science, 4:726 – 731. Proceedings of the International Conference on
Computational Science, ICCS 2011.

Keim, D. A. and Oelke, D. (2007). Literature fingerprinting: A new method for
visual literary analysis. In IEEE Symposium on Visual Analytics Science and
Technology, 2007. VAST 2007., pages 115–122.

Kilgarriff, A. and Grefenstette, G. (2003). Introduction to the special issue on the
web as corpus. Computational Linguistics, 29(3):333–347.

Knowles, A. K., Westerveld, L., and Strom, L. (2015). Inductive Visualization: A
Humanistic Alternative to GIS. GeoHumanities, 1(2):233–265.

Kucher, K. and Kerren, A. (2015). Text visualization techniques: Taxonomy, visual
survey, and community insights. In 2015 IEEE Pacific Visualization Symposium
(PacificVis), pages 117–121.

Leech, G. (1991). The state of the art in corpus linguistics., pages 8–29. Longman.

Leech, G. (1993). 100 million words of English: a description of the background,
nature and prospects of the British National Corpus project. English Today,
33(9).

McEnery, T. (2006). Swearing in English. Routledge, London.

Meirelles, I. (2011). Visualizing data: new pedagogical challenges. In Selected
Readings of the 4th Information Design International Conference, pages 73–83.

JLCL 2006 – Band 21 (1) 21JLCL 2016 – Band 31 (1) – 27-49 47

Rayson, Mariani, Anderson-Cooper, Baron, Gullick, Moore, Wattam

Murrieta-Flores, P., Baron, A., Gregory, I., Hardie, A., and Rayson, P. (2015).
Automatically analysing large texts in a GIS environment: the Registrar Gen-
eral’s reports and cholera in the nineteenth century. Transactions in GIS,
19(2):296–320.

Oelke, D., Kokkinakis, D., and Malm, M. (2012). Advanced visual analytics
methods for literature analysis. In Proceedings of the 6th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities, pages 35–44.
Association for Computational Linguistics.

Perkuhn, R. (2007). Systematic exploration of collocation profiles. In Proceedings
of Corpus Linguistics 2007, Birmingham, UK.

Phillips, M. (1985). Aspects of Text Structure: An investigation of the lexical
Organisation of Text, volume 52. North Holland.

Prentice, S., Taylor, P., Rayson, P., and Giebels, E. (2012). Differentiating act from
ideology: evidence from messages for and against violent extremism. Negotiation
and Conflict Management Research, 5(3):289–306.

Pumfrey, S., Rayson, P., and Mariani, J. (2012). Experiments in 17th century
english: manual versus automatic conceptual history. Literary and Linguistic
Computing, 27(4):395–408.

Rayson, P. (2006). AHRC e-Science Scoping Study Final report: Findings of the
Expert Seminar for Linguistics. AHRC e-Science Scoping Study (eSSS) project
report.

Rayson, P. (2008). From key words to key semantic domains. International Journal
of Corpus Linguistics, 13(4):519–549.

Rayson, P., Archer, D., Piao, S., and McEnery, T. (2004a). The UCREL semantic
analysis system. In Proceedings of the workshop on Beyond Named Entity Recog-
nition Semantic labelling for NLP tasks in association with 4th International
Conference on Language Resources and Evaluation (LREC 2004), 25th May
2004, Lisbon, Portugal., pages 7–12.

Rayson, P., Berridge, D., and Francis, B. (2004b). Extending the cochran rule
for the comparison of word frequencies between corpora. In 7th International
Conference on Statistical analysis of textual data (JADT 2004), pages 926–936.

Scott, M. (1997). Pc analysis of key words – and key key words. System, 25(2):233–
245.

Scrivner, O. and Kubler, S. (2015). Tools for digital humanities: Enabling access
to the old occitan romance of flamenca. In Proceedings of NAACL-HLT Fourth
Workshop on Computational Linguistics for Literature, pages 1–11, Denver,
Colorado.

Siirtola, H., Räihä, K.-J., Säily, T., and Nevalainen, T. (2010). Information
visualisation for corpus linguistics: Towards interactive tools. In IVITA’10,
pages 33–36, Hong Kong. ACM.

22 JLCL48 JLCL

Visualisations for Corpus Linguistics

Siirtola, H., Säily, T., Nevalainen, T., and Räihä, K.-J. (2014). Text variation
explorer: Towards interactive visualization tools for corpus linguistics. Interna-
tional Journal of Corpus Linguistics, 19:3:418–429.

Sinclair, J. (2004). Trust the text: language, corpus and discourse. Routledge.

Sinclair, S. and Rockwell, G. (2016). Voyant tools. http://voyant-tools.org/.

Smith, N., Hoffmann, S., and Rayson, P. (2008). Corpus tools and methods,
today and tomorrow: Incorporating linguists’ manual annotations. Literary and
Linguistic Computing, 23(2):163–180.

Vuillemot, R., Clement, T., Plaisant, C., and Kumar, A. (2009). What’s being said
near "Martha"? Exploring name entities in literary text collections. In IEEE
Symposium on Visual Analytics Science and Technology, 2009. VAST 2009.,
pages 107–114.

Wattenberg, M. and Viégas, F. B. (2008). The word tree, an interactive visual
concordance. IEEE Transactions on Visualization and Computer Graphics,
14(6):1221–1228.

Williams, G. (2002). In search of representativity in specialised corpora: Cate-
gorisation through collocation. International Journal of Corpus Linguistics,
7(1):43–64.

Xu, J., Tao, Y., and Lin, H. (2016). Semantic word cloud generation based on
word embeddings. In 2016 IEEE Pacific Visualization Symposium (PacificVis),
pages 239–243.

Zeldes, A., Ritz, J., Lüdeling, A., and Chiarcos, C. (2009). Annis: A search tool for
multi-layer annotated corpora. In Proceedings of Corpus Linguistics, Liverpool,
UK.

JLCL 2006 – Band 21 (1) 23JLCL 2016 – Band 31 (1) – 27-49 49

Christian Pölitz

Data Mining Software for Corpus Linguistics with Application in Di-

achronic Linguistics

Abstract

Large digital copora have become a valuable resource for linguistic research. We introduce a
software tool to efficiently perform Data Mining tasks for diachronic linguistics to investigate
linguistic phenomena with respect to time. As a running example, we show a topic model that
extracts different meanings from large digital copora over time.

1 Introduction

From the 1960s on, modern digital text corpora offer large text collections like newspaper articles,
social media content, but also language reference corpora for linguistic analysis. With the Internet,
even more textual information has become available for everybody. To use such large amounts of
digital texts, non-manual methods to extract information for linguistic research must be used. Data
Mining methods, see Manning and Schütze (1999) for example, can help to automatically analyze
such large document collections and corpora. Data Mining methods try to discover knowledge
from data sources and perform automatic analysis tasks based on identification of patterns in
the data. The goal is to find information in the data when manual analyses are not possible, too
expensive or too time-consuming.

To demonstrate the need for Data Mining in corpus linguistics, we investigate large digital
corpora for temporal dynamics: We show the development of meanings over time. The results will
show how useful Data Mining methods can be for such linguistic tasks. In this paper, we propose a
software tool for meaning extraction that systematically extends standard approaches to explicitly
adopt to corpora from heterogeneous language resources with information about time.

For example, from the Dictionary of the German Language, see Geyken (2007), we can retrieve
KWIC1-lists of snippets containing the German word Platte. The snippets are drawn from
documents from different genres over a time period from 1900 to 1999. For these documents, we
extract different meaning of the word Platte by Latent Dirichlet Allocation (Blei et al. (2003)).
In Figure 1, we illustrate two extracted meanings. At the top, we show the words that are most
important for each meaning by a Word Cloud2. We see that we identify two different meanings of
the word Platte. First, Platte in the meaning of a hard drive is found. The most important words
are highly computer related. The second meaning identifies the word Platte as photographic plate.
The important words are all connected to photography.

1Key-word-in-context: Examples of word (or expression) usage in texts.
2A Word Cloud visualizes frequent words and their importance by font size.

JLCL 2016 – Band 31 (1) – 1-21JLCL 2016 – Band 31 (1) – 51-62 51

Pölitz

Meaning 1 Meaning 2

To
p

ra
nk

ed
w

or
ds

in
to

pi
cs

Te
m

po
ra

ld
is

tr
ib

ut
io

n

1,900 1,920 1,940 1,960 1,980 2,000

0

20

40

60

80

100

year

nu
m

.d
oc

s

Group 1

1,900 1,920 1,940 1,960 1,980 2,000

0

20

40

60

80

100

year

nu
m

.d
oc

s

Group 2

Figure 1: Two possible meanings for the word Platte (plate) extracted from KWIC-lists of snippets from the
Core Corpus of the Dictionary of the German Language. Top: The most important words in the topics.
Bottom: The temporal distribution of the meanings.

At the bottom, we plot the amount of the usage of the different meanings over the time: We
count how many documents are assigned to the meanings in each year. We see that Platte in the
context of a hard drive is mostly used at the end of the 20th century, while Platte in the context of
photography is mainly used in the 1950s.

Based on this first study. we developed a software tool to implement different versions of topic
models and topic models with temporal information that can be used for diachronic linguistics.
Besides, algorithms for topic modeling, our software tool offers methods to evaluate and visualize
the results on large digital corpora.

2 Topic Models

Topic models are statistical models that extract semantics in document collections based on co-
occurrence statistics. For these models, we assume the Multinomial Model (MM): The words
in the documents are drawn from Multinomial distributions. The most prominent latent topic
models are Probabilistic Latent Semantic Analysis (Deerwester et al. (1990)) and Latent Dirichlet
Allocation (Blei et al. (2003)). Both models are mixture models (McLachlan and Basford (1988))
that model the joint probability of words and documents as linear combination of conditional
distribution of the latent topics.

2 JLCL52 JLCL

Data Mining Software

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) as proposed by Blei et al. (2003) is a generative probabilistic
topic model that estimates document-topic distributions θ and topic-word distributions β with
Dirichlet priors Dir(.). Given a corpus C of m documents, each represented by a sequence
of words d = (w1, · · · , wn), LDA models the generative process of generating documents as
random draws over random mixtures of latent topics t. We briefly summaries the generative
process of documents as the following:

1. For each topic t:

a) Draw βt ∼ Dir(η)

2. For each document d ∈ C:

a) Draw θd ∼ Dir(α)
b) For each word i:

i. Draw ti ∼ Mult(θd)
ii. Draw wi ∼ Mult(βti)

First, we draw for each topic t the word probabilities βt for each word in the corpus. Next,
for each document d we draw a T -dimensional Dirichlet distributed random vector θd. Then, for
each word in the document d we draw a topic ti from a Multinomial distribution parametrized by
θd and a word wi from a Multinomial distribution parametrized by βti . In the original approach
by Blei et al., βt does not have a Dirichlet prior Dir(η). This is important for sampling based
approaches for LDA and for possible extensions with different (more complicated) priors.

In the literature there are two major approaches to estimate an LDA topic model. First,
variational inference can be used to approximate the posterior distribution of the latent variables by
a simpler variational distribution (Blei et al. (2003)). Second, Gibbs sampling defines a sequence of
random draws that converges to a sequence of topic assignments that follows the joint distribution
of the topic model (Griffiths and Steyvers (2004)). In the software tool, we implemented both
approaches.

3 Temporal Topic Models

While the standard topic models group only words and documents in semantically related topics,
we are further interested in the distribution of the topics over time. Certain meanings of words, for
example, might be used only in certain time periods: The word cloud for instance has recently
become a new meaning of a “data cloud”. Further, there can be certain trends or attentions to
topics. Topics about US presidents for example will very likely be highly present around a year of
elections.

In order to extract the distribution of topics over time, we use topic models that consider
temporal information about the documents. Each document has a time stamp τ . We assume
that each word in the documents is associated with this time stamp. The time stamps follow the

JLCL 2016 – Band 31 (1) 3JLCL 2016 – Band 31 (1) – 51-62 53

Pölitz

distribution p(τ |m) for meta parametersm and are assumed to be conditionally independent given
a topic. Hence, we model the time stamps as additional observed random variables that depend on
the topics.

A specific instance of a probability distributions of the time stamps is the Beta distribution.
Wang and McCallum (2006) introduced this model to investigate topics over time. They call this
method Topics over Time (TOT). The generative process of standard LDA is extended such that for
each word wi in each document, we also draw a time stamp τi ∼ Beta(mti) with mti = (a, b)
the shape parameters of the Beta distribution for topic ti.

In the software tool, we provide implementations for several distributions. The parameters of
the distributions are additionally estimated by Maximum Likelihood Estimation using Newton-like
gradient descent with a standard BFGS optimization solver, see Liu and Nocedal (1989).

4 Evaluation

We implemented several standard evaluation methods for topic models. Beside coherence measures
that estimate the quality of a topic based on external knowledge of word correlations, we also
provide methods to estimate likelihoods of test document collections. To qualitatively evaluate
topics, we provide statistics to visualize the results of a topic model.

4.1 Coherence Measures

Frequently used quantitative evaluation methods are based on the relations of the highest ranked
words in each topic. The coherence measures estimate how well the model fits an as coherent
expected outcome. The definition of this expected coherent outcome is usually based on user
studies and experience with topic modeling in practice. A fundamental assumption for topics or
factors to be coherent is based on the top ranked words. Each topic is associated with a value
how present this topic is for given words. This value can be directly read of from the multinomial
distribution βt. Ranking the words for each topic results in a compact representation of the each
topic.

For T latent variables with corresponding top-k words in ranking lists Vt = {w1t, · · · , wkt}
with respect to each latent variable that is extracted by a latent variable model, the overall coherence
measure is the mean over individual coherence values U(Vt):

U(V) = 1
T

T∑

t=1

U(Vt).

To estimate the individual values for a given latent variable model, we use several coherence
measures that have been proposed in the literature. All measures use statistics of co-occurring
words from an additionally given reference document collections like Wikipedia articles. For a
detailed description of the quality measures see Röder et al. (2015). In the next subsections, we
describe the coherence measures mostly used in literature for topic models.

4 JLCL54 JLCL

Data Mining Software

4.1.1 UMass

In Mimno et al. (2011), the authors propose a topic coherence measure that depends on co-
occurrences of words. Based on user studies, they show that this measure corresponds well with
the top ranked topics by the users. In the literature the measure is called the UMass measure and
is defined as

UMass(Vt) =
k∑

m=2

m∑

l=1

log D(wmt, wlt) + 1
D(wlt)

. (1)

The measure is the sum of the log-ratios of the by 1-smoothed co-occurrence frequency of any
two ordered words in the top ranked list, D(wmt, wlt), and the document frequency of the lower
ranked word, D(wlt).

4.1.2 Pointwise Mutual Information

The authors in Newman et al. (2010) introduce Pointwise Mututal Information (PMI) as measure
for topic coherence. The PMI is the log-ratio of the joint probability of two random variables and
the product of their marginal probabilities. It measures how likely two random variables are jointly
distributed and not independently distributed. The PMI of two words w1 and w2 is defined as the
following:

PMI(w1, w2) = log p(w1, w2)
p(w1)p(w2) .

The PMI can be interpreted as how much likely the two words w1 and w2 appear together in
contrast to how likely they appear alone.

For a latent topic, respectively factor t and the top-k ranked words Vt, the PMI is defined as:

PMI(Vt) = 1
(k − 1)k/2

k∑

m<n

log p(wmt, wnt)
p(wmt)p(wnt)

. (2)

In Aletras and Stevenson (2013) propose to use the Normalized Pointwise Mututal Information
(NPMI) to estimate the coherence of the topics. The NPMI is the PMI divided by the negative log
probability of the two words appearing together. The reason to use NPMI is twofold. First, NPMI
is normalized between−1 and 1. Second, low frequencies of the words are less critical. Especially
the second reason is important, since small outliers can result in very small joint probabilities that
overtake the whole coherence measure. Formally the NPMI is defined as:

NPMI(Vt) = 1
(k − 1)k/2

∑

m<n

log p(wmt,wnt)
p(wmt)p(wnt)

− log p(wmt, wnt)
. (3)

In our software tool, we provide these coherence measures via an interface to the library
Palmetto (Röder et al. (2015)). The estimations of the frequencies and probabilities are all based
on word indices from Wikipedia corpora (German and English). To generate these indices, the

JLCL 2016 – Band 31 (1) 5JLCL 2016 – Band 31 (1) – 51-62 55

Pölitz

Wikipedia corpora must be retrieved (for example from the Institute of the German Language3)
and a Lucene-based index must created as explained here: https://github.com/AKSW/
Palmetto/wiki/How-to-create-a-new-index.

4.1.3 Temporal Coherence for Temporal Topic Models

Similar to the coherence of the top ranked words, we estimate the temporal coherence as distance
of the distribution of the time stamps associated with a latent topic, with the distribution of the
time stamps for the top words over all documents in the corpus. We assume that the documents
containing the top words from latent variables approximate the content of the underlying concept.
The temporal difference of the time stamps of these documents indicates how well this latent
information captures the true temporal dynamics in the corpus. A topic is temporal coherent if the
estimated distribution of the time stamps in this topic is similar to the temporal distribution of the
time stamps for the top words in the whole corpus. The documents that contain the top two words
approximate the semantics behind the topic. Hence, documents containing the top two words in
the corpus can be used as coherence reference.

The empirical distributions of the time stamps of the topics and the top words in the corpus
are estimated by histograms ht and hw1,w2 . For a topic t, the empirical probability of the time
between two time stamps τ1 and τ2 can be approximated by

P ([τ1, τ2]|t) = p(τ2|t)− p(τ1|t) ∝
∑

τ

Iτ1≤τ<τ2 (τ)nτ,t.

For nτ,t the number of tokens assigned to topic t from a document with time stamp τ and the
indicator function

Iτ1≤τ<τ2 (τ) =
{

1, τ ∈ [τ1, τ2]
0, else

.

Now, we define the histogram of the temporal distribution of topic t as function ht : N→ N such
that

ht(τ1, τ2) =
∑

τ

Iτi≤τ<τi+1 (τ)nτ,t,

for a given number of intervals [τ1, τ2], · · · , [τe−1, τe].
For two words w1 and w2 for topic t, the empirical probability can be approximated by

P ([τ1, τ2]|w1, w2) = p(τ2|w1, w2)− p(τ1|w1, w2) ∝
∑

τ

Iτ1≤τ<τ2 (τ)nw1,w2,τ

for nw1,w2,τ the number of tokens in the documents that contain both words w1 and w2 in the
corpus with time stamp τ . The histogram of the temporal distribution of the words w1 and w2 in

3http://www1.ids-mannheim.de/kl/projekte/korpora/verfuegbarkeit.html

6 JLCL56 JLCL

https://github.com/AKSW/Palmetto/wiki/How-to-create-a-new-index
https://github.com/AKSW/Palmetto/wiki/How-to-create-a-new-index
http://www1.ids-mannheim.de/kl/projekte/korpora/verfuegbarkeit.html

Data Mining Software

the corpus is the function hw1,w2 : N→ N such that

hw1,w2 (τ1, τ2) =
∑

τ

Iτ1≤τ<τ2 (τ)nw1,w2,τ .

There are several distance measures possible. We propose to use the Minkowski distance
to estimate how much the distributions over the time stamps differ based on histograms. The
Minkowski distance of two histograms for topic t and the corresponding top two words w1t, w2t
is defined as

D(ht, hw1t ,w2t
, p) = p

√∑

i

|ht(τi, τi+1)− hw1t ,w2t
(τi, τi+1)|p.

Using p = 2 is the Euclidean distances and p = 1 is the l1 distance.

4.2 Likelihood

The coherence measures estimate the quality of latent topics based on statistics from different
document collections and user information. To estimate how good a factor or topic model fits the
corpus we estimate the likelihood of the data under this model. Depending on the specific model,
we can directly estimate the likelihood or we need special assumptions. For topic models, the
likelihood of a set of test documents in corpus Cte given a topic model by its parameters is

p(Cte|α, β) =
∏

d∈Cte

p(d|α, β).

4.2.1 Sequential Monte Carlo

As proposed by Wallach in Wallach et al. (2009), Sequential Monte Carlo Method can be used to
estimate the likelihood of a topic model. For a sequence of words from a hold-out test data set, the
probability of the test words w is

p(d|α, β) =
∏

m

p(wm|d<m, α, β).

A Sequential Monte Carlo algorithms to estimate the likelihood of a held-out data set for a given
topic model can be defined in the following way: Given a new document d as sequence of tokens,
d = (w1, · · · , wN), we re-sample topic proportions for each token wm in d, given all tokens
before, d<m = (w1, · · · , wm−1), using the point estimate of the topic-word distributions. To
compensate the uncertainty in these estimates for a single document, we keep M independent
samples. These samples are called particles. For the mth word in the sequence, the probability is

JLCL 2016 – Band 31 (1) 7JLCL 2016 – Band 31 (1) – 51-62 57

Pölitz

p(wm|d<m, α, β) =
T∑

i=1

p(ti|θ)p(wm|d<m, ti, β) (4)

=
T∑

i=1

nd,i,<m + αk
ni +

∑
k′ αk′

βti,wm . (5)

This is a mixture of multinomial Distribution with Dirichlet prior Dir(η), with mixing weights
p(ti|θ) for Dirichlet (Dir(α)) distributed p(t|θ).

We apply Sequential Monte Carlo Methods using particle learning (PL) methods as proposed by
Scott and Baldridge (2013) and by Naesseth et al. (2014). To get an estimate for the topic weights,
we use aggregated counts of topic assignments for topics i: ni, respectively for the document
d: nd,i. For m = 1, · · · ,M , we use aggregated counts nd,i,<m, with count assignments for all
tokens up to the mth, sampled iteratively from

p(t = i|wm, t<m) ∝ αk∑
k′ αk′

βm,i

and collected as particles. We re-sample for topic proportions for the documents, but use the
point estimate for the word distribution in each topic. Then, we sample for each particle and its
corresponding aggregated counts, topic assignments and add them to these counts. This means, we
have Z estimates of the aggregated counts and consequently can estimate Z times p(wm). This
models the uncertainty about the assignment by Z particles.

We define particles Tm,z ∼ p(t|w1, · · · , wm, τd, β) for z = 1, · · · , Z. The Tm,z are iteratively
sampled such that TN,z ∼ p(t|d, τd, β).

For temporal topic models by additional random variables that depend on the latent topics, we
can easily extend to Sequential Monte Carlo method from above to estimate the likelihood of
hold-out documents with additional time stamps:

p(wm, τd|d<m, α, β) =
T∑

i=1

p(ti|θ)p(wm, τd|d<m, ti, β) (6)

=
T∑

i=1

nd,i,<m + αk
ni +

∑
k′ αk′

βti,wmp(τd|ti). (7)

This is a mixture of multinomial distributions with Dirichlet prior Dir(η), with mixing weights
p(ti|θ)p(τd|ti) for Dirichlet (Dir(α)) distributed p(t|θ) and Shifted-Gompertz distributed p(τ |t).
This density is analogue to Equation 4 using additional time stamps. The difference lies in the
integration of the temporal distributions. This is easy due to the independence assumption in
temporal topic modeling.

8 JLCL58 JLCL

Data Mining Software

Besides the joint likelihood of the words and the time stamps, we are also interested in the
conditional likelihood. The conditional likelihood is the likelihood of the sequence of words in a
test document given the time stamp: p(d|τd). This conditional likelihood estimates the likelihood
of words from the documents at the time of the document. This measure focuses on the quality
of the estimated word distribution. Due to the independence assumption in the topic models,
we have the following conditional probability of a sequence of words in a document given the
corresponding time stamp:

p(d|τd) =
∏

n

p(wn|τd).

The partial conditional probabilities can be calculated via

p(wn|τd) = p(wn, τd)
p(τd)

.

The joint probability p(wn, τd) is estimated as in Equations 5 and the probability of the time
stamp τd is

p(τd) =
∑

t

p(τd|t).

4.3 Qualitative Evaluation

In practice, the topic models are used qualitatively. Experts interpret results of the models by
exploring the topics. For linguistic tasks for example, the results of latent topic modeling are
mostly manually investigated. For example, if we are interested in usage patterns of expression
and words in context and over time, we need methods to manually evaluate the results of a latent
topic model in terms of the words and documents. Rather, than abstract numbers that describe the
results, we are interested in how explanatory the topics are. A good format and a visualisation
of the results is needed to help evaluating the models by linguists. There are several possible
ways to visualize the results of topic models. In the literature there are usually the following
aspects considered: First, how can we show the tendency of words and documents to certain
topics. Second, how can we show the distribution of the topics over the words and documents.
Finally, how can we show the distribution of topics, words and documents over time. The latter is
important for diachronic linguistics.

4.3.1 Word Clouds

A concrete visualization of the words with respect to their importance is a World Cloud. Each
of the top-k words from the ranking list is written in a figure with size proportional to βt,w. On
the left in Figure 2, we see a Word Cloud from a topic about US president Obama. Besides Word
Clouds, we can list the top-k words in decreasing order of importances (in the concrete values of
βt,w) and additionally plot these values as histogram. This can be seen on the right in Figure 2. In
the software tool, we provide the top ranked words from a topic model as CSV4 result file.

4A CSV file contains table like data as comma separated values.

JLCL 2016 – Band 31 (1) 9JLCL 2016 – Band 31 (1) – 51-62 59

Pölitz

Figure 2: Visualization of the most important words for a given topic. Left: a Word Cloud from the highest
ranked words from a topic model on Wikipedia talk pages containing the word “president”; right: a
sorted list of the highest ranked words.

4.3.2 Temporal Distribution

Ranking lists and Word Clouds can visualize the word distributions for different topics. For the
temporal distributions of the documents with respect to the topics, we need to display the course of
the importance of the latent topic over time. The amount of a certain topic in a given time can be
estimated by grouping documents by time and averaging the document-topic proportions nd,i ∝ θ.
The document-topic proportion tells how much present a certain topic is in a document.

Each document d has its time stamp τd. Grouping these values into n intervals:

[0, τ1], [τ1, τ2], · · · , [τn−1, τn],

we assign the documents to the corresponding intervals, hence d→ [τi, τi+1] with τi ≤ τd ≤ τi+1.
Now, we can average nd,i in each interval to get a histogram of topic i over time. Additionally,
we can plot the estimated temporal distribution. In Figure 3, we show the density of an estimated
distribution of time stamps together with the corresponding histogram of time stamps for a topic
from a topic model trained on Wikipedia talk pages about presidents. Similar to the top words, we
additionally protocol the time stamps associated with the topics from a temporal topic model and
the estimated parameters for the temporal distributions.

5 Software

This section describes the plugin “Corpus Linguistic Plugin” as extension for the Data Mining tool
RapidMiner. We explain in detail the software and how it can be used in diachronic linguistics.
The software is already used in corpus linguistic research and teaching at the TU Dortmund
University and the Mannheim University. We start the software description with an introduction
to Data Mining tool RapidMiner. RapidMiner is used and extended for corpus linguistic tasks
in our software tool. The plugin can be downloaded from: http://sfb876.tu-dortmund.

10 JLCL60 JLCL

http://sfb876.tu-dortmund.de/auto?self=Software
http://sfb876.tu-dortmund.de/auto?self=Software

Data Mining Software

Figure 3: Visualization of the distribution of topics over time as plot of a histogram of topic proportions for a
given topic over time from a topic model about presidents. Additionally, we plot the density of the time
stamps fitting the corresponding time stamps for this topic.

de/auto?self=Software under the link: “Corpus Linguistics Plugin” or directly at http:
//sfb876.tu-dortmund.de/auto?self=%24es4hb8h0cg.

5.1 RapidMiner

RapidMiner, as for instance described by Hofmann and Klinkenberg (2013), is a Data Mining
toolbox used to perform data analysis on different data sources. RapidMiner offers the classical
analysis and Data Mining steps from data retrieval to data transformation and pre-processing,
performance of analysis and Data Mining methods to evaluation methods, post-processing and
visualization. Individual processing steps are performed by so called Operators. The standard
operators are separated into several categories and are organized in an ontology represented as
folder structure in the operator explorer view on the left of the main screen as seen in Figure 4.
The main categories of operators are:

• import/export operators: reading and writing of data

• data transformation operators: pre- and post-processing of data

• modeling: analytic and Data Mining methods on data

• evaluation operators: quality estimation of the modeling results.

The operators are compiled to a sequence of steps summarized in a so called Process. This
process defines a flow of input data to processing operators that output result data. In the middle
Figure 4, an example process is shown with the execution order of the individual operators. Starting
with reading data as CSV-file, the data is pre-processed by transforming nominal to numeric data.
The modeling operator SVM builds a classification model that is applied on test data which is
additional read in. Finally, the Performance operator is used to evaluate the model by standard
measures. The operators have a number of parameters to be specified. On the right Figure 4,
the Parameters panel is shown as input mask for all parameters. Clicking on an operator, this

JLCL 2016 – Band 31 (1) 11JLCL 2016 – Band 31 (1) – 51-62 61

http://sfb876.tu-dortmund.de/auto?self=Software
http://sfb876.tu-dortmund.de/auto?self=Software
http://sfb876.tu-dortmund.de/auto?self=%24es4hb8h0cg
http://sfb876.tu-dortmund.de/auto?self=%24es4hb8h0cg

Pölitz

Figure 4: RapidMiner user interface. Left: Operators for data loading, pre-processing, Data Mining methods,
post-processing and data export. In the middle: Data Mining process. Right: Properties and
parameters of the process and the operators.

panel shows the parameters that need to be set for this operator. Additional, a description of each
operator can be found on the Help panel. A general introduction for Data Mining with RapidMiner
can be found in the book by North (2012).

5.2 Corpus Linguistics Plugin

RapidMiner offers a convenient interface and a plethora of available analyses methods. Compared
to low level interfaces and libraries for different programming languages, RapidMiner offers a
more user friendly tool box. This makes the introduction of our methods more easy for linguistic
researchers - even with little knowledge in computer science. We implemented different versions of
topic models and evaluation methods as a plugin for the RapidMiner. For the different topic models,
different operators are available. Besides standard LDA with Gibbs sampling and Variational
Inference, supervised versions with Gaussian, Beta, Uniform and Gompertz distributed document
labels can be used for diachronic linguistics. Additionally, an implementation of topic models
with word features and word groups via special Laplace and Group-Sparsity inducing priors is
available to integrate word informations.

To access different corpora, operators to execute linguistic queries on corpora at the Berlin
Brandenburger Academia of Science are available. Besides the standard corpora, we also provide
access to dictionaries and GermaNet (the German version of WordNet). To access Wikipedia
corpora, a TEI-reader is implemented that extends a standard XML-stream reader to process
Text Encoding Initiative (TEI) tags, see Beißwenger et al. (2012). Finally, pre-processing and
post-processing operators provide methods for text transformations and text visualization. In the
next subsections, concrete examples for the use of the plugin are described.

12 JLCL62 JLCL

Krill

Nils Diewald, Eliza Margaretha

Krill: KorAP search and analysis engine

1 Introduction

KorAP1 (Korpusanalyseplattform) is a corpus search and analysis platform for handling
very large corpora with multiple annotation layers, multiple query languages, and
complex licensing models (Bański et al., 2013a). It is intended to succeed the COSMAS II
system (Bodmer, 1996) in providing DEREKO, the German reference corpus (Kupietz
and Lüngen, 2014), hosted by the Institute for the German Language (IDS).2 The
corpus consists of a wide range of texts such as fiction, newspaper articles and scripted
speech, annotated on multiple linguistic levels, for instance part-of-speech and syntactic
dependency structures. It was reported to contain approximately 30 billion words in
September 2016 and still grows continually.
Krill3 (Corpus-data Retrieval Index using Lucene for Look-ups) is a corpus search

engine that serves as a search component in KorAP. It is based on Apache Lucene,4 a
popular and well-established information retrieval engine. Lucene’s lightweight memory
requirements and scalable indexing are suitable for handling large corpora whose size
increases rapidly. It supports full-text search for many query types including phrase and
wildcard queries, and allows custom implementations to cope with complex linguistic
queries.
In this paper, we describe Krill and how its index is designed to handle full-text

and complex annotation search combining different annotation layers and sources of
very large corpora. The paper is structured as follows. Section 2 describes how a
search works in KorAP (starting from receiving a search request until returning the
search results). Section 3 explains how corpus data are represented and indexed in
Krill. Section 4 describes various kinds of queries handled by Krill and how they are
processed for the actual search on the index. The Krill response format containing
search results is described in Section 5. We present related and further work in Section
6 and 7 respectively. The paper ends with a summary.

2 Search Flow

The KorAP architecture’s design is based on a microservice architecture comprising
small independent components that are easy to extend, to replace and to maintain
(Diewald et al., 2016). Figure 1 illustrates the KorAP architecture and the interactions

1https://korap.ids-mannheim.de/
2http://www.ids-mannheim.de/
3https://github.com/KorAP/Krill
4https://lucene.apache.org/

JLCL 2016 – Band 31 (1) – 63-80 63

Diewald, Margaretha

Figure 1: The KorAP Architecture

among its components. In addition to the search engine Krill, the components include
a user interface (Kalamar), a query serializer (Koral), a user and resource policy
management system (Kustvakt) and a receptionist service (cf. Büttcher et al., 2010,
ch. 14.1.1) for the search engine to provide parallel search (Kanalito).
A KorAP search process starts by sending a query in a particular query language,

either using the Kalamar frontend or a direct API request to Kustvakt. Supported
query languages include COSMAS II (Bodmer, 1996), ANNIS (Rosenfeld, 2010), and
Poliqarp (a CQP variant; Przepiórkowski et al., 2004).
The query is then serialized by Koral resulting in a generic representation as Koral-

Query (Bingel and Diewald, 2015). Kustvakt may relay the KoralQuery to a single Krill
instance to conduct a search or to Kanalito for a parallel search of distributed Krill
instances. The actual search is performed in Krill, and query results are eventually
returned to the API endpoint and may be displayed in Kalamar.

Kustvakt is the API provider of KorAP managing the interaction of all components.
One of its primary tasks is to monitor user access to resources, and thus to guarantee the
retrieval of resources with respect to their intellectual property rights before commencing
a search (Bański et al., 2014). When a user request involves unauthorized resources,
Kustvakt may rewrite the corresponding KoralQuery in order to limit the query to
only those resources available to that user. Besides, it may inject values from user
preferences such as default annotation sources for each annotation layer. Because the
central user and license mechanism is done in Kustvakt and not in Krill, redundancy in
distributed search and re-implementation in different search component systems can be
avoided.

3 Index Representation

Krill, as it is based on Lucene, uses an inverted index5 to provide full-text search
capabilities in a corpus. In contrast to tools like grep, this approach does not treat
textual data as a sequence of characters, but as a sequence of tokens (most often
“words”). Thus, searching for these tokens provides direct access to the occurrence
of these tokens in a collection of documents. An inverted index consists of a term
dictionary (based on the tokens) with direct access to the associated information on the

64 JLCL

Krill

occurrence of a token in the corpus, so-called postings lists (see Fig. 4). While most of
the time the dictionary is kept in memory for fast access, postings lists are only loaded
(partially) in memory, everytime a term is retrieved as part of the query process.

Figure 2: KorAP data model

As a search component of KorAP, Krill indexes and
provides search on primary data (i.e. corpus text),
various layers of annotation data (e.g. lemma, part-of-
speech, constituent annotations) and metadata of the
resources. The KorAP data model (see Bański et al.,
2013b) separates primary data and annotations (i.e. a
standoff architecture) to allow for multiple, potentially
concurring layers of annotations (see Fig. 2).6 This
model is the foundation of the KorAP input format
KorapXML as well as the foundation of the Krill index
design.
Metadata provides information on the document-

level (cf. Zobel and Moffat, 2006), such as author in-
formation of a text or the publication date. The data
structure of the term dictionary for metadata depends
on the stored data type and the expected matching
operations. For example, publication dates may need
to be stored as numerical data to provide support for range queries (e.g. “Search in all
documents published since 1786”), while titles may be stored as full-text searchable
data (e.g. “Search in all documents containing the word ‘Reise’ in the title”), and
organizing the term dictionary for string data using hashes may be efficient, but may
also prevent access using regular expressions.
Metadata fields in Krill can have the following types:7

date Date field (e.g. publication date)
int Numerical integer field (e.g. number of tokens)

keyword Multiple strings (e.g. keyword tags)
store Retrieve-only value (e.g. associated file reference)
string Fixed string (e.g. text identifier)
text Tokenized full-text field (e.g. text title)

Annotation data provides information on the word-level of the text and is subdivided
into foundries denoting the resource of a certain annotation (e.g. the annotation tool
used to generate the annotation) that may contain multiple annotation layers. In KorAP,
a user can search for an annotation in a specific foundry and layer, by adding a prefix
to the query term, specifying the requested annotation, for example [mate/l=sun] to

5For a brief introduction to inverted indices for full-text search, see Zobel and Moffat (2006).
6Although Krill supports overlapping annotations, at the moment it is limited to one stream of
tokens (i.e. a single tokenization for all layers).

7Currently, metadata fields are defined by DEREKO. In the future, Krill will support arbitrary
metadata fields of the given types.

JLCL 2016 – Band 31 (1) – 63-80 65

Diewald, Margaretha

Figure 3: Term structures for annotations in the Krill index

search for the term “sun” in the lemma layer of the Mate-foundry using the Poliqarp+
query notation (KorAP’s extension to Poliqarp).
To distinguish between annotations in the index, all annotation terms in the term

dictionary have foundry and layer prefixes (see Fig. 3, left). Annotations in Krill can
have the following types, specified as optional additional type prefixes to the dictionary
terms (see Fig. 3, right):

Token Token-level information terms
(e.g. the surface form of a term or the lemma)

Span Span-level information terms
(e.g. sentences or nominal phrases)

Relation Relational information spanning between terms and/or spans
(e.g. dependency relations)

Attribute Annotations to tokens, spans, or relations
(e.g. the href-attribute of an HTML anchor element)

Further annotation types are being considered, for example to describe punctuations.8
The document identifier and the starting position of the annotation are stored in the

postings list, along with additional retrievable information encoded in byte streams
(so-called payloads),9 for example the length of a span or the annotation a relation
refers to.

Additional information supported by all annotation types includes a leading byte for
term type identification, a unique token identifier, and a byte value indicating the level
of confidence of the annotation source.
Character offsets of tokens (relevant for matching highlights, see Sec. 5) are stored

once per token position. Span terms may store additional character offset information
in payloads, to include surrounding non-token characters, for example punctuation and
quotation marks.

8Krill does not support punctuation search yet. In the future, punctuations will be indexed as
attachements to surrounding tokens in order to keep searching for sequences of words simple.

9The documentation of payload byte streams is available at https://github.com/KorAP/Krill/blob/
master/misc/payloads.md.

66 JLCL

Krill

Figure 4: Example index representation of two documents, showing the term dictionary and the
postings lists

Figure 4 exemplifies the structure of the Krill index for two documents. Both
documents have a sequence of tokens (token stream), a token-level annotation and a
span-level annotation. The term dictionary contains all annotations including prefixes.
The associated postings lists are illustrated as lists of tuples starting with the identifier
of the text in which the annotation occurs, followed by occurrence-specific information,
that vary according to the annotation type. The surface terms (e.g. i:moon) and the
token-level annotations (e.g. the part-of-speech annotation corenlp/p=DT) store their
token position in the token stream. The span-level annotations (e.g. the constituency
annotation <>:corenlp/c=S) store their start and end positions, and the level in the
tree hierarchy, partially encoded in payloads.
An annotation as in Figure 4 would be encoded in the following structure:

<>:corenlp/c=NP$64<i>0<i>8<i>21

This structure is expected by Krill when processing token streams. The prefix <>
denotes the span type, corenlp/c denotes the foundry and the layer, and NP denotes
the annotation value. $ splits the term dictionary part and the postings list part whose
structure may differ depending on the information needed to be stored. Everything that
follows $ is stored per token as a byte stream. The information in the angular brackets
defines the data type to decode the following information (for byte, <i> for integer
etc.). The first byte (64) introduces the payload identifier for denoting a span-level
annotation, the following two integers encode the character offsets of the annotation
(<i>0 to <i>8), the next integer contains the token position after the end of the span
(<i>2), and the final byte represents the depth of the annotation in a hierarchy (1
means the annotation is a direct child to the root).
In KorAP, a separate internal preprocessing pipeline is used to enrich corpus data

(based on the I5 format of DEREKO; see Lüngen and Sperberg-McQueen, 2012) by
adding standoff annotations from multiple foundries (including CoreNLP, Mate or Xerox

JLCL 2016 – Band 31 (1) – 63-80 67

Diewald, Margaretha

Figure 5: KoralQuery translation into Lucene applicable queries

parsers) resulting in KorapXML (Bański et al., 2012). A base foundry provides the
minimum annotation necessary for Krill, including sentences, paragraphs, and text
boundaries. The KorapXML data can be transformed into a JSON document consisting
of a single token stream of the Krill term structure described above by using a conversion
tool.10 The resulting JSON document can be indexed by Krill.
A Krill index is not static and is updated every time a new document is added or

deleted. Deletion is done by maintaining a list of deleted documents that are excluded
from every virtual corpus requested (see Sec. 4.1). The documents will be purged from
the index regularly as a defragmentation of the index. Moreover, Krill uses unique text
identifiers in the metadata for updates: documents are updated by deleting the old
version of a document and adding a new one to the index. As a consequence, every
modification of the document, such as an addition of annotations, will result in a new
version of the whole document.

4 Query Processing

KorAP is designed to handle various kinds of queries from existing corpus query
languages. These queries of different syntaxes are represented in a common format
by the KoralQuery protocol (see Sec. 2 and Bingel and Diewald, 2015) serialized in
JSON-LD (Sporny et al., 2014). KoralQuery describes complex linguistic queries as
nested objects with various types and operations. Krill is the reference implementation
for KoralQuery consumption, aiming for completely supporting it.
On the root level, KoralQuery distinguishes between document queries and span

queries. Document queries allow to specify a virtual corpus (i.e. a defined subcollection
of documents) by means of document-level metadata constraints (see Bański et al.,
2013b), while span queries define a textual span to search in the virtual corpus on the
word-level.

Figure 6 shows a KoralQuery document. The query section is a serialization of
the query [orth=sun][][orth=moon]? (Poliqarp notation). The collection section
defines a virtual corpus to limit the search to all documents where the author metadata
field contains the term “Goethe”, the pubDate field contains a date since 1786, and
10https://github.com/KorAP/Korap-XML-Krill

68 JLCL

Krill

1 {
2 " @context " : "http:// korap .ids - mannheim .de/ns/ koral /0.3/ context . jsonld ",
3 " collection " : {
4 " @type ": " koral : docGroup ",
5 " operation ": " operation :and",
6 " operands ": [{
7 " @type ": " koral :doc",
8 "key": " author ",
9 " match ": " match : contains ",

10 " value ": " Goethe "
11 },{
12 " @type ": " koral : docGroup ",
13 " operation ": " operation :and"
14 " operands ": [{
15 " @type ": " koral :doc",
16 "key": " pubDate ",
17 " match ": " match :geq",
18 "type": "type:date",
19 " value ": "1786"
20 },{
21 " @type ": " koral : docGroup ",
22 " operation ": " operation :or"
23 " operands ": [{
24 " @type ": " koral :doc",
25 "key": " title ",
26 " match ": " match : contains ",
27 " value ": " Reise "
28 },{
29 " @type ": " koral :doc",
30 "key": " title ",
31 " match ": " match : contains ",
32 " value ": " Wahlverwandtschaften "
33 }],
34 }]
35 }]
36 },
37 " query ": {
38 " @type ": " koral : group ",
39 " inOrder ": true,
40 " operation ": " operation : sequence ",
41 " operands ": [{
42 " @type ": " koral : token ",
43 "wrap": {
44 " @type ": " koral :term",
45 "key": "sun",
46 " layer ": "orth",
47 " match ": " match :eq"
48 }
49 },{
50 " @type ": " koral : token "
51 },{
52 " @type ": " koral : group ",
53 " operation ": " operation : repetition ",
54 " boundary ": {
55 " @type ": " koral : boundary ",
56 "max": 1,
57 "min": 0
58 },
59 " operands ": [{
60 " @type ": " koral : token ",
61 "wrap": {
62 " @type ": " koral :term",
63 "key": "moon",
64 " layer ": "orth",
65 " match ": " match :eq"
66 }
67 }]
68 }]
69 }
70 }

Figure 6: A KoralQuery document

JLCL 2016 – Band 31 (1) – 63-80 69

Diewald, Margaretha

Figure 7: Bit vector calculation of the virtual corpus as defined in Figure 6 based on five documents

a title field that contains either the term “Reise” or “Wahlverwandschaften” (see
Diewald and Bingel, 2015, for the KoralQuery specification).
To process a query, Krill parses and validates the KoralQuery and transforms the

virtual corpus into applicable Lucene Filters and span queries into applicable Lucene
SpanQueries (see Fig. 5). The span query may need to be rewritten into an intermediate
query tree according to a query plan to be applicable. The following sections describe
these steps.

4.1 Document Queries

In Krill, every search is limited to a virtual corpus, therefore the virtual corpus is
prepared first based on the nested constraints in KoralQuery. Each constraint is
described by a key (e.g. “author” for the name of the author of a document), potentially
a value (e.g. “Goethe” as the author’s name), a matching operator, expressing how the
requested value has to match with the document’s value (e.g. as a prefix or a postfix)
and the type of the constraint (e.g. if the constraint represents a string match, a date
range, a regular expression; cf. Figure 6, line 7–10). These constraints can be nested in
groups of boolean operations. If no constraint is defined, the virtual corpus contains all
available documents.
For each metadata term in the term dictionary, a postings list of the documents is

stored in which the term occurs (see Sec. 3). As metadata information is stored on the
document level, postings lists for metadata information can simply be treated as bit
vectors with one bit per document in the corpus. In case a metadata term exists for one
document, the associated bit is set. Using bitwise boolean operations, arbitrary complex
virtual corpora can be constructed. Figure 7 shows the calculation of the virtual corpus
for the nested document query in Figure 6 based on five documents, using bitwise or
(|) and bitwise and (&). The resulting virtual corpus can be represented as a bit vector
itself, allowing for space-efficient caching.
The actual implementation of document level postings lists varies depending on

several factors (e.g. the density of documents or if a postings list is stored on disk or
cached in memory). For sparse cached postings lists (e.g. only a fraction of the corpus’
documents contain the word “Wahlverwandtschaften” in the title field) Lucene, starting
with version 5, implements bit sets as so-called Roaring bitmaps focusing on efficient
compression and fast bit operations (Chambi et al., 2016). Range queries as mentioned

70 JLCL

Krill

in the example above are precompiled as a disjunction of the postings lists of all terms
in the given range optimized using indexed postings lists of sub ranges (see Schindler
and Diepenbroek, 2008, pp. 1957f).

Operations on the virtual corpus include counting the number of texts in the virtual
corpus (equivalent to the cardinality of the bit vector), aggregating stored numerical
data (e.g. number of tokens, sentences, paragraphs in the virtual corpus), and grouping
of statistical data by certain metadata fields (e.g. the distribution of sentences per
genre in the virtual corpus). Document queries restrict span queries to documents that
are elements of the virtual corpus (see next section).

4.2 Span Queries

In addition to the document-level term index for metadata information, the word-level
term index for tokenized textual data requires more information than the existence in a
document, for example, the position of a certain token in a text (cf. Sec. 3). To find, for
example, a sequence of two words like “the sun” in a corpus, both terms are searched
in the term dictionary and their associated postings lists are analyzed in parallel, to
find matching documents and consecutive token positions that indicate a sequence of
these two tokens.
Krill supports various query constructs as specified in KoralQuery. Analogously to

document queries, these query constructs can be nested and become arbitrarily complex.
The resulting query tree consists of leaf nodes with term look-ups, returning the span
information of a term, and inner nodes of operations that can be applied on the nested
spans.
The result of a span query is always a span, meaning that it always contains infor-

mation on the start position, the end position, and additional optional information
in collected payloads. Operations may use this information to compare nested spans,
for example, if two tokens are consecutive in an operation requiring a sequence of two
tokens. Payloads may also be passed further to nested operations. Moreover, operations
are capable of adding new information to the span’s payloads.
If some spans satisfy the requirements of a span query, new spans are created and

returned, for example in the case of the consecutive tokens, a span starting at the first
token and ending at the last one is created as the resulting span.

Lucene implements such operations as so-called SpanQueries. While document queries
may use fast bit operations for matching, SpanQueries always iterate sequentially over
the postings lists of every term that is part of the query as well as every temporary
postings list, that is the result of a span operation.11

11Lucene uses deterministic SkipLists (Pugh, 1990; Munro et al., 1992) to improve performance of
moving forward to specific documents in postings lists, for example to skip documents that are
not part of the virtual corpus.

JLCL 2016 – Band 31 (1) – 63-80 71

Diewald, Margaretha

Figure 8: A nested span query with its query tree visualization

To be able to fully support KoralQuery, the set of Lucene SpanQueries was largely
extended and new concepts (like classes) were introduced.12 Supported query constructs
in Krill can be categorized as follows:

Term queries index look-up of tokens, spans, relations, and at-
tributes (see p. 4), including regular expressions

Comparison queries include logical operations (and, or, not), distance
(matching two spans with a defined number of tokens
or spans in between), position (matching one span
in a positional relation to another, e.g. embedding
or overlapping), repetition (matching one span with
a defined sequential repetition), etc.

Span modification queries include extensions to left or right, etc.
Class queries include class setting and focus

Figure 8 shows a query in Poliqarp+ notation, searching for a sequence of the word
“the” (case-insensitive), followed either by the word “sun” or “moon”, and ending with
a coordinating conjunction (CC) annotated by the corenlp foundry. As a wrapping
constraint, the sequence needs to be at the beginning of a nominal phrase (NP) as
annotated by the corenlp foundry. In addition, a fragment of the query – the or-
relation of “sun” and “moon” – is marked as a class (using curly brackets) and at the
root of the query tree, this class is focused, meaning a match would return the span of
“sun” or “moon” without their contexts.

After the query is serialized as KoralQuery and transformed into Lucene SpanQueries,
the resulting query tree has the structure as illustrated on the right side of Figure 8.
Term look-ups are pictured as leaf nodes in white boxes.

12Recent versions of Lucene support a wider variety of query constructs, that were already introduced
to Krill, such as SpanWithinQuery.

72 JLCL

Krill

4.3 Query Planning

Because the constructs of the KoralQuery protocol have their origins in the various
corpus query languages covered by Koral that were developed for various corpus search
technologies (including concepts coming from regular expressions, relational databases,
XML processing and others), not all of these constructs can be directly translated into
a term based search. Therefore Krill has a planning phase to rewrite queries before
they get translated into actual Lucene SpanQueries.

[orth=sun] [] [orth=moon]?

The example query above13 requests a sequence of tokens, with the first having the
surface form sun, the second matching any token, and the last optionally matching the
surface form moon. The any token of CQP-based corpus query languages matches all
tokens in a token sequence (see [] in Evert and the OCWB Development Team, 2010,
p. 11). In a linear search, this query can recognize the context of the token sequence
and would accept any token as a match. An inverted index, however, has no knowledge
of linear contexts of token sequences, meaning this token is not directly retrievable from
the index or it would need to aggregate the postings lists of all surface terms in the
term dictionary.

The query planner translates any tokens in sequences into either distance operations
between the surrounding parts or, in case an any token is at the end or at the beginning
of a sequence, into extension operations, that simply extend the resulting span by a
certain number of tokens. For the example above, a distance of one token between
[orth=sun] and [orth=moon]? is added.

distance(+1, [orth=sun], [orth=moon]?)14

This query is however insufficient. Although the optional token [orth=moon]? at the
end of the example query is retrievable in case it occurs, it needs to be reformulated
to an or-relation operation to be processable in case it does not occur. For the case
[orth=moon] occurs, [][orth=moon]? could be redefined as an extension of one token
to the left of [orth=moon] and for the case it doesn’t occur, as an any token.

[orth=sun] (extend(-1, [orth=moon]) | [])

As described above, an independent any token is unretrievable. Thus, the or-relation
scope needs to be expanded to the whole query. The first case is reformulated as a
distance query of one token between [orth=sun] and [orth=moon], and the second as
an extension of one token to the right of [orth=sun].

distance(+1, [orth=sun], [orth=moon]) | extend(+1, [orth=sun])

13See the query section of Figure 6, line 37–69, for a KoralQuery serialization of the query.
14The illustration of the query plan is written as CQP based pseudo queries.

JLCL 2016 – Band 31 (1) – 63-80 73

Diewald, Margaretha

Figure 9: Rewritten span query tree for the Poliqarp query [orth=sun][][orth=moon]?

The right extension (extend(+1, [orth=sun])) may exceed the length of a matching
text (imagine a text ending with the word “sun”). To prevent mismatches regarding
right extensions, the query planner introduces a new constraint requiring the result
being inside the text boundary as annotated by the base foundry. The final query tree
transformed into a Lucene SpanQuery is shown in Figure 9.

Not all valid KoralQuery requests can be successfully rewritten in the way described
above. In other words, not all valid queries can be answered by Krill. For example, Krill
will respond with an error to a query containing just a single any token ([]), and it will
respond with a warning to a query with a single optional token (e.g. [orth=moon]?),
saying the process will ignore the optionality of the query.
The query planning phase is also used for query optimization, whenever the reor-

ganization of the query tree can be beneficial to performance. In the example above,
retrieving the postings list for [orth=sun] twice may result in slower performance and
therefore could be rewritten to a different query plan.

5 Search Results

Although the search response format of Krill is based on JSON-LD,15 the text snippets
of each match are embedded as HTML fragments. In case of KWIC (Keyword in
Context) results, these fragments only contain the textual content and the match
marker. When retrieving further information about a match reconstructed from the
inverted index, the snippet can be enriched with multiple layers of annotations inline.16

Figure 10 shows a match of “die Sonne” containing information about the constituency
(c) layer of the corenlp foundry. API clients (like Kalamar) can easily parse this
information and process it in various ways, for example to show table views for token-
level information, or tree views for hierarchical spans and relations (see Fig. 11).

Classes (as introduced in the previous section) may also be used as partial highlights
of a match, to map sections of the query directly to parts of the match. Figure 11 shows
15The search response format of KorAP is not fully specified as part of KoralQuery yet.
16Krill makes a distinction between token-, span- and relation-based annotations. Only concurrent

retrieval of multiple token-based annotations is supported. Span- and relation-based annotations
can only be retrieved separately to avoid overlapping.

74 JLCL

Krill

1
2 <mark>
3
4
5
6 die Sonne
7 war
8 hoch und hei ß
9 ,

10
11 ich mu ß te
12
13 meine Kleidung
14 erleichtern ,
15
16 die ich
17
18 bei der verä nderlichen Atmosph äre
19 des Tages
20
21 oft wechsele
22
23
24
25
26
27 </mark>
28

Figure 10: Match snippet with enriched annotation from corenlp/c

a search result in the frontend component Kalamar for the query [corenlp/p=ART]
({1:Sonne} | {2:Mond}) [] (Poliqarp+ notation), which has two numbered classes (in
curly brackets). Depending on the matching term, “Sonne” and “Mond” are underlined
using different colors.

6 Related Work

Corpus search differs from typical information retrieval (e.g. web search) in terms of
relevance and ranking. Whilst information retrieval aims to obtain relevant resources
and ranks its results by the degree of relevance, there is typically no variation in the
degree of relevance of corpus search results. Corpus search focuses on accuracy and
only correct matches with 100% accuracy are regarded as results.

Many corpus search engines such as the IMS Corpus Workbench (CWB) and Poliqarp
are based on a tabular data model whose rows represent token sequences and columns
various annotations. CWB4 or Ziggurat attempts to overcome the limitations of CWB3
that can only handle up to 2.1 billion tokens and to meet all the CQLF metamodel levels
by extending the CWB3 data model extensively (Evert and Hardie, 2015). However,
to simplify the data model representation, access, and implementation, it would be
limited to work only with static corpora where the tokenization and annotation values
cannot be modified and the documents cannot be added to or deleted from the indexed
corpora. Moreover, corpora cannot be combined into a single virtual corpus.
Relational databases are deemed to have problems to scale up to large corpora,

particularly with billions of words (Evert and Hardie, 2015). Ghodke and Bird (2008)

JLCL 2016 – Band 31 (1) – 63-80 75

Diewald, Margaretha

Figure 11: Screenshot of the Kalamar Frontend

76 JLCL

Krill

illustrate this problem by comparing query execution time between a native XML DB
(eXist) and a relational database (Oracle). Their experiments show that the query
execution times of both approaches increase greatly as the dataset size increases. Recent
evaluations have shown however, that parallelization can be a reasonable approach in
dealing with these issues (Schneider, 2012). Besides, Davies (2005) suggests that his
n-gram table approach has no limitations on the corpus size and the number of annota-
tion tables and works very fast on pattern matching and synonym queries. However,
Evert and Hardie (2015) argue about its redundancy issue and capability to handle
more complex linguistic data structures. ANNIS (Zeldes et al., 2009) supports complex
linguistic annotations, but it has only been tested with relatively small annotated
corpora.17

XML database technologies such as BaseX and eXist rely heavily on XQuery and
XPath to navigate and extract data from XML documents. Using XPath to query data
with multiple stand-off annotation files is rather ineffective due to the need to resolve
pointers between the files repeatedly (Mayo et al., 2006). The re-implementation of
NXT’s query language using XQuery (NQL, Mayo et al., 2006) is shown to be able to
load about four times more data than the former NXT Search with Java implementation
(Carletta et al., 2005) while utilizing the same memory size. However, using XQuery
with stand-off data format decreases the speed performance in executing queries (Mayo
et al., 2006).

Krill is based on prior research on the applicability of Lucene for complex linguistic
corpus search tasks (Schnober, 2012). During the development of Krill, similar Lucene-
based search engines emerged, like BlackLab18 and MTAS.19 BlackLab also supports
multiple query languages (e.g. CQL, Lucene QL), but only basic features have been
supported yet.20 MTAS is a new corpus search engine in its early stages with support
for distributed search using Apache Solr.21

7 Further Work

To support horizontal scalability in KorAP, multiple Krill instances can be utilized in
a document-partitioned cluster for distributed search managed by Kanalito, that is
still under development (see Sec. 2). With the introduction of this receptionist service,
more features will be available, like facet search and methods for sorting, that have
been already supported by COSMAS II. In addition, statistical analysis of query results
through frequency and co-occurrence are in preparation.
We plan on evaluating Krill performance, for instance in terms of searching and

indexing with regard to corpus size and in comparison to other corpus search systems,

17https://corpling.uis.georgetown.edu/annis-corpora/
18http://inl.github.io/BlackLab/
19https://meertensinstituut.github.io/mtas/
20https://github.com/INL/BlackLab/wiki/Blacklab-query-tool
21http://lucene.apache.org/solr/

JLCL 2016 – Band 31 (1) – 63-80 77

Diewald, Margaretha

such as COSMAS II. We also plan an evaluation of the scope of supported query
constructs, especially with respect to the work on CQLF (Bański et al., 2016).

8 Summary

We have described Krill, a search component in KorAP, and its interaction with other
components in the KorAP architecture. Krill is based on Lucene and uses an inverted
index to perform full-text search. We have extended Lucene to support a wide range of
corpus query operations on multiple annotations, and the flexible creation of virtual
corpora. Krill is open source, available on GitHub22 and published under the BSD-2
License. Despite being developed in the context of KorAP, Krill can be used as a
stand-alone application.

9 Acknowledgements

We would like to thank our colleagues for their contributions, especially Carsten
Schnober for his preliminary work on the KorAP search backend and Piotr Pęzik for
his recommendations on the term structure. Regarding this manuscript we would like
to thank all reviewers for their helpful feedback.

Krill is developed as part of the KorAP Corpus Analysis Platform at the Institute for
the German Language, funded by the Leibniz-Gemeinschaft,23 supported by the KobRA
project,24 funded by the Federal Ministry of Education and Research (BMBF), and the
CLARIN-D project,25 funded by the BMBF and the Ministry of Science, Research and
the Arts (Baden-Württemberg).

References

Bański, P., Bingel, J., Diewald, N., Frick, E., Hanl, M., Kupietz, M., Pęzik, P., Schnober, C.,
and Witt, A. (2013a). KorAP: the new corpus analysis platform at IDS Mannheim. In
Zygmunt Vetulani et al., editor, Human Language Technologies as a Challenge for Computer
Science and Linguistics. Proceedings of the 6th Language and Technology Conference, pages
586–587, Fundacja Uniwersytetu im. A. Mickiewicza, Poznań, Poland.

Bański, P., Diewald, N., Hanl, M., Kupietz, M., and Witt, A. (2014). Access control by query
rewriting: the case of KorAP. In Calzolari, N., Choukri, K., Declerck, T., Loftsson, H.,
Maegaard, B., Mariani, J., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of
the Ninth International Conference on Language Resources and Evaluation (LREC 2014),
pages 3817–3822, Reykjavik, Iceland. European Language Resources Association (ELRA).

Bański, P., Fischer, P. M., Frick, E., Ketzan, E., Kupietz, M., Schnober, C., Schonefeld, O.,
and Witt, A. (2012). The new IDS corpus analysis platform: Challenges and prospects. In

22https://github.com/KorAP/Krill
23http://www.leibniz-gemeinschaft.de/en/about-us/leibniz-competition/projekte-2011/

2011-funding-line-2/
24http://www.kobra.tu-dortmund.de
25http://de.clarin.eu/

78 JLCL

Krill

Calzolari, N., Choukri, K., Declerck, T., Doğan, M. U., Maegaard, B., Mariani, J., Odijk, J.,
and Piperidis, S., editors, Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC 2012), pages 2905–2911, Istanbul, Turkey. European
Language Resources Association (ELRA).

Bański, P., Frick, E., Hanl, M., Kupietz, M., Schnober, C., and Witt, A. (2013b). Robust
corpus architecture: a new look at virtual collections and data access. In Hardie, A. and
Love, R., editors, Corpus Linguistics 2013 Abstract Book, pages 23–25, Lancaster. UCREL.
http://ucrel.lancs.ac.uk/cl2013/doc/CL2013-ABSTRACT-BOOK.pdf.

Bański, P., Frick, E., and Witt, A. (2016). Corpus Query Lingua Franca (CQLF). In Calzolari,
N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo,
H., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016), pages 2804–2809, Portorož,
Slovenia. European Language Resources Association (ELRA).

Bingel, J. and Diewald, N. (2015). KoralQuery – a general corpus query protocol. In Proceedings
of the Workshop on Innovative Corpus Query and Visualization Tools at NODALIDA 2015,
Vilnius, Lithuania.

Bodmer, F. (1996). Aspekte der Abfragekompononente von COSMAS-II. LDV-INFO. Infor-
mationsschrift der Arbeitsstelle Linguistische Datenverarbeitung, 8:112–122.

Büttcher, S., Clarke, C. L. A., and Cormack, G. V. (2010). Information Retrieval: Implementing
and Evaluating Search Engines. MIT Press.

Carletta, J., Evert, S., Heid, U., and Kilgour, J. (2005). The NITE XML Toolkit: data model
and query. Language Resources and Evaluation Journal, 39(4):313–334.

Chambi, S., Lemire, D., Kaser, O., and Godin, R. (2016). Better bitmap performance with
Roaring bitmaps. Software: Practice and Experience, 46(5):709–719. http://arxiv.org/
abs/1402.6407.

Davies, M. (2005). The advantage of using relational databases for large corpora: Speed,
advanced queries and unlimited annotation. International Journal of Corpus Linguistics,
10(3):307–334.

Diewald, N. and Bingel, J. (2015). KoralQuery 0.3. Technical report, IDS Mannheim, Germany.
Working draft, https://KorAP.github.io/Koral, last accessed 2/2/2017.

Diewald, N., Hanl, M., Margaretha, E., Bingel, J., Kupietz, M., Bański, P., and Witt, A. (2016).
KorAP architecture – diving in the deep sea of corpus data. In Calzolari, N., Choukri, K.,
Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A.,
Odijk, J., and Piperidis, S., editors, Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016), pages 3586–3591, Portorož, Slovenia.
European Language Resources Association (ELRA).

Evert, S. and Hardie, A. (2015). Ziggurat: A new data model and indexing format for
large annotated text corpora. In Proceedings of the 3rd Workshop on Challenges in the
Management of Large Corpora (CMLC-3), pages 21–27.

Evert, S. and the OCWB Development Team (2010). CQP query language tutorial. Tech-
nical report, The OCWB Development Team. http://cwb.sourceforge.net/files/CQP_
Tutorial.pdf.

JLCL 2016 – Band 31 (1) – 63-80 79

Diewald, Margaretha

Ghodke, S. and Bird, S. (2008). Querying linguistic annotations. In Proceedings of the 13th
Australasian Document Computing Symposium, pages 69–72, Hobart, Australia.

Kupietz, M. and Lüngen, H. (2014). Recent developments in DeReKo. In Calzolari, N.,
Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J.,
and Piperidis, S., editors, Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC 2014), pages 2378–2385, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Lüngen, H. and Sperberg-McQueen, C. M. (2012). A TEI P5 document grammar for the IDS
text model. Journal of the Text Encoding Initiative, 3. http://jtei.revues.org/508.

Mayo, N., Kilgour, J., and Carletta, J. (2006). Towards an alternative implementation of
NXT’s query language via XQuery. In Proceedings of the 5th Workshop on NLP and XML
(NLPXML-2006), pages 27–34, Trento, Italy.

Munro, J. I., Papadakis, T., and Sedgewick, R. (1992). Deterministic skip lists. In Proceedings
of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’92, pages
367–375, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Przepiórkowski, A., Krynicki, Z., Dębowski, Ł., Woliński, M., Janus, D., and Bański, P. (2004).
A search tool for corpora with positional tagsets and ambiguities. In Proceedings of the
Fourth International Conference on Language Resources and Evaluation, LREC 2004, pages
1235–1238.

Pugh, W. (1990). Skip Lists: A probabilistic alternative to balanced trees. Communications of
the ACM, 33(6):668–676.

Rosenfeld, V. (2010). An implementation of the Annis 2 query language. Technical report,
Humboldt-Universität zu Berlin.

Schindler, U. and Diepenbroek, M. (2008). Generic XML-based framework for metadata portals.
Computers & Geosciences, 34(12):1947–1955. http://epic.awi.de/17813/1/Sch2007br.pdf.

Schneider, R. (2012). Evaluating DBMS-based access strategies to very large multi-layer
corpora. In Proceedings of the LREC 2012 Workshop: Challenges in the management of
large corpora. European Language Resources Association (ELRA).

Schnober, C. (2012). Using information retrieval technology for a corpus analysis platform. In
Proceedings of Konvens 2012, pages 199–207, Vienna, Austria.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., and Lindström, N. (2014). JSON-LD 1.0.
a JSON-based serialization for linked data. Technical report, W3C. W3C Recommendation;
http://www.w3.org/TR/json-ld/.

Zeldes, A., Ritz, J., Lüdeling, A., and Chiarcos, C. (2009). ANNIS: A search tool for multi-layer
annotated corpora. In Mahlberg, M., González-Díaz, V., and Smith, C., editors, Proceedings
of the Corpus Linguistics 2009 Conference, Liverpool, UK.

Zobel, J. and Moffat, A. (2006). Inverted files for text search engines. ACM Computing Surveys,
38(2).

80 JLCL

Maria Skeppstedt, Carita Paradis, Andreas Kerren

PAL, a tool for Pre-annotation and Active Learning

Abstract

Many natural language processing systems rely on machine learning models that are
trained on large amounts of manually annotated text data. The lack of sufficient
amounts of annotated data is, however, a common obstacle for such systems, since
manual annotation of text is often expensive and time-consuming.
The aim of “PAL, a tool for Pre-annotation and Active Learning” is to provide a

ready-made package that can be used to simplify annotation and to reduce the amount
of annotated data required to train a machine learning classifier. The package provides
support for two techniques that have been shown to be successful in previous studies,
namely active learning and pre-annotation.
The output of the pre-annotation is provided in the annotation format of the an-

notation tool BRAT, but PAL is a stand-alone package that can be adapted to other
formats.

1 Introduction

Some artificial intelligence systems rely heavily on human intelligence in the form of
training data that is collected by manual annotation. Within the field of natural language
processing and computational linguistics, this data collection is typically performed
through different kinds of manual annotations of text. Manual text annotation is,
however, often an expensive and time-consuming task. The lack of sufficient amounts
of manually annotated data that can be used for training machine learning classifiers is
therefore a common obstacle.

There are a number of techniques that can be used to reduce the amount of annotated
data required for training a machine learning classifier and to simplify the annotation
process. Two examples of such techniques are i) the selection of training samples that
are informative to the classifier by the use of active learning, and ii) pre-annotation of
the data. These techniques are not included as a standard procedure in text annotation
projects, presumably because annotation tools typically do not include this functionality.
The aim of the development of the PAL package presented here is therefore to take
the first step towards changing this standard. The package uses active learning and
pre-annotation to facilitate annotation of text chunks. The package is tailored towards
the annotation format of text chunks in the annotation tool BRAT (Stenetorp et al.,
2012), but it is written as a stand-alone package that can be adapted to other formats.

JLCL – Band () – 1-20JLCL 2016 – Band 31 (1) – 81-100 81

Skeppstedt, Paradis, Kerren

2 Background

There is a large amount of previous studies on active learning, as well as a number of
studies in which pre-annotation has been used, but to the best of our knowledge there
are no freely available code packages that can be directly used to apply both of these
techniques.

The objective of this paper is to present “PAL, a tool for Pre-annotation and Active
Learning”, which provides this functionality. Since the tool is built on established
techniques, an evaluation of the techniques incorporated in the tool is not within the
scope of this paper. Instead, references to previous studies are given.

The main inspiration for PAL was provided by Olsson (2008), who shows the usefulness
of active learning for annotation of text chunks and who recommends the use of pre-
annotation. The usefulness of active learning was however shown purely by simulation,
and no tools for performing active learning or pre-annotation were provided.

2.1 Other approaches for obtaining manually annotated data

Apart from the two techniques mentioned, there are also other possible approaches
for obtaining large resources of manually annotated data in a low-resource project.
Examples of such techniques are crowd sourcing, community annotation and gamification.
However, we argue that the use of these approaches is neither possible nor desirable in
all cases.
Manually annotated training data is often collected by the use of crowd sourcing

platforms such as Amazon Mechanical Turk. There are several problems associated
with this approach (Fort et al., 2011; Archambault et al., 2016). Most important is
the ethical issue, i.e., criticism against annotation projects that are carried out by very
low-paid annotators. Another concern is the skills required, as it might be difficult to
find crowd sourcing annotators with specialised skills, for instance in linguistics, the
domain of the text, or annotators that speak the specific language required. This means
that the use of crowd sourcing is not a universal solution to the problem of creating
enough annotated textual data in a low-resource project.
Another approach is to use community annotation (Uzuner et al., 2010), i.e., to

share the annotation task among many annotators by distributing it to a number of
researchers in a community. There are disadvantages associated with this approach as
well, for instance that it entails a large portion of administrative work and that it is
not efficient for difficult annotation tasks, for which initial training phases are required.
Another possibility is to gamify the annotation, i.e., to apply game design principles to
the task. By making the annotation more fun, there is a potential to gain voluntary
annotators (Hanbury et al., 2015). This approach has, for instance, been applied to
word sense labelling (Venhuizen et al., 2013) and to identify important expressions in
medical case reports (Dumitrache et al., 2013). Yet not all annotation tasks are possible
to gamify, at least not effortlessly.

2 JLCL82 JLCL

PAL, a tool for Pre-annotation and Active Learning

2.2 The type of annotations targeted

The PAL package is meant to be used for annotations of named entities or other types
of shorter chunks of text.

The aim could be to create annotated corpora, which in turn can be used for training
a classifier to detect the types of text chunks annotated. That is, the machine learning
classifier should i) automatically detect interesting tokens (or chunks of interesting
tokens) in a text, and ii) automatically categorise these tokens into pre-defined classes.
Annotation and detection of named entities such as names of people and places (Nadeau
and Sekine, 2007), or of tokens that signal specific functions in a language such as
marker words for negation and speculation (Konstantinova et al., 2012) are examples
from previous studies.
Another aim could be to create annotated corpora, on which to perform corpus

linguistic studies of language phenomena that are expressed through shorter text
chunks. Examples of such annotation tasks from previous corpus linguistic studies
are annotations of spans of tokens that express attitude (Taboada and Carretero,
2012), evaluation (Fuoli and Hommerberg, 2015), or sensory perceptions (Paradis and
Eeg-Olofsson, 2013).
It should be noted that the use cases for annotating these two types of corpora are

different. When the aim is to create a corpus for training a machine learning classifier,
it is enough to annotate an actively selected subset of the corpus, whereas the entire
corpus must be annotated in a corpus study. Otherwise it will not be possible to draw
statistically valid conclusions from the annotations. As suggested by Olsson (2008), the
methodology when annotating the entire corpus is i) to annotate an actively selected
subset of the corpus to achieve a model that can perform pre-annotation with a high
accuracy, and ii) to use pre-annotation to annotate the remaining part of the corpus.
To create a corpus for training a classifier, only the first step has to be carried out.

2.3 Pre-annotation

Pre-annotation, or pre-tagging, refers to the procedure to automatically annotate a
text corpus by using an existing automatic system and to present these annotations
to the human annotator. The human annotator then typically corrects mistakes or
omissions made by the automatic system (Chou et al., 2006; Henriksson et al., 2015), or
alternatively makes a choice between different options given by the automatic system
(Brants and Plaehn, 2000).

The pre-annotation could be built on a rule-based system, such as a system that
performs rule-based matching against an existing lexicon (Albright et al., 2013). This
approach does not require annotated data. It could also use an existing machine learning
system, which may be trained on data from another text domain (Henriksson et al.,
2015). A third option is to use pre-annotation based on a machine learning model
and to iteratively improve the pre-annotation by retraining it on the new data that is
created in the annotation process (Tomanek et al., 2012).

JLCL – Band () 3JLCL 2016 – Band 31 (1) – 81-100 83

Skeppstedt, Paradis, Kerren

For the task of named entity annotations within the medical domain, lexicon-based
pre-annotation has led to an increase in annotation speed, ranging from 14% to 22%
per entity for different experiments (Lingren et al., 2014). The same study also included
an investigation of whether the pre-annotation functionality biased the annotators, but
no bias that stemmed from the pre-annotations could be detected.

2.4 Active learning

Active learning is a technique that is used to reduce the number of training samples
that are required to successfully train a machine learning model. The standard method
used for manual text annotation is to randomly select which data samples to annotate.
For active learning, the training data samples that are estimated to be most useful for
the machine learning classifier are instead actively selected from a pool of unlabelled
data (Tomanek, 2010).

The estimation of which data samples in the pool that are most useful can, for instance,
be based on the level of disagreement among a number of different classifiers (query
by committee). That is, the more different classifiers disagree, the more informative is
the sample likely to be (Olsson, 2008, pp. 25–29). The estimation can also be based
on properties specific to the type of model that is used. When using support vector
machines, the unlabelled sample closest to the separating hyperplane of the classifier
can be selected, which is the sample that is expected to result in the largest model
change when added to the training set (Tomanek, 2010; Tong and Koller, 2002).
Another frequently used method for active selection is uncertainty sampling. This

technique is built on active selection of the unlabelled training samples that the machine
learning model is least certain of how to classify. The approach for a binary classification
task is then to select samples for which the classifier has no clear classification preference.
One option for a multi-class classification task is to use the confidence for the most

probable class as the measure of uncertainty. However, this option only uses the
certainty level of the most probable classification. Thereby, some of the information
available is discarded, i.e., the information regarding the certainty levels of the less
probable classifications (Settles, 2009). An alternative approach is to base the sample
selection for a multi-class classifier on the difference in certainty level between the two
most probable classifications. Given cp1 as the most probable classification and cp2 as
the second most probable classification for the observation xn, the margin for measuring
the uncertainty of that sample would then be:

Mn = P (cp1|xn)− P (cp2|xn) (1)

Samples with a large margin (Mn) are easy to classify since the classifier is much
more certain of the most probable classification than of the second most probable.
Samples with a small margin, on the other hand, are difficult to classify. Therefore, in
the process of uncertainty-based active selection of training samples, samples with a
small margin are preferred (Schein and Ungar, 2007).

4 JLCL84 JLCL

PAL, a tool for Pre-annotation and Active Learning

This kind of uncertainty selection, based on the confidence difference between the
two most probable classifications, is the sampling method that is implemented in the
current version of the PAL package.

2.5 Functionality of previous annotation tools

Among 13 annotation tools included in an annotation tool survey from 2012 (Neves and
Leser, 2012), only two (JANE and WordFreak) provide functionality for active learning.
JANE does not provide a functionality for pre-annotations (Tomanek et al., 2007), and
WordFreak only provides pre-annotation performed by pre-defined NLP tools that are
independent of the annotation task, e.g., part-of-speech tagging (Morton and LaCivita,
2003).

Among the tools included in the survey, there are others that provide a pre-annotation
functionality, typically based on lexicon-matching. There are also more recent annotation
tools that either provide the functionality of lexicon-based pre-annotation (Campos
et al., 2013) or the functionality of active learning (Kucher et al., 2016).

A disadvantage with pre-annotation based on lexicon-matching is that this approach
relies on the existence of a lexicon in the domain of the annotation task. The approach
is therefore limited to domains in which such a lexicon exists. There are also tools that
pre-annotate without a lexicon, e.g., WebAnno (Yimam et al., 2014). For this tool,
the pre-annotations are performed by a machine learning model that is trained on the
labelled data provided by the annotator, and the model is iteratively re-trained with
more data as more text is manually annotated.
PAL combines the functionality of i) a tool such as WebAnno, in which the pre-

annotations are provided by models trained on data that is annotated when using the
tool, with ii) the functionality of tools such as JANE and WordFreak, in which data
selection through active learning is carried out. We are not aware of any previously
constructed, freely available, chunk annotation tools in which these two functionalities
are combined.

3 Method

The general functionality of the PAL package consists of training a classifier to select
suitable data to annotate from a pool of unlabelled data and to carry out pre-annotation
of this data. The pre-annotated data can then be loaded into the BRAT tool, to be
revised by the human annotator.

3.1 Active learning and pre-annotation

The PAL package is structured around three different data folders:

1. The labelled folder, which contains the data that has been manually labelled.

2. The unlabelled folder, which contains the pool of unlabelled data.

JLCL – Band () 5JLCL 2016 – Band 31 (1) – 81-100 85

Skeppstedt, Paradis, Kerren

Figure 1: Files and folders that are to be available when a project starts.

3. The tolabel folder, to which the pre-annotated, actively selected data is written.

When a project starts, it must contain the data and the folders that are shown in
Figure 1. In the labelled folder, there must be at least one file containing the seed set of
annotated data, which is required to start the active learning process. In the example
in Figure 1, the seed set is split into three different files of annotated data. The file
that contains the pool of unlabelled data must be called unlabelled.csv and must be
positioned in the unlabelled folder.
When the process of active learning and pre-annotation is run, all .csv-files located

in the labelled folder are used to train a machine learning model. This model is then
employed to perform the active selection of training samples and the pre-annotation.
Data samples to be labelled are selected from the file unlabelled.csv, pre-annotated and
written to the three files that are created in the tolabel folder, as shown in Figure 2.
These three new files receive a name containing their creation timestamp. The two
files named brat_tolabel_20160928_174414.ann and brat_tolabel_201609_28174414.txt
contain the pre-annotated data in BRAT format. That is, those two files are the ones
that can be directly imported into BRAT for manual annotation. The file unlabelled.csv
is also updated and does not any longer contain the data samples that have been
selected for annotation. That is, the selected data samples have been removed from the
pool of unlabelled data. A copy of the original version of the unlabelled data is also
created, the file unlabelled_20160928_174414.csv in the unlabelled folder.
The data in the .csv-files must be available in tab-separated format in which the

data has been tokenised with each token on a separate line. The data must also be
segmented into sentences with an empty line signalling a sentence break. See Figure 5
for an example of the data format. The tokens are expected to be labelled according to
the BIO-format (Jurafsky and Martin, 2008, pp. 763–764), i.e., a token could be the
Beginning of, Inside or Outside of a named entity (or of another type of text chunk).
The data samples in the active selection process consist of the sentences. This means
that text units in the form of a number of tokens that are separated by an empty line
are the units which are selected in the active sampling process.
In the current version of PAL, there are two types of machine learning classifiers to

be chosen from, one structured and one non-structured. The following is a step-by-step

6 JLCL86 JLCL

PAL, a tool for Pre-annotation and Active Learning

Figure 2: Files and folders created by running active learning and pre-annotation.

description of how the active learning and pre-annotation process is carried out for the
non-structured classifier:

1. A machine learning model is trained using the data in the .csv-files that are
located in the labelled folder.

2. The data located in the unlabelled folder is classified with this model. For each of
the N tokens in the unlabelled data (tn)N

n=1, there will be an observation in the
form of the features for this token, i.e., (xn)N

n=1. For each of these observations,
the model provides a probability score for every category in the data.

3. The sentences in the unlabelled data are then ranked according to the uncertainty
sampling criterion described in Equation 1, i.e., Mn = P (cp1|xn) − P (cp2|xn).
This is carried out by measuring the difference in probability score between the
most likely classification and the second most likely classification for a token. A
sentence is represented by the lowest M-value among the tokens it includes, and
the sentences are ranked according to this M-value.

4. The k sentences with the k lowest M -values are selected. The value of k (the
number of sentences to select in each iteration) is determined by the user in a
settings file (see Section 3.2).

5. To achieve a variation among the k samples selected, the same word predicted as
belonging to another class than the Outside class is only allowed to occur once
among the sentences selected. If such a re-occurring word is present among the
sentences selected, the lowest ranked sentence containing this word is removed
from the selected set. The sentence that is removed is replaced by the sentence
next in rank, i.e., the sentence ranked at position k + 1.

6. The k selected sentences are pre-annotated according to the classification made
by the machine learning model.

JLCL – Band () 7JLCL 2016 – Band 31 (1) – 81-100 87

Skeppstedt, Paradis, Kerren

Figure 3: An example of pre-annotated text for the two entity categories consisting of marker words
signalling speculation and contrast, which is imported and displayed in BRAT.

7. The pre-annotated sentences are written to the tolabel folder, in a tab separated
format and in the BRAT-format.

The same selection procedure is carried out for the structured model, except that the
classifications are not made on token level, but on sentence level. M is thereby not
computed for the difference in probability score between different token classifications,
but between different sentence level classifications. In addition, to reduce the processing-
time of the system, only a subset of the alternative sentence classifications are taken
into account when computing M .
The pre-annotated sentences can then be opened in BRAT, as shown in Figure 3.

This allows the human annotator to carry out the annotation, which then consists of
correcting and supplementing the pre-annotations. Figure 4 shows how an incorrect
pre-annotation is deleted.1

3.2 Configuring and running PAL

To run the package, a directory for the project needs to be created. This directory needs
to contain the directories with labelled and unlabelled data (as shown above), as well

1In the BRAT options menu, different annotation modes can be selected. The recommendation is
to not use the Careful mode, since this mode prompts the user for a confirmation every time an
annotation is removed.

8 JLCL88 JLCL

PAL, a tool for Pre-annotation and Active Learning

Figure 4: The annotator uses BRAT to delete the incorrect pre-annotations.

as a settings.py file with configuration information. The most important configuration
parameters are described here.2

Classes to include with their prefix (B or I).
Classes, apart from "O" the outside-class, not in this list, will be ignored
minority_classes = ["B-speculation", "I-speculation", "B-contrast", "I-contrast"]

Number of sentences to be actively selected and pre-annotated in each round
(referred to as k above)
nr_of_samples = 20

Type of model to use
model_type = NonStructuredLogisticRegression

The context around the current word to
include when training the classifiers
number_of_previous_words = 2
number_of_following_words = 1

A cut-off for the number of occurrences of a token in
the data for it to be included as a feature (current and context-token)
min_df_current = 2
min_df_context = 2

2See the readme-file of the package, for a full description of additional configuration parameters.

JLCL – Band () 9JLCL 2016 – Band 31 (1) – 81-100 89

Skeppstedt, Paradis, Kerren

The settings.py file needs to include at least 1) the classes that represent named entities
or other types of relevant text chunks that are to be included in the active learning
and pre-annotation process, 2) the number of samples to select in each iteration of
the active learning process (referred to as k above), 3) the type of model (structured
or non-structured), 4) the number of context tokens to include when constructing the
feature vector for a token, and 5) the minimum number of occurrences of a token (and
a context token) for it to be included in the vector model constructed for the tokens
occurring in the data (see Section 3.3).

The functionality for selecting and pre-annotating samples can then be run with the
following command, in which the location of the data and the settings file is specified:

python active_learning_preannotation.py --project=data.example_project

The data files that are created by this command (the .txt and the .ann files) can then
be moved to the BRAT data folder to make it available for the annotator to select for
annotation.3

When the annotator has finished the annotation/correction of the pre-annotated files,
they can be transformed back to a tab separated format and positioned in the folder
with annotated data with the following command (on one line, without line breaks):

python transform_from_brat_format.py
--project=data.example_project
--annotated=my_brat_path/data/example_project/brat_tolabel_20160928_174414

The name brat_tolabel_20160928_174414 is the path to the .txt-file and to the human-
annotated version of the .ann-file, but without the suffices. The two files must be
positioned in the same folder.

3.3 Models and feature representations

The PAL package is written in Python 3. It is developed to be used in a Unix
environment, and it has been tested on Ubuntu 12.04.5.

There are currently two types of machine learning models that are supported by PAL,
a logistic regression model (Bishop, 2006) and a conditional random fields model (Sutton
and McCallum, 2006). The logistic regression model is built on the LogisticRegression
class of the Scikit-learn library. This library includes, among many other components,
Python classes for performing non-structured prediction (Pedregosa et al., 2011). The
conditional random fields model is built on the ChainCRF class that is available in
the PyStruct library, which is a library that contains a number of Python classes for
performing structured prediction. A structured prediction model takes the structure of
the output labels into account for training the classifiers and performing the predictions
(Müller, 2013). The ChainCRF model is an implementation of a linear-chain conditional
random fields model, in which an output variable is only directly dependent on its
immediate neighbours (Sutton and McCallum, 2006, p. 9).

3See the BRAT user documentation for more information about this.

10 JLCL90 JLCL

PAL, a tool for Pre-annotation and Active Learning

n (Token Word Label
number)
..
21 it O
22 ’ O
23 s O ← previous context token
24 not B-speculation ← previous context token
25 completely I-speculation ← current token
26 sure I-speculation ← following context token
27 . O

28 Another O
29 sentence O
..

Current token Context -2 Context -1 Context +1
x25 = [0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1]

Figure 5: An example that shows how the feature vector for token number 25 is constructed, i.e.,
x25. In this example, the user has configured PAL to include a context in the form of two
preceding tokens and one following token. That is, number_of_previous_words=2 and
number_of_following_words=1. The words used for constructing the feature vector are
marked with bold and colours. The vector representations of these words are concatenated
to form the feature vector x25. See Figure 6 for an example of how vector representations
for words are constructed.

What features to use for training and predicting the label of a token, i.e., the ob-
servation vector xn, is decided by the parameters number_of_previous_words, num-
ber_of_following_words, min_df_current, and min_df_context in the settings-file.
Two different matrices that represent the words in the labelled data are created, using
the CountVectorizer class of the Scikit-learn library. One of the matrices contains the
vector representation of the tokens for which a label is to be predicted and the other
matrix contains the vector representation of the context tokens (Figure 5). Each word
that occurs at least min_df_current times in the labelled corpus receives its unique
vector representation in the matrix for the current tokens and each word that occurs at
least min_df_context times in the labelled data receives a unique vector representation
in the matrix for context tokens. Such a vector representation is exemplified in Figure 6.
The feature vector to use for training and prediction (the observation vector xn)

is constructed by concatenating the vector representation of the current token with
the vector representations of the tokens surrounding it. How many surrounding to-
kens to include is decided by the setting parameters number_of_previous_words and
number_of_following_words (See Figure 5).

JLCL – Band () 11JLCL 2016 – Band 31 (1) – 81-100 91

Skeppstedt, Paradis, Kerren

Word From labelled corpus
be [1 0 0 0 0]
completely [0 1 0 0 0]
not [0 0 1 0 0]
s [0 0 0 1 0]
sure [0 0 0 0 1]

Figure 6: Matrix of vector representations of words in a very small, hypothetical corpus. In this
corpus, only five words occur frequent enough to be included in the matrix. The value of
“frequent enough” is decided by the user configuration, i.e., by the variables min_df_current
(if the matrix is a representation of words when they occur as the current token) and
min_df_context (if the matrix is a representation of words when they occur as the context
tokens).

3.4 Incorporation of unsupervised approaches

Information harvested in an unsupervised fashion from unlabelled corpora has for a long
time (Miller et al., 2004; Freitag, 2004) been used as classifier features for improving
the performance of named entity recognition and other types of chunk classification
tasks. For instance, information from Brown clustering has been used for biomedical
entity recognition (de Bruijn et al., 2011), predictive class bigram model clustering for
general named entity recognition in several languages (Täckström et al., 2012), Random
Indexing for named entity recognition in clinical text (Henriksson, 2015), and different
kinds of word embeddings have been used for recognising opinion targets (Liu et al.,
2015).

The PAL package has support for adding unsupervised features through the Gensim
library (Řehůřek and Sojka, 2010). PAL can be configured to append external vector
representations from Gensim to the feature vectors. This functionality has so far only
been tested with vectors from an out-of-the-box word2vec model for English, which has
been trained on Google news (Mikolov, 2013; Mikolov et al., 2013).

3.5 Availability
The tool is freely available to clone or download from GitHub at:
https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning

PAL makes use of three external libraries, which all are freely available:4

1. For training the machine learning models for performing structured prediction,
the PyStruct library is used (Müller and Behnke, 2014).

2. For performing non-structured prediction and for vectorising the data, the Logis-
ticRegression and the CountVectorizer classes of the Scikit-learn library are used
(Pedregosa et al., 2011).

4See the readme-file of PAL for a description of how to install them.

12 JLCL92 JLCL

PAL, a tool for Pre-annotation and Active Learning

3. For incorporating unsupervised features, the Gensim library is used (Řehůřek and
Sojka, 2010).

These libraries are in turn dependent on cvxopt, numpy and scipy.

4 Discussion and future work

Although PAL incorporates a number of functions to facilitate annotation, the tool can
still be improved and extended. There are, for instance, possible limitations of the design
decisions applied and potential problems with the general approach of pre-annotation.

4.1 Design decisions

One potential issue is the level of technical knowledge that is required to use PAL. No
programming skills are required to configure and run PAL, but knowledge of how to
use a Unix command line and how to modify a settings file is required. These two skills
are, however, also required for configuring the BRAT annotation tool. Therefore, since
the target users of PAL are those that typically would configure BRAT, or a similar
annotation tool, the technical skills required for using PAL should not be a problem
for its target users. There are other annotation tools that incorporate active learning,
which provide a graphical user interface by which settings can be altered and by which
actively selected annotation batches can be generated (Kucher et al., 2016). To add
such a functionality to PAL would extend its group of target users.
Another design decision is that PAL is constructed as a stand-alone tool for pre-

annotation and active learning and that it is not fully integrated with an annotation
tool. This design decision has the advantage of making the package more flexible to
adapt to other annotation tools. The only modification that has to be carried out is
the transformation of the output files that are generated by PAL to the format of the
other annotation tool.

4.2 Potential problems with the use of pre-annotation

As stated above, there are studies in which pre-annotation has been shown to increase
the speed of annotation without introducing a bias (Lingren et al., 2014) and annotation
studies in which pre-annotation has been applied successfully (Albright et al., 2013). In
contrast, other studies have shown that pre-annotation has had no effect on the time
taken (South et al., 2014) or that pre-annotation has slowed down the annotators due
to the low quality of the pre-annotations provided (Ogren et al., 2008). There are also
cases where high-quality pre-annotations have been shown to be successful in general,
with an increase in annotation speed and general annotation quality, but where the
pre-annotations have reduced the annotator attention and resulted in a bias (Fort and
Sagot, 2010).
The first of these two potential problems, i.e., that low quality pre-annotations are

slowing down the annotator, is not a limitation for the functionality provided by PAL. If

JLCL – Band () 13JLCL 2016 – Band 31 (1) – 81-100 93

Skeppstedt, Paradis, Kerren

the annotator does not consider the pre-annotations to be beneficial, the pre-annotation
functionality can be switched off by removing the content of the .ann-file created by
PAL. The quality of the pre-annotations might, for instance, be too low in the early
stages of the annotation process when there is only a limited amount of annotated
data available for training the machine learning model. The methodology proposed by
Olsson (2008) is to start the process of annotating for active learning without providing
pre-annotation and to introduce the functionality of pre-annotation when the model
has reached a certain level of performance. The risk of providing pre-annotations that
are not useful would then be minimised.

The usefulness of the pre-annotation functionality provided by PAL has so far been
tested in an initial annotation project. A corpus of 6,000 sentences was annotated for
text chunks signalling topic-independent expressions of agreement and disagreement,
according to a previously defined annotation scheme (Skeppstedt et al., 2016). A seed
set that contained 1,500 sentences was first annotated with BRAT without the use of
the pre-annotation functionality. The remaining sentences were then annotated with
the help of pre-annotation. The quality of the pre-annotation was in this case assessed
by the annotator as high enough to be useful.

The issue that pre-annotation might introduce a bias is a more serious problem. This
problem is, however, not unique to PAL, but is a problem shared by all tools that
provide pre-annotations. We have previously published an outline for an annotation
interface for text chunk annotation that would alleviate this problem (Skeppstedt,
2013). The idea is to always provide two alternative pre-annotations to the annotator,
i.e., the two pre-annotations that are assessed as most probable by the pre-annotation
functionality. No information will however be given to the annotator regarding which
of these two possible pre-annotation choices is considered the most probable one. The
annotator will thereby always be forced to make an active choice, and will not be biased
towards an annotation decision made by the pre-annotation functionality.

The next step for the PAL tool will be to implement and evaluate this functionality.

4.3 Additional future work

Future work also includes the addition of functionality for creating the initial seed set
that is required for starting the active learning process. In the current version of PAL,
it is assumed that random selection of training data is applied to create this initial seed
set. While this procedure is the standard technique used when applying active learning,
it should be mentioned that there is research on other methods for creating a seed set.
Knowledge of existing vocabularies can be leveraged, for example, by selecting seed
set samples that contain instances of these vocabulary terms (Tomanek et al., 2007).
There are also techniques that use unsupervised machine learning approaches to create
the seed set. For instance, by clustering the unlabelled data and constructing the seed
set by selecting data samples from different clusters, a more diverse seed set can be
achieved (Debarr and Wechsler, 2009). These types of techniques can also be used in

14 JLCL94 JLCL

PAL, a tool for Pre-annotation and Active Learning

the process of active selection of data samples (Symons et al., 2006; Settles and Craven,
2008)

Another branch of active learning research is concerned with techniques for estimating
when the addition of more training data samples no longer contributes to an increase
in classifier performance. There are a number of techniques for performing such an
estimation (Olsson, 2008), but none of them are included in the functionality currently
provided by PAL.

Apart from uncertainty sampling, there are also many other methods for performing
active learning, as mentioned in the background. Although these methods are not
included in the current version of PAL, its code structure makes it easy to add other
PyStruct and Scikit-learn classifiers, as well as other methods for performing active
learning. We hope that this will inspire others to further develop the package with
classifiers and active learning methods that suit their annotation and classification
tasks.
Yet another topic for possible future work includes a practical evaluation of the

benefit for the user of the functionality provided by the PAL package. As previously
mentioned, the package has been used for annotating text chunks signalling agreement
and disagreement in a corpus of 6,000 sentences. The functionality provided by PAL was
found useful in this context, but the annotation was performed by the developer of PAL,
which makes the assessment of PAL’s usefulness likely to be biased (Munzner, 2008).
Instead, usability studies of PAL should be performed with independent annotators
and for different types of annotation tasks.

5 Conclusion

Although there are a number of techniques for simplifying text annotation and for
reducing the amount of data required for training a machine learning classifier, these
techniques are not included as a standard procedure in text annotation projects. The
reason may be that they are typically not included by default in annotation tools.
The aim of “PAL, a tool for Pre-annotation and Active Learning” is to take the

first step towards changing this standard. The package provides a functionality that
includes pre-annotation and active selection of training data.

The output of the pre-annotation is provided in the annotation format of the annota-
tion tool BRAT, but it is a stand-alone package that can be adapted to other formats.
The tool is freely available to clone or download from GitHub at:
https://github.com/mariask2/PAL-A-tool-for-Pre-annotation-and-Active-Learning.

Acknowledgements

This work was funded by the StaViCTA project, framework grant “the Digitized Society
– Past, Present, and Future” with No. 2012-5659 from the Swedish Research Council
(Vetenskapsrådet).

JLCL – Band () 15JLCL 2016 – Band 31 (1) – 81-100 95

Skeppstedt, Paradis, Kerren

References

Albright, D., Lanfranchi, A., Fredriksen, A., Styler, 4th, W. F., Warner, C., Hwang,
J. D., Choi, J. D., Dligach, D., Nielsen, R. D., Martin, J., Ward, W., Palmer, M., and
Savova, G. K. (2013). Towards comprehensive syntactic and semantic annotations of
the clinical narrative. J Am Med Inform Assoc.

Archambault, D., Hoßfeld, T., and Purchase, H. C. (2016). Crowdsourcing and Human-
Centred Experiments (Dagstuhl Seminar 15481). Dagstuhl Reports, 5(11):103–126.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New York,
NY.

Brants, T. and Plaehn, O. (2000). Interactive corpus annotation. In Proceedings of the
Conference on Language Resources and Evaluation (LREC), Paris, France. European
Language Resources Association (ELRA).

Campos, D., Lourencço, J., Nunes, T., Vitorino, R., Domingues, P.,
Matos, S., and Oliveira, J. L. (2013). Egas – collaborative biomed-
ical annotation as a service. In Proceedings of the Fourth BioCre-
ative Challenge Evaluation Workshop, volume 1, pages 254–259.
http://www.biocreative.org/media/store/files/2013/ProceedingsBioCreativeIV
vol1.pdf.

Chou, W.-c., Tzong-han Tsai, R., and Su, Y.-s. (2006). A semi-automatic method
for annotating a biomedical proposition bank. In ACL Workshop on Frontiers in
Linguistically Annotated Corpora, pages 5–12, Stroudsburg, PA, USA. Association
for Computational Linguistics.

de Bruijn, B., Cherry, C., Kiritchenko, S., Martin, J. D., and Zhu, X. (2011). Machine-
learned solutions for three stages of clinical information extraction: the state of the
art at i2b2 2010. J Am Med Inform Assoc, 18(5):557–562.

Debarr, D. and Wechsler, H. (2009). Spam detection using clustering, random forests
and active learning. In CEAS 2009 – Sixth Conference on Email and Anti-Spam,
Mountain View, pages 16–17, Mountain View, California USA.

Dumitrache, A., Aroyo, L., Welty, C., Sips, R., and Levas, A. (2013). "Dr. Detective":
combining gamification techniques and crowdsourcing to create a gold standard in
medical text. In Proceedings of the 1st International Workshop on Crowdsourcing the
Semantic Web, Sydney, Australia, October 19, 2013, pages 16–31, Aachen, Germany.
CEUR-WS.org.

Fort, K., Adda, G., Sagot, B., and Mariani, J. (2011). Crowdsourcing for lan-
guage resource development: Critical analysis of Amazon Mechanical Turk over-
powering use. In LTC, 5th Language and Technology Conference, Poznan, Poland.
https://hal.archives-ouvertes.fr/hal-00648187.

16 JLCL96 JLCL

PAL, a tool for Pre-annotation and Active Learning

Fort, K. and Sagot, B. (2010). Influence of pre-annotation on pos-tagged corpus
development. In Proceedings of the Fourth Linguistic Annotation Workshop, LAW IV
’10, pages 56–63, Stroudsburg, PA, USA. Association for Computational Linguistics.

Freitag, D. (2004). Trained named entity recognition using distributional clusters. In
Conference on Empirical Methods in Natural Language Processing, pages 262–269,
Association for Computational Linguistics. Stroudsburg, PA, USA.

Fuoli, M. and Hommerberg, C. (2015). Optimising transparency, reliability and repli-
cability: annotation principles and inter-coder agreement in the quantification of
evaluative expressions. Corpora, 10(3):315–349.

Hanbury, A., Kazai, G., Rauber, A., and Fuhr, N., editors (2015). Second International
Workshop on Gamification for Information Retrieval, Berlin/Heidelberg, Germany.
Springer Verlag. Lecture Notes in Computer Science vol. 9022.

Henriksson, A. (2015). Learning multiple distributed prototypes of semantic categories
for named entity recognition. Int. J. Data Min. Bioinformatics, 13(4):395–411.

Henriksson, A., Kvist, M., Dalianis, H., and Duneld, M. (2015). Identifying adverse
drug event information in clinical notes with distributional semantic representations
of context. J Biomed Inform, 57:333–49.

Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition.
Prentice Hall, Saddle River, NJ, USA, second edition.

Konstantinova, N., de Sousa, S. C., Cruz, N. P., Maña, M. J., Taboada, M., and Mitkov,
R. (2012). A review corpus annotated for negation, speculation and their scope. In
Proceedings of the Conference on Language Resources and Evaluation (LREC), pages
3190–3195, Paris, France. European Language Resources Association (ELRA).

Kucher, K., Kerren, A., Paradis, C., and Sahlgren, M. (2016). Visual Analysis of Text
Annotations for Stance Classification with ALVA. In Isenberg, T. and Sadlo, F.,
editors, EuroVis 2016 - Posters. The Eurographics Association.

Lingren, T., Deleger, L., Molnar, K., Zhai, H., Meinzen-Derr, J., Kaiser, M., Stouten-
borough, L., Li, Q., and Solti, I. (2014). Evaluating the impact of pre-annotation
on annotation speed and potential bias: natural language processing gold standard
development for clinical named entity recognition in clinical trial announcements. J
Am Med Inform Assoc, 21(3):406–13.

Liu, P., Joty, S., and Meng, H. (2015). Fine-grained opinion mining with recurrent
neural networks and word embeddings. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1433–1443, Stroudsburg,
PA, USA. Association for Computational Linguistics.

JLCL – Band () 17JLCL 2016 – Band 31 (1) – 81-100 97

Skeppstedt, Paradis, Kerren

Mikolov, T. (2013). https://code.google.com/archive/p/word2vec/.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781.

Miller, S., Guinness, J., and Zamanian, A. (2004). Name tagging with word clusters and
discriminative training. In Proceedings of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Language Technology (NAACL HLT),
pages 337–342, Stroudsburg, PA, USA. Association for Computational Linguistics.

Morton, T. and LaCivita, J. (2003). Wordfreak: An open tool for linguistic annotation.
In Proceedings of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology: Demonstrations - Volume 4 (NAACL
HLT), pages 17–18, Stroudsburg, PA, USA. Association for Computational Linguistics.

Müller, A. C. (2013). What is structured learning? https://pystruct.github.io/intro.html
(Accessed 2016-09-29).

Müller, A. C. and Behnke, S. (2014). PyStruct - learning structured prediction in
Python. Journal of Machine Learning Research, 15:2055–2060.

Munzner, T. (2008). Process and pitfalls in writing information visualization research
papers. In Kerren, A., Stasko, J. T., Fekete, J.-D., and North, C., editors, Information
Visualization: Human-Centered Issues and Perspectives, pages 134–153. Springer,
Berlin/Heidelberg, Germany.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

Neves, M. and Leser, U. (2012). A survey on annotation tools for the biomedical
literature. Briefings in Bioinformatics, 15(2):327–340.

Ogren, P., Savova, G., and Chute, C. (2008). Constructing evaluation corpora for
automated clinical named entity recognition. In Proceedings of the Conference
on Language Resources and Evaluation (LREC), pages 3143–3149, Paris, France.
European Language Resources Association (ELRA).

Olsson, F. (2008). Bootstrapping Named Entity Annotation by Means of Active Machine
Learning. PhD thesis, University of Gothenburg. Faculty of Arts.

Paradis, C. and Eeg-Olofsson, M. (2013). Describing sensory experience: The genre of
wine reviews. Metaphor and Symbol, 28(1):22–40.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

18 JLCL98 JLCL

PAL, a tool for Pre-annotation and Active Learning

Řehůřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Paris, France. European Language Resources Association
(ELRA).

Schein, A. I. and Ungar, L. H. (2007). Active learning for logistic regression: an
evaluation. Mach. Learn., 68(3):235–265.

Settles, B. (2009). Active learning literature survey. Computer Sci-
ences Technical Report #1648, University of Wisconsin–Madison,
http://research.cs.wisc.edu/techreports/2009/TR1648.pdf.

Settles, B. and Craven, M. (2008). An analysis of active learning strategies for sequence
labeling tasks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, (EMNLP), pages 1070–1079, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Skeppstedt, M. (2013). Annotating named entities in clinical text by combining pre-
annotation and active learning. In Proceedings of the Student Research Workshop at
ACL, pages 74–80, Stroudsburg, PA, USA. Association for Computational Linguistics.

Skeppstedt, M., Sahlgren, M., Paradis, C., and Kerren, A. (2016). Unshared task:
(Dis)agreement in online debates. In Proceedings of the Third Workshop on Argument
Mining (ArgMining2016), Stroudsburg, PA, USA. Association for Computational
Linguistics.

South, B. R., Mowery, D., Suo, Y., Leng, J., Ferrández, Ó., Meystre, S. M., and
Chapman, W. W. (2014). Evaluating the effects of machine pre-annotation and an
interactive annotation interface on manual de-identification of clinical text. J Biomed
Inform, 50:162–72.

Stenetorp, P., Pyysalo, S., Topic, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012).
BRAT: a web-based tool for NLP-assisted text annotation. In Conference of the
European Chapter of the Association for Computational Linguistics (EACL), pages
102–107, Stroudsburg, PA, USA. Association for Computational Linguistics.

Sutton, C. and McCallum, A. (2006). An introduction to conditional random fields for
relational learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical
Relational Learning. MIT Press, Cambridge, MA, USA.

Symons, C. T., Samatova, N. F., Krishnamurthy, R., Park, B. H., Umar, T., Buttler, D.,
Critchlow, T., and Hysom, D. (2006). Multi-criterion active learning in conditional
random fields. In Proceedings of the 18th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI ’06, pages 323–331, Washington, DC, USA. IEEE
Computer Society.

JLCL – Band () 19JLCL 2016 – Band 31 (1) – 81-100 99

Skeppstedt, Paradis, Kerren

Taboada, M. and Carretero, M. (2012). Contrastive analyses of evaluation in text:
Key issues in the design of an annotation system for attitude applicable to consumer
reviews in English and Spanish. Linguistics and the Human Sciences, 6(1-3):275–295.

Täckström, O., McDonald, R., and Uszkoreit, J. (2012). Cross-lingual Word Clusters
for Direct Transfer of Linguistic Structure. In Proceedings of the North American
Chapter of the Associ- ation for Computational Linguistics on Human Language
Technology (NAACL HLT), pages 477–487, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Tomanek, K. (2010). Resource-Aware Annotation through Active Learning. PhD thesis,
Technical University of Dortmund.

Tomanek, K., Daumke, P., Enders, F., Huber, J., Theres, K., and Müller, M. (2012).
An interactive de-identification-system. In Proceedings of SMBM 2012 - The 5th
International Symposium on Semantic Mining in Biomedicine, pages 82–86, Zürich,
Switzerland. Institute of Computational Linguistics, University of Zurich.

Tomanek, K., Wermter, J., and Hahn, U. (2007). Efficient annotation with the Jena AN-
notation Environment (JANE). In Proceedings of the Linguistic Annotation Workshop,
pages 9–16, Stroudsburg, PA, USA. Association for Computational Linguistics.

Tong, S. and Koller, D. (2002). Support vector machine active learning with applications
to text classification. J. Mach. Learn. Res., 2:45–66.

Uzuner, Ö., Solti, I., Xia, F., and Cadag, E. (2010). Community annotation experiment
for ground truth generation for the i2b2 medication challenge. J Am Med Inform
Assoc, 17(5):519–523.

Venhuizen, N., Basile, V., Evang, K., and Bos, J. (2013). Gamification for word sense
labeling. In Proceedings of the 10th International Conference on Computational
Semantics (IWCS 2013), pages 397–403, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Yimam, M. S., Biemann, C., Eckart de Castilho, R., and Gurevych, I. (2014). Automatic
annotation suggestions and custom annotation layers in WebAnno. In Proceedings
of 52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 91–96, Stroudsburg, PA, USA. Association for Computational
Linguistics.

20 JLCL100 JLCL

Arne Neumann

Merging and validating heterogenous, multi-layered corpora with
discoursegraphs

Abstract

We present discoursegraphs, a library and command-line application for the conversion
and merging of linguistic annotations written in Python. The software reads and writes
numerous formats for syntactic and discourse-related annotations, but also supports
generic interchange formats. discoursegraphs models primary data and its annotations
as a graph and is therefore able to merge multiple independent, possibly conflicting
annotation layers into a unified representation. We show how this approach is beneficial
for the revision and validation of a corpus with multiple conflicting, independently
annotated layers.

1 Introduction

Linguistic annotations are produced using a plethora of tools. Most of these tools focus
on one type of annotation or were even developed with a specific corpus or research
project in mind and use their own file formats.
To ensure that the annotations are usable beyond the lifespan of the original anno-

tation tool or project, we might consider to convert the dataset into an interchange
format that is more suitable for long-term archival, such as FoLiA (van Gompel and
Reynaert, 2013), GrAF (Ide and Suderman, 2007) or PAULA (Dipper, 2005). We might
also want to transform annotations to make use of modern corpus visualisation and
query tools like brat (Stenetorp et al., 2012) or ANNIS (Krause and Zeldes, 2014). Both
tools can visualise several independent annotation layers at the same time, but rely on
custom file formats not supported by most annotation tools.1
While it is possible to write direct converters for all the formats we would like to

map, this is not only time consuming, but also leads to information loss, e.g. when
converting from a syntax representation that allows edge labels or secondary edges to
one that does not.
It is therefore more desirable to use an intermediate representation that is theory

neutral and capable of handling many different types of annotation.2 This not only
drastically reduces the number of converters that need to be written but also enables us

1For ANNIS, this problem is solved by SaltNPepper (Zipser and Romary, 2010), a conversion framework
provided by the same group of developers.

2This is not a new idea. Graph-based intermediate representations of linguistic annotations were
proposed at least as early as Ide et al. (2003).

JLCL 2016 – Band 31 (1) – 1-15JLCL 2016 – Band 31 (1) – 101-103 101

Neumann

to serialise this intermediate model into an interchange format from which the original
annotation files could be recreated without losing information.
To achieve this we developed discoursegraphs, a converter and merging tool for

linguistically annotated corpora. Via its intermediate, graph-based object representation,
the software is able to transform data between a number of syntax and discourse-related
annotation formats.3 Furthermore, discoursegraphs allows the user to merge several
independently produced and potentially conflicting layers of annotation into a unified
graph representation. The tool is implemented in Python and available under the open
source BSD license from its repository website.4

The remainder of this paper is structured as follows. Section 2 introduces the graph-
based data structures used in discoursegraphs and their application in data conversion.
In Section 3, we describe how to merge data from different annotation formats and types
into a single graph. Section 4 shows how to use this merged representation to simplify
the process of validating and revising heterogeneous annotations of a multi-layered
corpus. Section 5 concludes the paper and suggests paths for further research.

2 Graph-based modeling of annotated corpora

Using graphs to represent linguistically annotated corpora goes back at least to Bird and
Liberman (1999), who showed that a wide range of existing linguistic annotation formats
and tools had a “common conceptual core” which could be represented as annotation
graphs. This way, it becomes possible to separate the model of an annotation from
its serialisation format. Such a model expresses the logical structure of an annotation
and may range from the very informal (e.g. a drawing on a blackboard) to the very
formal, e.g. a visualisation defined in a markup language like the ISO-standardised
UML (ISO/IEC 19501, 2005).

Over the years, a number of graph-based models and accompanying formats for the
representation of linguistic annotations have been proposed, i.a. PAULA (Dipper, 2005),
LAF/GrAF (Ide and Suderman, 2007; ISO 24612, 2012), TCF (Heid et al., 2010), Salt
(Zipser and Romary, 2010) and FoLiA (van Gompel and Reynaert, 2013).5

What all of these graph-based representations have in common is that they can model
multiple layers of (conflicting) annotations including phenomena like overlapping and
non-contiguous spans as well as multi-rooted trees – phenomena which are particularly
hard or even impossible to express with inline XML, e.g. TigerXML (Mengel and Lezius,
2000), or column-based formats such as CoNLL (Hajič et al., 2009).

3In other words, discoursegraphs is neither build upon an existing linguistic exchange format nor
does it offer any new intermediate format. Instead, the library reads documents in existing formats
into Python objects representing property graphs and manipulates those graphs to convert the
input documents into other existing formats.

4https://github.com/arne-cl/discoursegraphs. It can also be installed via Python’s pip package
manager and as a docker container.

5A comparison is beyond the scope of this paper. For a very thorough overview see Stührenberg
(2012).

2 JLCL102 JLCL

https://github.com/arne-cl/discoursegraphs

Merging and validating multi-layered corpora

The question which model or format one should choose given all these similarities is
not easy to answer. Good evaluation criteria might be:

Model specificity: TCF (an XML format for data exchange between linguistic web
services) is very specific in that it defines a number of annotation layers that
it supports (e.g. constituency parsing and discourse connectives) but it is not
intended to add custom layers, e.g. for handling Rhetorical Structure Theory
(Mann and Thompson, 1988) or Abstract Meaning Representation (Banarescu
et al., 2013). GrAF, on the other hand, is intentionally abstract. The format
allows you to encode any type of annotation that can be expressed using nodes,
directed edges and arbitrary labels (in the form of feature structures that can
be attached to both nodes and edges). This freedom comes with a price, as it
leaves the burden to interpret the meaning of annotations to tool developers, cf.
Neumann et al. (2013). Both SaltNPepper and discoursegraphs adopt a middle
position, allowing users to build custom annotation layers but at the same time
force them to type each edge (choosing only from a small predefined set of relation
types, cf. Section 2.1). This way, tools can visualise and query previously unseen
layers of annotation in a meaningful way.

Tool support: Formats like GrAF were conceived as abstract, broadly applicable stan-
dards, for which numerous converters, but no annotation, visualisation or query
tools exist. In contrast, formats like FoLiA and Salt were introduced with specific
corpora or projects in mind and are supported by a wider range of tools (built
primarily for those corpora or projects). In addition to the type and number of
tools available for a format, one might also consider the programming language
the tools are implemented in when looking for the most suitable annotation model
or format for one’s project. With interpreted languages like Python, it is generally
easier to manipulate, query and visualise the annotated data interactively6 than
it is with compiled languages like C++ and Java.7

We will now introduce the specific graph model used in discoursegraphs and give an
overview over the formats it can currently read and write.

2.1 Data structures in discoursegraphs

The discoursegraphs toolkit is implemented on top of NetworkX (Hagberg et al., 2008),
which is a graph library implemented in pure Python.8 discoursegraphs is based on

6This is hugely facilitated by interactive computing environments like Jupyter (Pérez and Granger,
2007) that provide much of the ground work needed.

7Interactive computing in compiled languages is nevertheless possible, e.g. with Cling for C++
(https://root.cern.ch/cling) or JVM-based languages like Scala and Clojure which are interop-
erable with source code written in Java.

8Other graph libraries available for Python like igraph (Csardi and Nepusz, 2006) and graph-tool
(Peixoto, 2015) are implemented in C and C++, respectively. While this makes them compu-
tationally more efficient, it also makes them harder to install, extend and debug, at least from
the perspective of a software that is aimed at users with a background in linguistics rather than
software engineering.

JLCL 2016 – Band 31 (1) 3JLCL 2016 – Band 31 (1) – 101-103 103

https://root.cern.ch/cling

Neumann

the property graph model (Rodriguez and Neubauer, 2010), which is also used in graph
databases like neo4j9.

A property graph is a directed, labeled and attributed multi-graph. More formally, it
can be represented as a tuple G = (V,E,R, S,Σ, λV , λE , µ) with

V a set of vertices (i.e. nodes)
E ⊆ (V × V) a set of directed edges
R a set of attribute keys
S a set of attribute values
Σ a finite alphabet of labels
λV : V → Σ a mapping from a node to a node label
λE : E → Σ a mapping from an edge to an edge label
µ : (V ∪ E)×R→ S a mapping from nodes/edges and keys to values

While node labels (usually strings or integers) are used to uniquely identify a node
within a graph, edge labels (or edge types as they are called in discoursegraphs) enable
us to express different kinds of (linguistic) relationships between nodes (e.g. dominance
vs. coreference).

Allowing for multiple edges between nodes gives us the flexibility to model multiple
layers of annotations, say phrase structure and rhetorical structure, over the same
primary data. For example, there might be two nodes representing constituents in the
syntax layer, while the same nodes may represent the nucleus and satellite of a relation
in the rhetorical structure layer.10

Key-value pairs (also known as attribute-value pairs) make it possible to attach
arbitrary information to nodes and edges, e.g. to add part-of-speech and lemma
annotations to a token node. To make the software as broadly applicable as possible,
we added optional namespaces for keys. This allows us, for example, to annotate tokens
with multiple part-of-speech annotations from different tag sets, e.g. penn:pos=vbz
vs. brown:pos=doz.11 Namespaces are also used to merge multiple possibly conflicting
annotations over the same nodes.
One particularly important attribute we use in discoursegraphs is the layer. Each

node and edge is assigned to at least one layer, usually named after the type of
annotation (e.g. syntax), the format (e.g. tiger) or tool the data was imported from
(e.g. mmax).

Layer attributes are particularly useful to limit the scope of a query. Like other
key-value pairs, layers can use namespaces for instance to distinguish multiple
layers of annotation imported from the same tool (e.g. mmax:coreference vs.
mmax:informationstatus).

9http://neo4j.com/
10For a different example, see Figure 3 where two nodes are connected by two different edges, one

dominance relation between the constituents NP and N, and another edge representing a span
relation between a named entity annotation node and the token node that it covers.

11Here, penn:pos=vbz means that the token was annotated with the tag vbz and that this tag is used
in the penn namespace (i.e. the Penn Treebank tagset). brown:pos=doz refers to the tag doz in the
Brown Corpus tagset. Both tags represent a third person singular verb in the present tense.

4 JLCL104 JLCL

http://neo4j.com/

Merging and validating multi-layered corpora

The main data structure of the discoursegraphs library is the DiscourseDocumentGraph,
which represents a document (e.g. a newspaper article or any other contiguous passage
of written text) and all the annotations made to it.
A document can have any number of annotations (even if they are of the same

type, e.g. multiple, potentially conflicting syntax trees produced by different parsers
or human annotators), as long as they refer to the same tokenisation of the primary
text. While this limits the applicability of the framework for corpora that depend on
multiple tokenisations (e.g. diachronic and parallel corpora), it allows us to easily check
heterogeneous, multi-layered annotations for consistency (see Section 4).
A DiscourseDocumentGraph contains a set of nodes and a set of directed edges.

Nodes can represent tokens or any higher order structure built on top of them e.g.
spans of tokens or (interior) nodes in a phrase structure tree. The directed edges signal
relationships between those nodes. In discoursegraphs, we distinguish between four
types of edges (cf. Figure 1):

Spanning relation: A span groups adjacent tokens into a logical unit, e.g. when anno-
tating a phrase, named entity or other multi-word expression. A spanning relation
consists of a span node with outgoing edges to each of the token nodes belonging
to that span.

Dominance relation: While spans are used for ‘flat’ annotations applied to contiguous
tokens, the concept of dominance is used to express a broad range of hierarchical
relations between annotation nodes. For example, dominance relations hold i.a.
between categories and subcategories in a constituency parse tree, between the
head and its dependants in a dependency parse tree or between nucleus and
satellite in a rhetorical structure tree.

Pointing relation: Pointers express a non-hierarchical relation between two nodes. They
can e.g. be used to link an anaphor to its antecedent in a coreference relation or
to signal a secondary edge, i.e. a syntactic relationship between nodes that are
not in a direct dominance relation.

Precedence relation: In syntax trees and other tree-like annotations, the topological
order of all nodes can be inferred from the order of the tokens in the annotated
text. If the same annotations are represented as a directed graph, the ordering
information gets lost unless it is explicitly encoded. This is done by adding
precedence relations between each token and the token that succeeds it (as well
as one precedence relation from the document root node to the first token node,
thereby forming a directed path).

Using only these four basic edge types, a wide range of linguistic phenomena can be
modeled in a single graph data structure. DiscourseDocumentGraphs allow parallel
edges, i.e., there can be more than one edge from node u to node v. Having typed

JLCL 2016 – Band 31 (1) 5JLCL 2016 – Band 31 (1) – 101-103 105

Neumann

edges gives us a number of advantages over untyped linguistic annotation models such
as LAF12:

Conversion without ambiguity: When converting between two annotation formats with
similar use cases (e.g. two treebank formats), it might not be necessary to type
the annotations, as both formats will have means to deal with both token order
and hierarchy. When converting data from a generic annotation format (used for
archival purposes) to a domain-specific format though, this understanding is lost.
Without typed edges, a converter cannot know what kind of relation two linked
nodes are in, cf. Zipser and Romary (2010); Neumann et al. (2013).

Generic visualisation: Although it is very common to draw graphs, they are, in essence,
abstract mathematical structures with many possible ways to visualise them (graph
isomorphisms). In order to visualise a large variety of linguistic annotations, we
could either implement many domain-specific visualisations or simply rely on the
edge types to implement just a few visualisations that are ‘good enough’ for most
purposes, cf. Krause and Zeldes (2014). Precedence relations tell us the order of
the leaf nodes (tokens) in our graph, which we will align horizontally. Dominance
relations express hierarchy and can therefore be used to align nodes vertically.
Pointing relations are non-hierarchical (i.e. they can link any two nodes of the
graph) and are therefore best drawn using curved lines to avoid collisons with
(straight) hierarchical edges.

Expressive queries: Without typed edges, we could only use very generic graph queries
on our annotation graphs (e.g. “Does node A have a path to node B of length
n?”). With types, we can instead ask questions that are linguistically motivated,
i.e. “Does node A directly or indirectly dominate node B?”.

discoursegraphs provides simple indexing structures for often needed data, such as
ordered lists of all tokens and root nodes of all sentences. This way, we avoid having to
traverse the whole graph for simple operations like calculating the frequency distribution
of the POS tags of all the tokens in a document. Here is an example of how to implement
such a function13:

import discoursegraphs as dg
from collections import Counter
doc1 = dg.corpora.pcc.get_random_document()
freqdist = Counter()

for token_id in doc1.tokens:
freqdist[doc1.node[token_id][’tiger:pos’]] += 1

freqdist.most_common()
12LAF does allow typed nodes and edges, but does neither specify nor recommend any types. MASC

(Ide et al., 2010) – the de facto reference corpus for the GrAF format – does not use edge types.
13Of course, this is already implemented in the library.

6 JLCL106 JLCL

Merging and validating multi-layered corpora

document root

S

Nick

S

NP VP

.died He

NP VP

.was only 26

Figure 1: Example document annotated with phrase structure and coreference using all types of
relations (directed edges) available in discoursegraphs. Dominance relations (black)
hold between the document root node and the root nodes of the sentences it contains,
as well as between constituents and subconstituents of a phrase structure. Spanning
relations (orange) hold between preterminal nodes (constitutents) and their children
(tokens). A pointing relation (purple) is used to signal coreference. Precedence relations
(green) make the order of tokens in the text explicit.

Here, doc1 is a document graph representing all the annotation layers of a single
document from the PCC corpus and doc1.tokens is an ordered list of node IDs of all
token nodes. The node IDs are then used to retrieve and count the POS tags of the
tokens (i.e. values of the attribute key tiger:pos).

2.2 Converting between annotation formats

The data structures in discoursegraphs are capable of modeling many different types
of annotations and are therefore well suited to act as an intermediate representation
between two formats. This not only allows the library to merge multiple layers into
a single graph for joint analysis, it also drastically reduces the amount of converters
needed. While we would need to implement up to n2−n converters for mapping directly
to and from n formats, we only need 2n converters (one importer to and one exporter
from the intermediate representation for each format).14 So far, discoursegraphs can
14As one reviewer correctly pointed out, n2 − n is a purely theoretical upper limit. In practice,

one would rather chain several converters than implement a direct converter for every possible
combination of formats. This way, fewer converters would need to be implemented but each
additional conversion step increases the risk of losing data.

JLCL 2016 – Band 31 (1) 7JLCL 2016 – Band 31 (1) – 101-103 107

Neumann

import corpora from the following tools and formats:

(i.) constituent and dependency structures: Tiger-XML (Mengel and Lezius, 2000),
Penn Treebank (Prasad et al., 2008) and CoNLL 2009/2010 (Hajič et al., 2009;
Farkas et al., 2010)

(ii.) rhetorical structure: RSTTool’s (O’Donnell, 2000) rs3 and rst/dis formats

(iii.) pointing relations (e.g. coreference, connectives): formats from the MMAX2 (Müller
and Strube, 2006) and ConAno (Stede and Heintze, 2004) annotation tools

(iv.) annotations of spans of text: EXMARaLDA (Schmidt, 2004).

The library also comes with a number of exporters that can be used to convert the data
into formats used by other visualisation and (linguistic) analysis tools:

(i.) general purpose graph formats like dot (Ellson et al., 2002), GEFX15, GML16

and GraphML (Brandes et al., 2013)

(ii.) linguistic interchange formats CoNLL 2009 and PAULA XML 1.1 (Zeldes et al.,
2013),

(iii.) the geoff format of the neo4j graph database

(iv.) EXMARaLDA’s exb format.

3 Merging annotation layers

In discoursegraphs, it is possible to work with different annotation layers of the same
text (e.g. a constituent parse tree and coreference information) individually, such that
each layer or file is parsed into its own DiscourseDocumentGraph. This is useful for
exploring a specific annotation layer, e.g. if the user needs to find out how certain
attributes are named. The library tries to normalise attributes names (e.g. part-of-
speech annotations are always called pos and never POS, tokens are referred to as token
and not tok), but in case of doubt one can simply run the info() function on any
DiscourseDocumentGraph. It will show how many nodes and edges are present in a
graph, as well as the attributes they have and the (sub)layers they belong to.
If, on the other hand, the user wants to explore interactions between independent

layers or files, she will need to merge them into a single graph. In Figure 2 the graph
representations of two different annotation layers of the same sentence are shown. Each
node has an ID, and contains a number of attributes (begin and end signal the character
offsets of a token node or of the token nodes that this node dominates or spans).
15http://gexf.net/format/
16http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html

8 JLCL108 JLCL

http://gexf.net/format/
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html

Merging and validating multi-layered corpora

C1
cat=S
begin=0
end=18

C2
cat=NP
begin=0
end=4

C4
cat=VP
begin=5
end=18

C3
tok=John
pos=NNP
begin=0
end=4

C5
tok=hated
pos=VBD
begin=5
end=10

C6
cat=NP
begin=11
end=18

C7
tok=himself

pos=PRP
begin=11
end=18

(a)

N1
name=ROOT
begin=0
end=18

N2
ner=PERSON
begin=0
end=4

N4->C5
tok=hated
begin=5
end=10

N5->C7
tok=himself
begin=11
end=18

N3->C3
tok=John
begin=0
end=4

(b)

Figure 2: Two simplified document graphs representing the constituent parse tree (a), as well as
the named entity and coreference annotation (b) of the sentence “John hates himself ”.
The coreference is signaled by a pointing relation (purple).

Generally speaking, when merging two graphs, discoursegraphs will keep the first
one (Figure 2a) mostly unchanged, while the nodes and edges of the second one (Figure
2b) are renamed and moved to match the first one.

As the first step, the token nodes of the second graph will be renamed to match
the tokens of the first one. Since discoursegraphs requires annotation layers to use
the same tokenisation for merging, we can simply iterate over all token nodes in both
graphs simultaneously to do so. Figure 2b shows the node IDs before and after this
step, e.g. the token himself has the ID N5 before renaming and C7 afterwards.
In the second step, all nodes and edges from the second graph will be added to the

first one (Figure 3a, new elements are highlighted in blue). Nodes with the same ID
will be merged, i.e. additional attributes from the second graph’s node will be added to
the first one.
Finally, non-token nodes that cover the same span of tokens are merged. Merged
nodes are drawn with a double circle, with attributes added from the second graph
highlighted in bold. Note that edges are not merged, as they can carry different
meanings. For example, in Figure 3b we can see two edges between the nodes C2 and
C3, one representing a dominance relation between a noun phrase and a proper noun
John and the other representing a spanning relation between a PERSON named entity
annotation and the token that it covers (also John).

JLCL 2016 – Band 31 (1) 9JLCL 2016 – Band 31 (1) – 101-103 109

Neumann

C1
cat=S
begin=0
end=18

C2
cat=NP
begin=0
end=4

C4
cat=VP
begin=5
end=18

C3
tok=John
pos=NNP
begin=0
end=4

C5
tok=hated
pos=VBD
begin=5
end=10

C6
cat=NP
begin=11
end=18

C7
tok=himself

pos=PRP
begin=11
end=18

N1
name=ROOT
begin=0
end=18

N2
ner=PERSON
begin=0
end=4

(a) A graph containing the constituent parse tree, as
well as the named entity and coreference annotation
of the example sentence.

C1/N1
cat=S

name=ROOT
begin=0
end=18

C2/N2
cat=NP

ner=PERSON
begin=0
end=4

C4
cat=VP
begin=5
end=18

C5
tok=hated
pos=VBD
begin=5
end=10

C7
tok=himself

pos=PRP
begin=11
end=18

C3
tok=John
pos=NNP
begin=0
end=4

C6
cat=NP
begin=11
end=18

(b) A merged graph containing the con-
stituent parse tree, as well as the named
entity and coreference annotation of the
example sentence.

Figure 3: A simplified document graph of the sentence “John hates himself ” containing multiple
layers of annotation, before and after merging annotation nodes that cover the same span.
Elements added from the second graph are drawn in blue.

With this merged graph, we could now analyse interactions between syntax and
coreference, between syntax and named entities or between coreference and named
entities, respectively.

4 Validating heterogeneous annotation layers against each other

The graph merging facilities of discoursegraphs can be used for corpus maintenance,
i.e. for finding errors in existing annotations and ensuring the consistency of the data
across independently annotated layers.

We successfully employed the software to revise the multi-layered Potsdam Commen-
tary Corpus (PCC, Stede (2004); Stede and Neumann (2014)). In its current version, it
contains syntax, coreference, connectives and rhetorical structure annotations of 176
German newspaper commentaries. The corpus was not created as the result of a funded
project and has seen many (small) contributions over the course of more than a decade.
Annotators often worked on their own computers and were even allowed to edit files
manually (i.e. with a text editor instead of a dedicated annotation tool). Access to
version control systems could not be taken for granted and annotation guidelines were

10 JLCL110 JLCL

Merging and validating multi-layered corpora

updated over the years. Inevitably, this has lead to some problems which had to be
addressed during the revision.
First, we had to rename all files from all annotation layers according to the same

naming scheme and ensure that they use the same encoding and line endings. Afterwards,
we were able to automatically parse the different annotation files for a given newspaper
commentary to check whether they used identical tokenisations.17

This way, we found several types of tokenisation inconsistencies:

Intentionally altered tokens: Spelling mistakes were manually corrected (at times with
comments) by some annotators, but not on all layers.

Unintentionally altered tokens: Some tokens contained soft-hyphens instead of regular
hyphens or featured diacritics where there should be none.

Missing or added tokens: These were mostly caused by manually corrected grammatical
errors that were not present in all layers.

After fixing the tokenisation in the original source files, we leveraged the graph data
structure to find errors in the annotations with respect to their connectivity:

Unreachable nodes: We found a number of tokens in the syntax annotation that were
not connected to the constituency parse tree.

Superfluous edges: Coreference is usually annotated in chains, but we found numerous
entities that were part of several coreference chains. In the case depicted in Figure
4, this can be either explained as an annotation error (i.e. the annotator wanted
to build a chain but overlooked the nearest preceding coreferent entity) or tell us
that not all entities of this “coreference cluster” are strictly coreferent. In Figure
4, this is the case for “Chancellor and Foreign Minister”, who are members of
“the government” but do not represent it as a whole.

Errors in manually edited, XML-based annotation files could often be found by forcing
the XML parser to be strict, hereby finding elements that were never closed or closed
too early.18 Additionally, misspelled attribute names can be discovered by looking for
infrequently occurring ones.

While revising a corpus becomes easier with discoursegraphs, it is still a laborious
task that cannot be fully automated. With the knowledge that we gained and the tools
that are available today, many of the issues we faced could have been avoided with a
few precaution steps:

Primary data: Always keep the original data, so it never becomes necessary to guess
which changes might have happened along the way.

17The original HTML files from which the corpus was sourced were no longer available, so our best
guess was to compare against the files that contained the tokenised but otherwise unannotated
commentaries.

18This is the default in discoursegraphs for all XML-based formats.

JLCL 2016 – Band 31 (1) 11JLCL 2016 – Band 31 (1) – 101-103 111

Neumann

auf Schröder und Fischer
on Schröder and Fischer

beide
both

von Kanzler und Außenminister
of Chancellor and Foreign Minister

der Regierung
the government

ihre
their

sie
they

der Regierenden
the rulers

Figure 4: A graph representing three (wrongly) annotated coreference chains which share some
nodes. If we accept that “Chancellor and Foreign Minister” and “the government” are
coreferent, all the entities in this graph should be merged into one coreference chain.

Version control: This will help to clarify who made which changes and which annotation
guidelines were used at that time.

Web-based annotation tools: With modern annotation tools like brat, WebAnno (Yi-
mam et al., 2013) and rstWeb (Zeldes, 2016), annotators don’t have access to the
source files, so they cannot manipulate them.

Automatic validation: It is vital to provide means to validate the data automatically,
e.g. via Document Type Definitions (DTDs) or XML Schema Definitions (XSDs).
Such definitions can also be learned post-hoc from existing XMLs with tools like
the XML-Schema-learner19 (Nordmann, 2011), which allow researchers to correct
existing inconsistencies.

Error guidelines: It needs to be clearly stated how annotators should deal with “errors”
in the collected primary texts. In historic corpora, for example, there is a clear
distinction between diplomatic and normalised transcription of the primary data.

5 Conclusion and future work

We have presented discoursegraphs, a library for the conversion and merging of
linguistic annotations and have shown how this software facilitates the merging, revision
and validation of multi-layered corpora.

In the future, we would like to add performance-oriented graph backends (e.g. igraph
or graph-tool), so that a user of the library can profit from the easy debugability of
NetworkX during the implementation of an importer or exporter, but use faster backends
19https://github.com/kore/XML-Schema-learner

12 JLCL112 JLCL

https://github.com/kore/XML-Schema-learner

Merging and validating multi-layered corpora

later on in production. We will also try to provide a web interface for the most common
functions of the library, as users without (Python) programming experience can so far
only access the format conversion capabilities via the current command-line interface.

References

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K.,
Palmer, M., and Schneider, N. (2013). Abstract meaning representation for sembanking.
In In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse. ACL.

Bird, S. and Liberman, M. (1999). A formal framework for linguistic annotation. technical report
ms-cis-99-01. Technical report, Linguistic Data Consortium, University of Pennsylvania.

Brandes, U., Eiglsperger, M., Lerner, J., and Pich, C. (2013). Graph markup language
(GraphML). In Tamassia, R., editor, Handbook of Graph Drawing and Visualization. CRC
Press.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1–9.

Dipper, S. (2005). XML-based Stand-off Representation and Exploitation of Multi-Level
Linguistic Annotation. In Berliner XML Tage, pages 39–50.

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. (2002). Graphviz–open
source graph drawing tools. In Graph Drawing, pages 483–484. Springer.

Farkas, R., Vincze, V., Móra, G., Csirik, J., and Szarvas, G. (2010). The CoNLL-2010 shared
task: learning to detect hedges and their scope in natural language text. In Proceedings
of the Fourteenth Conference on Computational Natural Language Learning—Shared Task,
pages 1–12. Association for Computational Linguistics.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In Varoquaux, G., Vaught, T., and Millman, J., editors,
Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena,
CA USA.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martí, M. A., Màrquez, L., Meyers, A.,
Nivre, J., Padó, S., Štěpánek, J., et al. (2009). The CoNLL-2009 shared task: Syntactic and
semantic dependencies in multiple languages. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared Task, pages 1–18. Association for
Computational Linguistics.

Heid, U., Schmid, H., Eckart, K., and Hinrichs, E. W. (2010). A corpus representation format
for linguistic web services: The d-spin text corpus format and its relationship with iso
standards. In LREC.

Ide, N., Fellbaum, C., Baker, C., and Passonneau, R. (2010). The manually annotated sub-
corpus: A community resource for and by the people. In Proceedings of the ACL 2010
conference short papers, pages 68–73. Association for Computational Linguistics.

JLCL 2016 – Band 31 (1) 13JLCL 2016 – Band 31 (1) – 101-103 113

Neumann

Ide, N., Romary, L., and de la Clergerie, E. (2003). International standard for a linguistic
annotation framework. In Proceedings of the HLT-NAACL 2003 workshop on Software engi-
neering and architecture of language technology systems-Volume 8, pages 25–30. Association
for Computational Linguistics.

Ide, N. and Suderman, K. (2007). GrAF: A graph-based format for linguistic annotations. In
Proceedings of the Linguistic Annotation Workshop, pages 1–8. Association for Computational
Linguistics.

ISO 24612 (2012). Language Resource Management – Linguistic Annotation Framework.
International Standards Organization, Geneva, Switzerland.

ISO/IEC 19501 (2005). Information technology – Open Distributed Processing – Unified
Modeling Language (UML). International Standards Organization, Geneva, Switzerland.

Krause, T. and Zeldes, A. (2014). ANNIS3: A new architecture for generic corpus query and
visualization. Literary and Linguistic Computing.

Mann, W. C. and Thompson, S. A. (1988). Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Mengel, A. and Lezius, W. (2000). An XML-based Representation Format for Syntactically
Annotated Corpora. In Proceedings of the 2nd International Conference on Language
Resources and Evaluation (LREC 2000).

Müller, C. and Strube, M. (2006). Multi-level annotation of linguistic data with MMAX2. In
Braun, S., Kohn, K., and Mukherjee, J., editors, Corpus technology and language pedagogy:
New resources, new tools, new methods, pages 197–214. Peter Lang.

Neumann, A., Ide, N., and Stede, M. (2013). Importing MASC into the ANNIS linguistic
database: A case study of mapping GrAF. In Proceedings of the Seventh Linguistic
Annotation Workshop (LAW), pages 98–102. Association for Computational Linguistics.

Nordmann, K. (2011). Algorithmic learning of XML Schema definitions from XML data.
Diploma thesis, Technische Universität Dortmund, Dortmund, Germany.

O’Donnell, M. (2000). RSTTool 2.4: a markup tool for Rhetorical Structure Theory. In
Proceedings of the 1st International Conference on Natural Language Generation (INLG
2000), pages 253–256. Association for Computational Linguistics.

Peixoto, T. P. (2015). The graph-tool python library.
https://figshare.com/articles/graphtool/1164194.

Pérez, F. and Granger, B. E. (2007). IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21–29.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A. K., and Webber, B. L.
(2008). The Penn Discourse TreeBank 2.0. In Proceedings of LREC 2008.

Rodriguez, M. A. and Neubauer, P. (2010). Constructions from dots and lines. Bulletin of the
American Society for Information Science and Technology, 36(6):35–41.

Schmidt, T. (2004). Transcribing and annotating spoken language with EXMARaLDA. In
Proceedings of the LREC-Workshop on XML based richly annotated corpora, Lisbon, pages
69–74.

14 JLCL114 JLCL

Merging and validating multi-layered corpora

Stede, M. (2004). The Potsdam Commentary Corpus. In Proceedings of the 2004 ACL Workshop
on Discourse Annotation, pages 96–102. Association for Computational Linguistics.

Stede, M. and Heintze, S. (2004). Machine-assisted Rhetorical Structure Annotation. In
Proceedings of the 20th International Conference on Computational Linguistics (COLING
2004), pages 425–431. Association for Computational Linguistics.

Stede, M. and Neumann, A. (2014). Potsdam Commentary Corpus 2.0: Annotation for Discourse
Research. In Ninth International Conference on Language Resources and Evaluation,
Reykjavik, Iceland. European Language Resources Association (ELRA).

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012). brat: a
Web-based Tool for NLP-Assisted Text Annotation. In Proceedings of the Demonstrations
Session at EACL 2012, Avignon, France. Association for Computational Linguistics.

Stührenberg, M. (2012). Auszeichnungssprachen für linguistische Korpora: theroretische
Grundlagen, De-facto-Standards, Normen. PhD thesis, Bielefeld University.

van Gompel, M. and Reynaert, M. (2013). FoLiA: A practical XML Format for Linguis-
tic Annotation-a descriptive and comparative study. Computational Linguistics in the
Netherlands Journal, 3:63–81.

Yimam, S. M., Gurevych, I., de Castilho, R. E., and Biemann, C. (2013). WebAnno: A Flexible,
Web-based and Visually Supported System for Distributed Annotations. In ACL (Conference
System Demonstrations), pages 1–6.

Zeldes, A. (2016). rstWeb–A Browser-based Annotation Interface for Rhetorical Structure
Theory and Discourse Relations. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstrations, pages
1–5.

Zeldes, A., Zipser, F., and Neumann, A. (2013). PAULA XML Documentation: Format Version
1.1. Research Report, hal-00783716, https://hal.inria.fr/hal-00783716.

Zipser, F. and Romary, L. (2010). A model oriented approach to the mapping of annotation
formats using standards. In Workshop on Language Resource and Language Technology
Standards, LREC 2010.

JLCL 2016 – Band 31 (1) 15JLCL 2016 – Band 31 (1) – 101-103 115

Thomas Schmidt

Construction and Dissemination of a Corpus of Spoken
Interaction - Tools and Workflows in the FOLK project

Abstract

This paper is about the workflow for construction and dissemination of FOLK (Forschungs-

und Lehrkorpus Gesprochenes Deutsch – Research and Teaching Corpus of Spoken Ger-

man), a large corpus of authentic spoken interaction data, recorded on audio and video.

Section 2 describes in detail the tools used in the individual steps of transcription, anony-

mization, orthographic normalization, lemmatization and POS tagging of the data, as well as

some utilities used for corpus management. Section 3 deals with the DGD (Datenbank für

Gesprochenes Deutsch - Database of Spoken German) as a tool for distributing completed

data sets and making them available for qualitative and quantitative analysis. In section 4,

some plans for further development are sketched.

1 Introduction

FOLK, the Forschungs- und Lehrkorpus Gesprochenes Deutsch (Research and Teaching

Corpus of Spoken German) is being constructed in the program area “Oral Corpora” of the

Institute for the German Language (IDS). Recognizing the lack of a larger, publicly availa-

ble digital resource for studying spoken German in interaction (Deppermann/Hartung 2010),

FOLK was started in 2009 as a long-term project to compile a diverse and systematic collec-

tion of audio and video recordings of spontaneous, authentic interactions across the whole

spectrum of verbal interaction in German society.

FOLK is growing steadily, both in terms of quantity and variety of transcribed interac-

tions. In its latest version (April 2016), the corpus comprises 219 interactions corresponding

to 169 hours of audio and video recordings and 1.6 million transcribed word tokens. As

testified by close to 6000 registrations (January 2017) for the Database of Spoken German

(DGD, Schmidt 2014) through which FOLK is distributed and in which it is by far the most

used corpus (Fandrych et al. 2016), the research community shows great interest in this

resource.

To maximize (re)usability of the data, FOLK follows (and partly helps to define) current

best practices in the handling and processing of data with respect to technological, methodo-

logical and legal issues (see also Schmidt 2016). In this paper, I am going to concentrate on

the technological instruments, more specifically the software tools, which are used in the

different steps of the corpus construction and dissemination workflow. Since FOLK is a

spoken language corpus, the individual tools that make up this workflow differ fundamental-

ly from the tools used in the compilation of written language corpora. Most importantly, the

“primary” data of FOLK cannot be acquired automatically: recording authentic interactions

requires an appropriate field access which must be negotiated for each individual case, and

after data from the field have been obtained, project members have to screen and assess, and

JLCL 2016 – Band 31 (1) – 105-132 117

finally transcribe, them “manually”1. As described in Kupietz/Schmidt (2015), these two

“bottlenecks” – field access and transcription – still prevent oral corpora from growing to

the same dimensions as written corpora, and the transcription bottleneck makes up a great

part of the technological challenges which FOLK faces.

Figure 1: FOLK workflow overview

Figure 1 depicts (a simplified version of) the corpus compilation workflow in FOLK from

the moment of field access to the final step of data publication. As a matter of principle, we

do not start work on the data until the project coordinator has bindingly confirmed that all

consent and metadata forms belonging to the recorded interaction are complete and usable.

Once the data have passed this "gatekeeper" stage, recordings are prepared in the project's

media studio for transcription. Depending on the recording, this step involves an appropriate

conversion, cutting, denoising and/or normalization of the audio file as well as a synchroni-

sation of different media files in cases where an interaction has been recorded in more than

one file. Standard professional ("commercial") audio and video editing software (such as

Samplitude and Adobe Premiere) is used for these tasks, which shall not be described in

further detail here. Specialized linguistic tools come into play once an edited recording has

been distributed to a student assistant for transcription.

Section 2 of this contribution starts at this stage, describing in detail the tools used in the

individual steps of transcription, anonymization, orthographic normalization, lemmatization

and POS tagging of the data, as well as some utilities used for corpus management. Section

3 then deals with the Database of Spoken German as a tool for distributing completed data

1 It has been noted (p.c.) that “intellectually” may be the more appropriate term in this
context, since it is the researcher’s informed involvement with the material (judging
the authenticity and quality of a recording, taking interpretative decisions in the tran-
scription process, etc.), rather than pure manual labour, that is decisive. I am using the
word “manual” here because it is the most commonly used antonym to “automatic”
when speaking about processing methods for language resources.

118 JLCL

Tools and Workflows in FOLK

sets and making them available for qualitative and quantitative analysis. In section 4, some

plans for further development are sketched.

2 Tools for Corpus Compilation

2.1 Transcription and Anonymization: FOLKER

FOLKER – the FOLK EditoR (see also Schmidt/Schütte 2010) – is based on, and to a great

part reuses data models and code of, the EXMARaLDA system (Schmidt/Wörner 2014).

The crucial difference to its “mother system” is that FOLKER is optimized for the particular

task of transcription in the FOLK project. This means, first, that functionality not required in

FOLK (such as manual alignment of existing legacy transcripts or free annotation in an

arbitrary number of dependent tiers) is removed, thus reducing the complexity of the user

interface, making it quicker and easier to learn for student transcribers and decreasing the

number of opportunities for making errors in the transcription process. Second, in contrast to

the EXMARaLDA Partitur-Editor (and similar tools like ELAN or Praat) which always

presents data in a musical score view, FOLKER offers three different forms of data visuali-

sation, each of which is particularly suitable for a specific step in the workflow. Third,

FOLKER has direct built-in support for the transcription guideline of the FOLK project, the

cGAT system. The following sections describe the functionality of FOLKER in more detail.

2.1.1 Transcription

Transcription in FOLK is done according to the guidelines for the cGAT minimal transcript

(Schmidt et al. 2015). cGAT is based on the GAT2 system (Selting et al. 2009) which can be

considered one of the most widely established transcription conventions in (German) con-

versation analysis and related fields. A cGAT minimal transcript requires careful transcrip-

tion of individual words in modified orthography (“literarische Umschrift” – literary tran-

scription, sometimes also referred to as “eye dialect”), a precise measurement of silences

above 0.2s duration and a description of audible non-verbal interaction phenomena (like

breathing, coughing or laughing). Aiming at a minimization of interpretative decisions in

transcription, the cGAT minimal transcript does not require the identification of linguistic

units above the word level (such as intonation phrases), the annotation of prosodic details

(like primary accent or lengthening of syllables, voice quality, speed and modulation of

speech) or comments interpreting individual parts of utterances (such as “ironic”).

The initial transcription according to these guidelines is done in FOLKER’s segment

view (see figure 2). FOLK transcribers select suitable segments, typically of 2 to 5 seconds

duration, in the wave form visualisation of the audio recording, and create a time-aligned

segment of the recording (start and end times in the first and second column) which is as-

signed to a speaker (third column) and for which the actual transcription text can be entered

(column 4). During transcription, this text is checked for formal compliance with the cGAT

conventions. If an error is detected (such as the missing closing bracket for the pause in

segment 26), this is indicated by a red cross (column 5), otherwise a green check mark

JLCL 2016 – Band 31 (1) – 105-132 119

confirms to the transcriber that the text entered can be parsed according to cGAT. Likewise,

each segment is checked for “self-overlaps” with other segments, i.e. a red cross would

indicate (in column 6) whenever the time intervals corresponding to two segments assigned

to the same speaker overlap. All properties of a segment are freely editable at any time in the

transcription process: time alignment can be adjusted, speaker assignment corrected, and

transcription text modified whenever necessary.

Figure 2: FOLKER's segment view

Although FOLKER is not meant for video transcription proper – meaning the systematic

annotation of (non-verbal) behaviour visible in video images – a video file can be loaded

into the editor in addition to the audio file to facilitate speaker identification and the under-

standing of passages with no or little verbal output (figure 3).

Figure 3: FOLKER's video panel

120 JLCL

Tools and Workflows in FOLK

In cases of simultaneous or overlapping speech (a ubiquitous property of the types of inter-

action included in FOLK), transcribers first create independent segments for each speaker.

The precise specification of the start and end of an overlap of one speaker’s segment in

relation to another speaker’s segment can then be carried out by switching to FOLKER’s

musical score (“Partitur”) view whose two-dimensional layout presents temporal relations in

a more intuitive way than the segment view (see figure 4).

Figure 4: FOLKER's musical score ("Partitur") view

While transcription itself is thus done in the segment and musical score view with transcrib-

ers freely switching between the two as appropriate, a third view is used for intermediate or

concluding quality checks on the data. In the contribution view (figure 5), consecutive seg-

ments assigned to the same speaker are summarized into the larger unit of a speaker contri-

bution. This visualisation makes it easier to read the transcription as a whole and thus makes

the correction process more efficient.

Figure 5: FOLKER's contribution view

2.1.2 Data format

FOLKER reads and writes an XML data format in which all relevant entities of the tran-

scription – recordings, speakers, timepoints, speaker contributions – are represented as

elements, and their relationships – speaker assignment, temporal alignment – encoded via

IDREF/ID pointers. For a transcript which follows in its entirety the conventions for the

cGAT minimal transcript (i.e. for which a transcriber sees nothing but green check marks in

JLCL 2016 – Band 31 (1) – 105-132 121

the respective columns of the editor), FOLKER can parse the transcription text, resulting in

additional markup of word, pause, breathing etc. elements underneath the speaker contribu-

tions. Figure 6 shows the XML corresponding to the transcript excerpt used in the previous

section.

<speakers>
 <speaker speaker-id="NO"><name>Norbert</name></speaker>
 <speaker speaker-id="EL"><name>Elena</name></speaker>
</speakers>

<recording path="FOLK_E_00039_SE_01_A_01_DF_01.WAV"/>

<timeline>
 <timepoint timepoint-id="TLI_0" absolute-time="0.0"/>
 <!-- [...] -->
 <timepoint timepoint-id="TLI_25" absolute-time="65.555"/>
 <timepoint timepoint-id="TLI_26" absolute-time="66.915"/>
 <timepoint timepoint-id="TLI_27" absolute-time="67.195"/>
 <timepoint timepoint-id="TLI_28" absolute-time="69.44"/>
 <timepoint timepoint-id="TLI_29" absolute-time="69.83"/>
 <timepoint timepoint-id="TLI_30" absolute-time="70.4"/>
 <!-- [...] -->
</timeline>

<contribution speaker-reference="NO" start-reference="TLI_25" end-reference="TLI_26">
 <w>und</w><w>beim</w><w>husten</w><w>bisschen</w>
 <w>weiter</w><w>zurück</w><w>wa</w>
</contribution>
<contribution start-reference="TLI_26" end-reference="TLI_27" parse-level="2">
 <pause duration="0.28"/>
</contribution>
<contribution speaker-reference="AL" start-reference="TLI_27" end-reference="TLI_30">
 <w>ja</w><w>genau</w>
 <pause duration="micro"/>
 <w>und</w><w>nicht</w><w>gegen</w><w>den</w>
 <w>tisch</w><w>ditschen</w><w>irgendwie</w>
 <time timepoint-reference="TLI_28"/>
 <breathe type="in" length="1"/>
 <w>also</w>
 <time timepoint-reference="TLI_29"/>
 <w>ich</w><w>hab</w><w>da</w><w>schon</w><w>die</w>
</contribution>

Figure 6: FOLKER's XML format

The FOLKER XML format, in its unparsed as well as in its parsed version, and also with

additional lemma and POS information for the tokens (see sections 2.2 and 2.3), is isomor-

phic and can be easily transformed to the TEI-based ISO standard "Transcriptions of Spoken

Language" (ISO/ TC 37/SC 4/WG 6, cf. Schmidt/Hedeland/Jettka 2017), published in Au-

gust 2016. FOLKER as well as OrthoNormal offer export filters, and the DGD enables users

to download FOLK excerpts in this format (see section 3.3). In future developments, we will

make sure to maintain interoperability with the ISO standard, and, eventually, rebase the

whole FOLK workflow on it.

122 JLCL

Tools and Workflows in FOLK

2.1.3 Anonymization / Pseudonymization / Masking

Recordings in FOLK are done with informed consent of the speakers wherever this is legally

required (i.e. almost always). The standard consent form (for audio recordings2) guarantees

that all information that could lead to direct identification of an individual, in particular the

mention of individuals’ names, addresses or other specific biographic details, are replaced in

metadata and transcriptions with suitable pseudonyms and in the recordings with a silence or

noise. Identifying the places to be masked in the recordings and maintaining a consistent set

of pseudonyms for use in the transcription is another laborious task requiring adequate tool

support. In most cases, the best moment to decide on anonymization issues is during the

transcription process itself, when transcribers carefully listen to the recordings anyway and

can thus be sure to notice mentions of proper names etc. FOLKER therefore includes a set

of functions which support transcribers in this task. Whenever an anonymization issue is

identified, the corresponding part of the recording can be selected and a masking segment

created which is stored separately from the transcription. In order to ensure consistency in

the choice of pseudonyms (i.e. to make sure that one and the same name is always replaced

by one and the same pseudonym), transcribers can create and maintain a table of mappings

from real names to pseudonyms (see figure 7).

Figure 7: Creating a mask segment and managing pseudonyms in FOLKER

Since anonymization is, ultimately, not a decision for which student transcribers can or

should take full responsibility, completed transcripts and the anonymizations proposed by

the transcribers are checked by a project coordinator. For this task, FOLKER offers a sum-

mary of all existing masking segments as illustrated in figure 8.

2 The same anonymization principles apply to the sound track of video recordings.
We do not, however, attempt to anonymize the video image, for instance by blurring
faces, since this would render the video useless for many analysis purposes. Instead,
we obtain the speakers’ consent to use the unmasked video image.

JLCL 2016 – Band 31 (1) – 105-132 123

Figure 8: Overview of masking segments in FOLKER

When all masking segments for a given transcript have been identified and checked in this

way, FOLKER can insert the required noises into the audio file automatically (figure 9). We

use a Brownian noise, because, in contrast to a simple silence, this makes clear to the listen-

er that he is dealing with an artefact in the recording, and because, compared to a white

noise, it is less disagreeable to the ear. Masking information is stored in a separate section of

the document so that it can be easily removed before publication of the data. We archive this

information internally in order to be able to quickly identify masked passages later.

Figure 9: Automatic masking of an audio file via FOLKER

2.2 Orthographic normalisation: OrthoNormal

As described above, primary transcription in FOLK is done according to cGAT, meaning

that all word tokens are written in lower case, and that deviations from standard pronuncia-

tion are modelled by using a modified orthography (e.g. “zwo” as a colloquial pronunciation

of the number 2 or “haste” as a contracted form of “hast Du”, have you – “dunno” for “don’t

know” would be an analogous case for English). While this has the advantage of following

conversation analytic tradition and making spoken language phenomena more readily visible

in the transcription text, it also has the disadvantage of rendering queries and further auto-

matic processing on this data unreliable. In order to optimize FOLK data for the application

of corpus linguistic and computational linguistic methods, we therefore add a second anno-

tation layer in which tokens in modified orthography are mapped to a standard orthographic

124 JLCL

Tools and Workflows in FOLK

equivalent.3 This is done on a token-by-token basis with the help of the OrthoNormal anno-

tation tool using a set of normalisation guidelines (Schmidt/Winterscheid 2015).

Figure 10: Automatic normalisation in OrthoNormal

When a completed FOLKER transcript is loaded into OrthoNormal, an automatic normalisa-

tion step can be applied to all word tokens (see figure 10). This method proceeds as follows:

1 It looks up each word in a normalisation lexicon in which (manually verified) transcrip-

tion/normalisation pairs of previous normalisations are stored with their frequencies.4

Whenever a form is encountered that has an entry in this lexicon, the most frequent cor-

responding normalised form is automatically inserted. As an example, see the form

“hab” in figure 11 which has been correctly normalised to “habe” (have, first person

singular), but also the form “wa” which has been incorrectly normalised to “wir” (we,

where “was” – what would have been correct).

2 It looks up each word in a list of word forms that only occur in upper case in German,

extracted from the DeReWo list of inflected forms (Institut für Deutsch Sprache 2014)

which itself is based on the billion words DeReKo corpus of written German

(Kupietz/Schmidt 2015). If no lexicon entry for a given form has been found in step (1)

and the form with an upper-case initial is found in the word list, this upper case form is

inserted as the normalised form. As an example, see the form “tisch” in figure 11 which

has been correctly normalised to “Tisch” – table.

3 As a reviewer has duly pointed out, other projects such as Verbmobil have proceed-
ed in the reverse manner, i.e. standard orthography was used in the primary transcrip-
tion and pronunciation deviations added as annotations to the orthographic words.
Our choice to transcribe in modified orthography is mainly motivated by the fact that
this is the standard procedure in conversation analysis and therefore more easily rec-
oncilable with existing transcription conventions. Furthermore, FOLK data abound
with dialectal and other features of spontaneous speech so that the rate of forms
deviating from standard orthography is rather high (more than 50% of all tokens in
some cases). A partial automation of the mapping between modified and standard
forms is therefore important for reasons of efficiency, and it is obviously much easier
to automatically map modified onto standard forms than the other way around.
4 This lexicon is updated with each release of FOLK, i.e. it grows by the manually
verified normalization entries for roughly 300.000 transcribed tokens each year.

JLCL 2016 – Band 31 (1) – 105-132 125

3 It checks all word forms against a full list of inflected German word forms (again,

based on DeReWo). If a form is not found in the list, it will be marked as a likely nor-

malisation candidate for the manual normalisation process. As an example, see the

forms “aufnahmejerät” (=”Aufnahmegerät” – recording device) and “ooch” (=”auch” –

too – in Berlin dialect), both highlighted in red in the table on the right hand side of

figure 11.

This simple process leads to recall and precision rates both roughly around 80%, meaning

that 80% of forms that need to be normalised are detected in that process and that 80% of all

automatically inserted normalised forms are correct. Since the normalisation layer is abso-

lutely crucial for all further processing steps, the automatically normalised transcripts with

this error rate are manually checked and corrected by student annotators. The OrthoNormal

tool makes this step efficient by offering an ergonomic interface optimised for the task. As

figure 11 illustrates, the interface is divided into three parts: the upper left part displays the

transcript as a list of contributions with normalised forms added in red. When a contribution

is selected in this list, the lower left part displays this contribution and makes it available for

editing. Clicking on any word token in this view will bring up a normalisation dialog in

which a normalised form can either be freely entered in a text field, or selected from a list of

candidates extracted from the normalisation lexicon. The right part of the screen, finally,

displays pairs of transcribed and normalised forms in a table. When ordered alphabetically,

several transcribed forms can be normalised in one go in this table, and a regular expression

filter can be used to select specific patterns of transcribed forms (such as: all forms starting

with a certain prefix).

Figure 11: OrthoNormal user interface

126 JLCL

Tools and Workflows in FOLK

Figure 12: Normalisation dialog

Although manual normalisation means that a student annotator has to go through the whole

transcript once more (and the result checked again by a supervisor), this step is by far less

time-consuming than transcription itself. While we have to calculate with as much as 100

hours of manual work for the transcription of 1 hour of recording, the same amount of data

can usually be orthographically normalised in less than 5 hours. The normalised forms are

stored as @n attributes on the <w> elements of the original transcription (see figure 13).

<contribution speaker-reference="NO" start-reference="TLI_25" end-reference="TLI_26">
 <w id="w37">und</w>
 <w id="w38">beim</w>
 <w id="w39" n="Husten">husten</w>
 <w id="w40">bisschen</w>
 <w id="w41">weiter</w>
 <w id="w42">zurück</w>
 <w id="w43" n="was">wa</w>
</contribution>

Figure 13: XML of normalised transcript

2.3 Lemmatisation and POS-Tagging

Once the manually checked normalisation layer is available for a transcript, an automatic

lemmatization and POS tagging can be carried out on the normalised data. We use TreeTag-

ger (Schmid 1994) via TT4J (Eckart de Castilho, no data) to perform this task.

Up until the current version of FOLK, the default TreeTagger parameter file for German,

trained on newspaper text with the Stuttgart-Tübingen-Tagset (STTS), was used to do the

tagging. The results were acceptable only as a first approximation, because they had an error

rate of over 10% for POS tags (less than 2% for lemmas), and because the tagset itself was

underspecified especially for those word classes that are specific to spoken language (such

as particles and interjections). Westpfahl (2015) therefore developed an extension of STTS

optimized for the kind of spoken language data found in FOLK. In the FOLK project, a

100.000 tokens gold standard (Westpfahl/Schmidt 2016) was tagged manually according to

this STTS extension, again by means of the OrthoNormal tool (in the "tagging" rather than

the "normalisation" mode, see figure 14). Using this gold standard, a new TreeTagger pa-

JLCL 2016 – Band 31 (1) – 105-132 127

rameter file was trained which can be used for lemmatization and POS tagging of future

versions of FOLK. Evaluations have shown that an error rate as low as 5% can be attained

with this improved procedure.

Figure 14: Using OrthoNormal do carry out manual correction on POS tags

Lemmas and POS tags are, again, stored as @lemma and @pos attributes, respectively, on

the <w> elements of the original transcription (see figure 15).

 <contribution speaker-reference="NO" start-reference="TLI_25" end-reference="TLI_26">
 <w id="w39" pos="KON" lemma="und">und</w>
 <w id="w40" pos="APPRART" lemma="beim">beim</w>
 <w id="w41" n="Husten" pos="NN" lemma="Husten">husten</w>
 <w id="w42" pos="ADV" lemma="bißchen">bisschen</w>
 <w id="w43" pos="ADV" lemma="weiter">weiter</w>
 <w id="w44" pos="PTKVZ" lemma="zurück">zurück</w>
 <w id="w45" pos="SEQU" lemma="Wa" n="was">wa</w>
</contribution>

Figure 15: XML of lemmatized and POS tagged transcript

2.4 Metadata

Metadata capturing salient characteristics of the interactions and speakers involved are

collected alongside the recordings in the field by means of a project specific paper form.

Once a recording is approved for inclusion in FOLK and the project coordinator has checked

that consent and metadata forms for this recording are complete and consistent, metadata are

transferred to a digital form. This is done with the help of an online interface based on the

XMLSpy Editor (see figure 16). The interface is aware of the underlying XML schema

(Gasch et al. 2008) and can thus support the entry process, for instance by providing closed

vocabulary lists for values of appropriate fields.

128 JLCL

Tools and Workflows in FOLK

Figure 16: Web interface for entering metadata

2.5 Data Management

Because of the large amount of manual work necessary for transcribing and annotating the

data, the FOLK project continuously employs a team of 10 to 15 student assistants. This,

and the fact that the acquisition of new recordings cannot be planned centrally, but has to be

managed individually for each new type of interaction with the respective cooperation part-

ners, lead to a considerable administrational overhead. As the project progresses, we are

attempting to develop tools not only for transcription and annotation itself, but also for

supporting the project management in monitoring the workflows.

1 In order to monitor progress on individual transcription files, FOLKER offers tran-

scribers the possibility to keep a transcription log, a simple list of logging entries with

information about the time in which a transcript was edited, the name of the person

who did the editing, and a free text field describing the editing steps carried out (see

figure 17). When aggregated over a larger number of files, this information can also be

used to measure transcription ratios.

JLCL 2016 – Band 31 (1) – 105-132 129

Figure 17: Transcription logs in FOLKER

2 In order to monitor progress of transcription and normalisation on the corpus as a

whole, a set of batch scripts has been implemented to produce so-called snapshots of

the current state of corpus development. A single click will start a process which runs

through all folders in the project's working directory, calculates measurements for tran-

scription progress (e.g. amount of audio available, amount of audio transcribed, number

of files normalized, number of metadata entries completed) and generates HTML visu-

alizations for transcript logs and transcription files. For instance, the snapshot depicted

in figure 18 informs the project coordinator that, out of a total of 38.5 hours of record-

ings, roughly 31.5 hours have been transcribed at least in a first pass, and a little more

than 13 hours have already entered the normalisation stage.

Figure 18: Report on progress in the transcription and annotation process

3 The workflow schema depicted in figure 1 is oversimplified in one important detail: it

fails to capture cycles in the workflow that arise from the fact that transcriptions and

130 JLCL

Tools and Workflows in FOLK

annotations of oral language data will always contain a portion of genuine errors. Some

of these errors are discovered (by project members or users of the corpus) only after a

piece of data has been declared complete and disseminated via the database. Although,

owing to the different quality control steps in the workflow, this is rare, it is not rare

enough to be simply ignored. An additional important part of the workflow is therefore

the management of correction cycles. In order to control these cycles, we manage the

transcription data (as well as the metadata, for which similar problems can occur) via

Subversion (SVN) as a version control system and coordinate the yearly extension of

FOLK with corrections that have in the meantime been applied to the already published

part.

3. Tools for Corpus Analysis: Database for Spoken German (DGD)

The observation that "[...] a corpus by itself can do nothing at all, being nothing more than a

store of used language" is no less true for oral corpora than for the written corpora Hunston

(2002: 20) refers to. Corpus linguists need adequate tools not only for constructing but also

for analysing corpora. In the case of FOLK, the Database for Spoken German (Datenbank

für Gesprochenes Deutsch, DGD, http://dgd.ids-mannheim.de) is the principal means of

making the corpus data available for analysis. The DGD in its present form (versions 2.x –

following up on the predecessor system described in Fiehler/Wagner 2005), first released in

2012, acts as a platform not only for disseminating FOLK, but also various other oral corpo-

ra stored at the Archive for Spoken German (AGD).

The DGD allows for two principal approaches to oral corpus data:

1 Browsing a corpus, i.e. reading corpus metadata and transcripts and listening to the

corresponding (aligned) audio is a means of getting acquainted with a corpus, of ex-

ploring individual data sets in a holistic manner and of identifying and analysing in

depth selected excerpts of transcripts. Related to this is the possibility of downloading

selected excerpts and further processing them with suitable tools (e.g. for acoustic

analysis, for additional annotations) on a local machine. The browsing approach is par-

ticularly suited for qualitative paradigms, such as conversation analysis.

2 Querying a corpus, i.e. searching through the entire data for all instances of a given

annotation pattern and further manipulating and analysing the results of such searches.

This is the functionality typically expected from a corpus interface to written language

data, and it is equally central to the work with oral data. Corpus queries are essential for

quantitative research paradigms, certain corpus linguistic methods being the most obvi-

ous case in point.

Of course, the real potential of a corpus like FOLK lies in an innovative mixture of these

two approaches, and, as will be shown in the following sections, the DGD takes great care to

enable users to effectively combine "semi-automatic" query methods with "manual" ways of

inspecting the data.

JLCL 2016 – Band 31 (1) – 105-132 131

http://dgd.ids-mannheim.de/

3.1 Browsing / Collections

The browsing mode of the DGD gives access to individual data sets in FOLK. Starting from

a tabular overview (see figure 19), users can navigate and view metadata on speech events

and speakers, listen to audio files and read transcripts.

Figure 19: Tabular overview of FOLK speech events

Hyperlinks between the representations of the different data types allow for an explora-

tion of the relationships between them. For instance, starting from the metadata for a given

speaker, the speech event(s) this speaker participates in can be displayed, and from there, a

link to the corresponding audio file(s) and transcript(s) is available. The transcript, in turn,

contains links to the speech event and speaker metadata, and clicking on any word in the

transcript will start playback of the corresponding part of the aligned audio (see figure 20).

Figure 20: Display of a transcript with aligned audio (current playback position indicated by the dashed line)

132 JLCL

Tools and Workflows in FOLK

The default display shows the transcript text in modified orthography together with non-

speech tokens (pauses etc.) in a line-for-line notation (one contribution per line). Alterna-

tively, FOLK transcripts can be displayed as musical scores (see figure 21), which makes it

easier to understand the temporal flow of events (especially simultaneous and overlapping

speech), or in a “normalised” version which displays the text in standard orthography and

omits all non-speech tokens, making it easier to read for users who are not familiar with the

specialised transcription forms.

Figure 21: Transcript in musical score display

In order to retain relevant and interesting excerpts that are identified in the browsing process,

users can add them to a collection and store them inside the database (figure 22).

Figure 22: A user-generated collection of transcript excerpts

JLCL 2016 – Band 31 (1) – 105-132 133

3.2 Query

Queries on DGD data can be carried out in three different manners.

First, a full text search is a simple way of searching through metadata and transcripts to

obtain a global impression of the occurrences of a given term. Being realised via Oracle’s

full text functionality, the full text search is both relatively quick and flexible in so far as it

does not make advanced assumptions about document structures. It can thus be used on

different types of XML documents (such as metadata XML and FOLKER’s transcript XML

as illustrated above) and on plain text or PDF files (these are both file types in which the

transcripts of some legacy corpora in the DGD are stored).

Since full text search, however, by definition, gets rid of most of the structure represented

in XML elements and attributes, it is not suitable to exploit the FOLK data in its full com-

plexity, including the different annotation levels and the links between transcripts and

metadata. The DGD therefore also offers two types of ‘structured’ searches.

The structured metadata query is a means of finding speech events or speakers with

certain properties. For instance, a structured metadata search could be used on FOLK to find

all instances of interactions with male participants older than 30 years from Northern Ger-

many (as in figure 23). The result of such a query is a list of matching speech events, possi-

bly combined with a list of matching speakers. The list can be saved as a virtual corpus and

used as a basis for structured token searches.

Figure 23: Metadata query on FOLK resulting in a virtual corpus

The structured token query, finally, is the core component of the DGD. Its base function-

ality is to allow the user to specify one or more properties of a token, such as its transcribed

or orthographic form, its lemma and/or its part of speech, and to display as a KWIC con-

134 JLCL

Tools and Workflows in FOLK

cordance all the matching tokens in the selected corpus or corpora (see figure 24). Properties

can be specified as plain strings or as string patterns in the form of regular expressions.

Figure 24: Token Query for lemmas ‚haben’ or ‘sein’ as finite auxiliaries (POS=VAFIN)

A query will thus always start with a concordance for a single class of tokens. Additional

functionality allows the user to further explore and refine this result.

The refinement can be done manually by inspecting individual search results. Audio

playback for the corresponding part of the recordings is available directly from the KWIC

concordance. For each line of the concordance, metadata about the corresponding speech

event and speaker can be displayed. To explore the interaction context of the matching token,

the corresponding transcript excerpt can be folded out underneath the KWIC line (see figure

25). In that way, automated query can be combined with detailed qualitative analyses. By

deselecting individual lines of the concordance, users have the possibility to clean the result

from false positives identified in that process.

Figure 25: KWIC with deselected lines (1,2 and 4) and transcript folded out (line 5)

JLCL 2016 – Band 31 (1) – 105-132 135

It is also possible to use additional filters on a search result. Via the ‘Context’ tab, the prop-

erties of further tokens in the context of the matching token can be specified. ‘Context’ here

can be limited to single contributions (the default case), to all contributions of the respective

speaker or to the entire transcript. The context window can be specified as left, right or both-

sided and in terms of token distance (see figure 26).

Figure 26: A search result filtered for the normalized form ‘nicht’ in a distance of two tokens in the right context

Using a context filter (also repeatedly, i.e. filtering first for one, then for another item in the

context, which corresponds to a Boolean and) can thus serve to identify co-occurrences of

two or more tokens. Items which do not match the filter will not be deleted immediately, but

only deselected in the concordance. In that way, the effect of a filter can be evaluated (and,

if necessary, reversed) in a transparent manner. Similarly, the ‘Metadata’ tab can be used to

filter search results according to properties of the respective speech events or speakers. In an

analogous manner to the structured metadata query, users can, for instance, specify a

metadata filter for conversations including male speakers from a certain region.

A filter type specific to interaction data is implemented in the “Position” tab where the

user can (before carrying out the actual token query) restrict searches to specific positions in

the interaction, such as “within n tokens of the beginning/end of a contribution” / “within n

tokens of a change of speaker” / “inside or immediately before/after an overlap” / “in the

vicinity of a pause” (see figure 27). Making queries sensitive to the interactive structure of

the FOLK data is especially useful for investigating phenomena which conversation analysis

and related fields are interested in. In particular, it enables the study of functional aspects of

certain items (such as discourse markers) in speakers’ organisation of turn-taking. An exam-

ple would be corpus-guided studies of turn-initiations as described in Heritage (2013).

136 JLCL

Tools and Workflows in FOLK

Figure 27: A query for the form ‚oder‘ restricted to the position immediately before a speaker change

Further operations can be carried out on the KWIC:

1 A KWIC can be stored in the database for later reuse, i.e. so that the underlying query

and subsequent manual refinements do not have to be repeated.

2 KWICs can be printed or exported to text or XML files. We notice that users especially

value the possibility to export the KWIC in a file that can be further processed by

spreadsheet applications such as MS Excel.

3 A random sample of an arbitrary size can be extracted from a KWIC. This is useful for

obtaining a non-biased excerpt of a large result in order to keep manual inspection

manageable.

4 KWICs can be scrambled randomly.

5 KWICs can be sorted according to any of the available columns. When sorting is ap-

plied to the left or right context column, it can serve to visually identify prominent co-

occurrence patterns.

6 KWICs can be quantified, giving a concise summary of the number of tokens and types,

of their combination with selected metadata parameters and of frequencies normalised

with respect to the amount of data available (see figure 28).

JLCL 2016 – Band 31 (1) – 105-132 137

Figure 28: Various types of quantification for a search result: general figures (top left), types and tokens (top right),

result counts relative to the metadata attribute ‘interaction type’ (bottom)

3.3 Download and Citation

The DGD’s browsing and query functionality as described in the two previous section ad-

dresses most requirements concerning the discovery of data relevant for a given analysis

purpose – if it is in the data, the DGD user has a good chance of finding it there. However,

FOLK (and, in fact, oral corpora in general) captures in its transcriptions and annotations

only a selected part of the phenomena audible in the recordings, and quite a few phenomena

that can play a role for linguistic analysis are thus not available for complete analysis inside

the DGD. Prominent cases in point are prosodic features of speech like intonation and stress

which are not taken into account in FOLK’s minimal transcriptions. An essential feature of

the DGD is therefore that it enables the user to go beyond the information captured in the

existing transcriptions and annotations and beyond the analysis functions offered by the web

platform by downloading data for relevant excerpts onto a local computer and further pro-

cessing them there.

138 JLCL

Tools and Workflows in FOLK

Figure 29: Download of different data types and formats for a transcript excerpt

Different formats are offered for all data types. Metadata can be downloaded as XML or

HTML, audio as PCM-WAV. Visualisations of transcripts are available, for instance, as

RTF files for integration into text processing software, and, most importantly, the transcripts

themselves can be downloaded:

1 as FOLKER XML files to be further processed (e.g. segmented, retranscribed) with the

FOLKER or OrthoNormal tools described above, or

2 as EXMARaLDA XML files to be further processed (e.g. annotated on additional tiers)

with the EXMARaLDA system, or

3 as Praat TextGrid to be further processed (e.g. subjected to instrumental phonetic anal-

ysis) with the Praat software (see figure 30), or

4 as TEI XML conforming to the guidelines of the Text Encoding Initiative and the ISO

standard "ISO 24624:2016: Language resource management -- Transcription of spoken

language" to open further possibilities of interoperating with other tools.

JLCL 2016 – Band 31 (1) – 105-132 139

Figure 30: Audio and transcript excerpt with different visualisations of the audio signal in Praat

Users of the data are thus enabled to re-enter the workflow depicted in figure 1 at the stages

of transcription or annotation, and the decisions the FOLK project makes in order to reduce

the annotation effort do not have to result in a principle obstacle for certain types of exploi-

tation of the audio data.

Finally, the DGD also makes it possible to directly address transcript excerpts via a single

URL. This is meant to support citations of data, for instance in publications, where readers

may want to not just read the transcript, but also get back to the audio. As an example, con-

sider the following link which takes a registered user to the transcript excerpt depicted in

figure 29:

http://dgd.ids-mannheim.de/DGD2Web/ExternalAccessServlet
?command=displayTranscript&id=FOLK_E_00039_SE_01_T_01_DF_01&cID=c25&wID=w41

4. Outlooks

The FOLK corpus itself as well as the tools and platform described here are under active

development. Seven years after the start of the FOLK project, six years after the first full

versions of the transcription and annotation tools and four years after the launch of the beta

version of the DGD, we are confident that our workflow for corpus construction and dissem-

ination is effective for our purposes and need not change in any fundamental way in the near

future.

Regarding the corpus construction tools, this is corroborated also by the fact that other

projects have made productive use of the transcription and annotation tools. This includes

projects independent of FOLK, such as the Hamburg Corpus of Bilingual Language Acqui-

sition (HABLA, Kupisch et al. 2012) or the Last Minute Corpus (Rösner et al. 2012), as well

as projects with which we have been or are in a close collaboration, such as different ongo-

140 JLCL

http://dgd.ids-mannheim.de/DGD2Web/ExternalAccessServlet?command=displayTranscript&id=FOLK_E_00039_SE_01_T_01_DF_01&cID=c25&wID=w41
http://dgd.ids-mannheim.de/DGD2Web/ExternalAccessServlet?command=displayTranscript&id=FOLK_E_00039_SE_01_T_01_DF_01&cID=c25&wID=w41

Tools and Workflows in FOLK

ing research and dissertation projects. Typically, in such collaborations, researchers receive

technical advice from us in return for a part of their transcribed data which we integrate into

FOLK. By making the tools themselves freely available, adequately documenting their use

(through manuals and guidelines) and offering training and support also for external re-

searchers, we hope, in the long run, to be able to motivate more and more colleagues for this

kind of joint effort. Ideally, the practice surrounding the tools for corpus compilation will

thus have a measurable effect on the development of the corpus itself, and future extensions

of FOLK will profit more and more from external contributions.

The corpus construction workflow has developed gradually, combining existing tools and

methods (like EXMARaLDA and GAT) wherever possible, extending and adapting them (to

FOLKER and cGAT, respectively, for instance) wherever necessary. In the long run, an

obvious option for improvement lies in a tighter integration of the individual components,

for instance a more direct interfacing of the annotation tools with the instruments for manag-

ing metadata and corpus organisation. Ideally, and following a general trend in this area (see,

for example, tools like WebAnno in CLARIN, de Castilho et al. 2014), the workflow could

be remodelled in an integrated web-based environment, meaning that "manual" standalone

tools for annotation like FOLKER and OrthoNormal would become browser applications in

a client-server architecture, and that automatic processes like orthographic normalisation

and POS tagging would be realised as web-services. Such an environment would also make

it easier to distribute tasks to external partners and, ultimately, make a modest form of

"crowd sourcing" a realistic option for FOLK. First steps towards implementing components

of the workflow as web-services have already been taken (see Schmidt et al. 2017). The

crowd-sourcing aspect for transcriptions is currently explored in a pilot project at the AGD.

The DGD as the corpus dissemination tool is used not only for FOLK, but also for most

other spoken language corpora at the Archive for Spoken German (such as large dialect

corpora, see Stift/Schmidt 2014). The transcriptions of these corpora can be accommodated

by FOLKER's data model, and typically have a somewhat simpler structure: most of them

are transcribed orthographically, so there is no need for a second normalisation layer, non-

speech tokens like pauses and non-verbal descriptions play a less prominent role, and the

interaction structure is often not represented in as much detail (especially regarding over-

laps). The browsing and query mechanisms suitable for FOLK are therefore usually more

than sufficient also for this other type of data.

Besides the obligatory maintenance requirements and future extensions of FOLK and

other corpora in the DGD, we see three areas as prioritized for the development of new

functionality in the platform:

1 Since it is becoming more and more common to study spoken language on the basis of

video data – making it possible to take into account also the embodied dimension of in-

teraction –, the DGD, as a minimum requirement, will have to provide means of ac-

cessing videos in its browsing and query modes. Roughly a third of the FOLK data are

already available as digital video files, and we plan to integrate these data alongside

suitable visualisation methods into the DGD in the near future.

2 An obvious user need when working with the DGD is to save and retrieve virtual cor-

pora, collections and search results not just for individual use, but also for collaborative

JLCL 2016 – Band 31 (1) – 105-132 141

work involving other users. We are therefore working on mechanisms of sharing such

data in personal and group workspaces inside the platform.

3 So far, the platform is ready to exploit annotations only on the token level, which is the

only type of annotation so far included in FOLK and in all other corpora of the Archive

for Spoken Language. There are many cases, however, where spoken language tran-

scriptions are annotated on larger segments, for example for pragmatic functions of

chunks or utterances or for conversation topics of larger stretches of a transcript. As we

can see already on the occasion of the planned integration of a new resource in the

DGD – the GeWiss corpus of Academic Speech (Fandrych et al. 2012), which has been

partly annotated for discourse comments as well as for quotes and references – such

annotations will have to be accommodated by the data model as well as made accessi-

ble through the browsing and query interfaces.

In principle, we think that the DGD interface could also be usable and useful for spoken

language corpora constructed or archived in other contexts. Several such resources have

become available in the last years, such as the ESLO corpus (Eshkol-Taravella 2012) and

corpora in the CLAPI database (Groupe ICOR, in press) for French, the oral parts of the

Czech National corpus (Kren 2015) or the Slovene GOS corpus (Verdonik et al. 2013), to

name just a few. However, in contrast to the situation for annotation tools, where long-

standing development efforts combined with interoperability improvements (see for exam-

ple Schmidt et al. 2008) have led to a fair degree of conversion, we find that Anthony's

(2009) observation that "[Tools widely used by corpus linguists] all offer a different user-

experience, because each tool is created in isolation and thus offers a different user interface,

control flow, and functionality" is still largely true for tools providing access to spoken

language corpora. Technically, the DGD is not ready to be transferred to other contexts, but

we hope that, in the mid-term, its design can serve as one source of inspiration for an effort

to develop tools for accessing spoken language corpora that are less bound to a specific

institutional context.

References

ANTHONY, L. (2009). „Issues in the design and development of software tools for corpus studies: The

case for collaboration.“ In: Baker, P. (ed.), Contemporary corpus linguistics. London: Continuum

Press, pp. 87-104.

ECKART DE CASTILHO, R. (no date). „TreeTagger for Java – TT4J”. [https://reckart.github.io/tt4j/]

ECKART DE CASTILHO, R. / BIEMANN, C. / GUREVYCH, I. / YIMAM, S.M. (2014). „WebAnno: a flexible,

web-based annotation tool for CLARIN”. In: Proceedings of the CLARIN Annual Conference

(CAC) 2014, Soesterberg, Netherlands. Linköping University Electronic Conference Proceedings

ESHKOL-TARAVELLA, I. / BAUDE, O. / MAUREL, D. / HRIBA, L. / DUGUA, C. / TELLIER, I., (2012). „Un

grand corpus oral ,disponible’ : le corpus d’Orléans 1968-2012.“ In: Ressources linguistiques libres,

TAL. 52,3/2011, pp. 17-46.

FANDRYCH, C. / MEIßNER, C. / SLAVCHEVA, A. (2012). „The GeWiss Corpus: Comparing Spoken

Academic German, English and Polish.” In: Schmidt, T., Wörner, K. (eds.): Multilingual Corpora

and Multilingual Corpus Analysis. Hamburg Studies in Multilingualism (14). Amsterdam:

Benjamins, pp. 319-337.

142 JLCL

https://reckart.github.io/tt4j/

Tools and Workflows in FOLK

FANDRYCH, C. / FRICK, E. / HEDELAND, H. / ILIASH, A. / JETTKA, D. / MEIßNER, C. / SCHMIDT, T. /

WALLNER, F. / WEIGERT, K. / WESTPFAHL, S. (2016). „User, who art thou? User Profiling for Oral

Corpus Platforms. ” In: Proceedings of the 10th Conference on International Language Resources

and Evaluation (LREC 2016), Portorož, Slovenia. Paris: European Language Resources

Association (ELRA), pp. 280-287. [http://nbn-resolving.de/urn:nbn:de:bsz:mh39-50774]

FIEHLER, R. / WAGENER, P. (2005). „Die Datenbank Gesprochenes Deutsch (DGD) – Sammlung,

Archivierung und Untersuchung gesprochener Sprache als Aufgaben der Sprachwissenschaft.” In:

Gesprächsforschung – Online-Zeitschrift zur verbalen Interaktion. 6/2005, pp. 136-147. [http://nbn-

resolving.de/urn:nbn:de:bsz:mh39-6869]

GASCH, J. / BRINCKMANN, C. / DICKGIEßER, S. (2008). „memasysco: XML schema based metadata

management system for speech corpora.” In: Proceedings of the 6th International Conference on

Language Resources and Evaluation (LREC 2008), Marrakesch, Marokko. Paris: European

Language Resources Association (ELRA), pp. 2865-2870 [http://www.lrec-

conf.org/proceedings/lrec2008/pdf/729_paper.pdf]

GROUPE ICOR (H. BALDAUF-QUILLIATRE, I. COLON DE CARVAJAL, C. ETIENNE, E. JOUIN-CHARDON, S.

TESTON-BONNARD, V. TRAVERSO) (IN PRESS). „CLAPI, une base de données multimodale pour la

parole en interaction : apports et dilemmes.” In Avanzi, M., Béguelin, M.-J. & Diémoz, F. (eds),

Corpus de français parlés et français parlés des corpus, Cahiers Corpus.

HERITAGE, J. (2013). „Turn-initial position and some of its occupants.” Journal of Pragmatics (2013),

[http://dx.doi.org/10.1016/j.pragma.2013.08.025]

HUNSTON, S. (2002). „Corpora in applied linguistics.” Cambridge: Cambridge University Press.

INSTITUT FÜR DEUTSCHE SPRACHE (2014). „Korpusbasierte Wortformenliste DeReWo.”, Institut für

Deutsche Sprache, Programmbereich Korpuslinguistik, Mannheim, Deutschland. [http://www.ids-

mannheim.de/derewo]

KŘEN, M. (2015). „Recent Developments in the Czech National Corpus.” In: Bański, P., Biber, H.,

Breiteneder, E., Kupietz, M., Lüngen, H., Witt, A. (eds.) (2015): Proceedings of the 3rd Workshop

on Challenges in the Management of Large Corpora (CMLC-3). Mannheim: Institut für Deutsche

Sprache, pp. 1-4.

KUPIETZ, M. / SCHMIDT, T. (2015). „Schriftliche und mündliche Korpora am IDS als Grundlage für die

empirische Forschung.” In: Eichinger, L. M. (ed.): Sprachwissenschaft im Fokus.

Positionsbestimmungen und Perspektiven. Berlin/Boston: de Gruyter. (Jahrbuch des Instituts für

Deutsche Sprache 2014), pp. 297-322. [http://nbn-resolving.de/urn:nbn:de:bsz:mh39-34824]

KUPISCH, T. / BARTON, D. / BIANCHI, G. / STANGEN, I. (2012). „The HABLA-corpus (German-French

and German-Italian).” In: Schmidt, T. & Wörner, K. (eds.): Multilingual Corpora and Multilingual

Corpus Analysis. Amsterdam: Benjamins, pp. 63-179.

RÖSNER, D. / FROMMER, J. / FRIESEN, R. / HAASE, M. / LANGE, J. / OTTO, M. (2012). „LAST MINUTE:

A Multimodal Corpus of Speech-based User-Companion Interactions.” In: : Proceedings of the 8th

International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey.

Paris: European Language Resources Association (ELRA), pp. 2559-2566 [http://www.lrec-

conf.org/proceedings/lrec2012/pdf/550_Paper.pdf]

SCHMID, H. (1994). „Probabilistic Part-of-Speech Tagging Using Decision Trees.” Proceedings of

International Conference on New Methods in Language Processing, Manchester, UK.

SCHMIDT, T. (2016). „Good practices in the compilation of FOLK, the Research and Teaching Corpus

of Spoken German”. In: Kirk, J. M. and Andersen, G. (eds.): Compilation, transcription, markup

JLCL 2016 – Band 31 (1) – 105-132 143

http://nbn-resolving.de/urn:nbn:de:bsz:mh39-50774
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-6869
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-6869
http://www.lrec-conf.org/proceedings/lrec2008/pdf/729_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/729_paper.pdf
http://dx.doi.org/10.1016/j.pragma.2013.08.025
http://www.ids-mannheim.de/derewo
http://www.ids-mannheim.de/derewo
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-34824
http://www.lrec-conf.org/proceedings/lrec2012/pdf/550_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/550_Paper.pdf

and annotation of spoken corpora, Special Issue of the International Journal of Corpus Linguistics

[IJCL 21:3], pp. 396-418. [http://dx.doi.org/10.1075/ijcl.21.3.05sch]

SCHMIDT, T. (2014). „The Database for Spoken German – DGD2.” In: Proceedings of the 9th

Conference on International Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland.

Paris: European Language Resources Association (ELRA), pp. 1451-1457. [http://nbn-

resolving.de/urn:nbn:de:bsz:mh39-24425]

SCHMIDT, T./DUNCAN, S. / EHMER, O. / HOYT, J. / KIPP, M. / LOEHR, D. / MAGNUSSON, M. / ROSE, T. /

SLOETJES, H. (2009). „An exchange format for multimodal annotations.” In: Kipp, M., Martin, J.-C.,

Paggio, P., Heylen, D. (eds.): Multimodal corpora: from models of natural interaction to systems

and applications. Berlin/Heidelberg: Springer, 2009, pp. 207-221.

SCHMIDT, T. / SCHÜTTE, W. (2010). „FOLKER: An Annotation Tool for Efficient Transcription of

Natural, Multi-party Interaction.” In: Proceedings of the 7th Conference on International Language

Resources and Evaluation (LREC 2010), Valletta, Malta. Paris: European Language Resources

Association (ELRA), pp. 2091-2096. [http://nbn-resolving.de/urn:nbn:de:bsz:mh39-22323]

SCHMIDT, T. / WÖRNER, K. (2014). „EXMARaLDA.” In: Durand, J., Gut, U., Kristoffersen, G. (eds.):

The Oxford Handbook of Corpus Phonology. Oxford: OUP 2014, pp. 402-419.

SCHMIDT, T. / HEDELAND, H. / JETTKA, D. (2017). „Conversion and Annotation Web Services for

Spoken Language Data in CLARIN.” To appear in: Proceedings of the CLARIN Annual

Conference (CAC) 2016, Aix en Provence, France. Linköping University Electronic Conference

Proceedings

STIFT, U.-M. / SCHMIDT, T. (2014). „Mündliche Korpora am IDS: Vom Deutschen Spracharchiv zur

Datenbank für Gesprochenes Deutsch.” In: Institut für Deutsche Sprache (Hrsg.): Ansichten und

Einsichten. 50 Jahre Institut für Deutsche Sprache. Redaktion: Melanie Steine, Franz Josef Berens.

S. 360-375 - Mannheim: Institut für Deutsche Sprache, 2014. [http://nbn-

resolving.de/urn:nbn:de:bsz:mh39-24779]

WESTPFAHL, S. / SCHMIDT, T. (2016). „FOLK-Gold – A GOLD standard for Part-of-Speech-Tagging of

Spoken German.” In: Proceedings of the 10th Conference on International Language Resources and

Evaluation (LREC 2016), Portorož, Slovenia. Paris: European Language Resources Association

(ELRA), pp. 1493-1499. [http://nbn-resolving.de/urn:nbn:de:bsz:mh39-50786]

VERDONIK, D. / KOSEM, I. / ZWITTER-VITEZ, A. / KREK, S. / STABEJ, M. (2013). „Compilation,

transcription and usage of a reference speech corpus: The case of the Slovene corpus GOS.”

Language resources and evaluation, Dec. 2013, vol. 47, iss. 4, pp. 1031-1048.

[http://dx.doi.org/10.1007/s10579-013-9216-5].

144 JLCL

http://dx.doi.org/10.1075/ijcl.21.3.05sch
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-24425
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-24425
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-22323
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-24779
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-24779
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-50786
http://dx.doi.org/10.1007/s10579-013-9216-5

Ruprecht von Waldenfels, Michał Woźniak

SpoCo - a simple and adaptable web interface for dialect corpora

We present SpoCo, a simple, yet effective system for the web-based query
of dialect corpora encoded in ELAN that provides users with advanced
concordancing functions, as well as the the possibility to edit and correct
transcriptions if needed. SpoCo is easy to use and maintain, and can be
adapted to different spoken corpora in a straightforward way. Simplic-
ity is emphasized to facilitate use by a wide range of users and research
groups, including those with limited technical and financial resources, and
encourage collaboration and data exchange across such groups. Relying
on existing technology and pursuing a modular architecture, SpoCo is de-
veloped bottom-up: it was initially devised for a specific dialect project
and is being continually adapted for use in other projects in a network of
Slavic dialect projects that cooperate in tool development and data sharing.
SpoCo thus takes a middle position between systems that are developed for
the purposes of a specific dialect corpus, on the one hand, and general-use
systems designed for a wide range of data and usage cases, on the other.

1 Overview

While the last years have seen the development of a number of corpus query systems
that support spoken data, we observe a a lack of powerful, yet simple and effective
corpus tools for dialect corpora with aligned audio that are accessible and manageable
for linguists with limited computational expertise. Consequently, many dialect projects
still do not realize the potential that modern corpus methods provide for their work.
We present SpoCo, a system that provides a workable, stable, and adaptable envi-

ronment for the presentation of audio-aligned spoken corpora (the acronym alludes to
Polish SpoCo, ‘it’s all right, don’t worry’). It offers concordancing, statistical functions
and user-provided correction of spoken data using standard corpus and web technologies
and relying on the de facto standard ELAN format for its input files. SpoCo relies on
the possibilities that are provided by the well-established corpus manager OpenCWB
(Evert and Hardie, 2011) and adds only a single function - transcription correction by
user feedback - to the existing set of functions.

A main feature of SpoCo is its simplicity which we see as key in an effort to provide
a tool that is easily accessible for researchers that are not particularly versed with
computational tools. Despite being user-friendly in its simplicity and intuitiveness,
SpoCo does not forgo the possibilities of a modern corpus system, and in fact is one of
a handful of systems available that deal with audio primary data.

SpoCo was first developed as a tool for dialectologists in the Ustja River Basin Corpus
Project (von Waldenfels et al., 2014) on Russian and has been subsequently adapted

JLCL 2006 – Band 21 (1) – 1-16JLCL 2016 – Band 31 (1) – 133-148 145

Waldenfels, Woźniak

for two other projects working on Slavic dialects, namely the Corpus of Spoken Rusyn
(Rabus and Šymon, 2015) and the Corpus of the Spisz Dialect (Grochola-Szczepanek,
ta). These and other projects work together on tool development and data sharing
in the research network SlaSpoCo1. SpoCo is a system that is developed bottom-up,
meeting the needs of specific projects. At the same time, care is taken to develop an
adaptable system so that development work can benefit the whole ecosystem.
The present paper is organized as follows. In the following Section 2, we list the

requirements and aims of SpoCo. In Section 3, we describe the architecture in some
detail. Section 4 covers procedures of data import and automatic annotation; Section
5 describes the user interface in more detail. In Section 6 we illustrate the use of
the interface with a typical usage case. We conclude with a perspective on future
developments.

2 Requirements and aims of SpoCo

SpoCo was developed to meet four key requirements.
A first requirement was to create an interface that is simple and intuitive without

restricting the complex possibilities that a modern corpus manager offers. Simplicity
and intuitive accessibility were crucial requirements in the design of SpoCo because
a large part of the intended audience of our corpora consists of dialectologists who
work in a traditional, rather than variationist or corpus-based, paradigm, and are
easily dissuaded from using corpus tools if they present a learning curve that is too
steep. This issue is exacerbated by the fact that dialectologists working on Russian who
do have corpus experience are typically used to the Russian National Corpus (RNC,
www.ruscorpora.ru), which has had an exceptionally simple interface from its very
beginnings2.

In general, we find simplicity to be an undervalued, but key issue in spreading corpus
use in and beyond the research community; one of the few cases where this issue was
explicitly raised and evaluated was during the construction of the GigaFida corpus of
Slovenian, the user base of which was considerably broadened by an effective redesign
of its query interface (Arhar Holdt et al., 2012, 19). This issue is similarly relevant
to our corpora, which we make accessible to interested lay people and scholars from
other fields such as anthropology or history. Overall, we think that simplicity is key
in the enhanced relevance of such projects such as ours in the context of the digital
humanities.

1For the Ustya River Basin Corpus, see http://parasolcorpus.org/Pushkino; for the Corpus of
Spoken Rusyn, see www.russinisch.uni-freiburg.de/corpus; for the Corpus of the Spisz Dialect, see
https://spisz.ijp-pan.krakow.pl. The projects collaborate as part of the network Corpus-based
Research into Sociolinguistic and Dialectal Variation in Slavic Languages (with the Acronym
SlaSpoCo, which stands for Slavic spoken corpora; see parasolcorpus.org/Spoken_Slavic), as well
as in other ways.

2This is due to the fact that the RNC was initially developed by non-computational linguists in
collaboration with the search engine company Yandex and modeled on other interfaces aimed
at a general audience. Most other corpora, in contrast, were first developed by computational
linguists and more directed at a computer-savvy audience.

2 JLCL146 JLCL

SpoCo for dialect corpora

A second requirement of SpoCo was to enable researchers to make the actual audio
recordings available for listening and download, so that detailed analyses can then
be made in specialized tools such as PRAAT. As opposed to corpora of written
language, the primary data of a dialect corpus is actual speech in its audible form; any
representation of this data in written form constitutes an interpretation that to some
extent reflects the primary research question. Making this data directly available is
thus crucial. Conversely, ready access to the audio data alleviates the demands on the
written representation, as it can be viewed to merely represent an access point to the
primary data – therefore, rather pragmatic solutions such as transcription in a standard
orthography can be pursued. Standard orthography additionally has the desirable effect
that it makes the use of standard tools for annotation, such as taggers and lemmatizers,
much more straightforward.
The third requirement has to do with flexibility: as the interface is in continuous

development and used for multiple corpus projects, the interface must be easily adaptable.
To achieve this, we use AngularJS as a programming tool. In the current version of
SpoCo new search fields representing different tiers of annotation and transcription, as
well as metadata categories, can easily be specified and semi-automatically integrated
into the interface. We feel this is crucial in addressing the inherent contradiction
between avoiding a cluttered interface and ensuring simplicity of interaction with the
GUI (graphical user interface) on the one hand, and using the interface for a wide
range of dialect corpora, on the other. The general workflow used to adopt SpoCo is
described in section 5.2.
A fourth, basic requirement is the adherence to best practices in data formats and

handling. Most importantly, this means using standard formats wherever possible.
While adherence to a standard has obvious advantages such as making it easier to use
already existing tools, this requirement also has to do with our view of the status of our
tool, which we see as principally provisional. We assume that SpoCo will be superseded
by more advanced tools in the coming years, and that the data will be migrated to
a new system. Since the data have a much longer life expectancy, potentially being
archived for decades or longer, it is imperative that we work with formats that are
as standard as possible and will be not be problematic from a middle or long-term
perspective. For this reason, we store transcriptions in the XML-encoded ELAN3 file
format, WAV-encoded files for the audio data, and transparently encoded XML files for
speaker metadata. We choose ELAN since it has become a de facto standard for spoken
corpora with a wealth of available corpora and the capacity to represent complex data
in a stand-alone format time-aligned to media files themselves4.

This specialization and these requirements distinguish SpoCo from other corpus tools
that also make time-aligned audio data available, but cater to a wider range of tasks.

3ELAN is developed at the Max Planck Institute for Psycholinguistics in Nijmegen and available at
http://tla.mpi.nl/tools/tla-tools/elan/; see Sloetjes and Wittenburg (2008)

4ELAN as a tool is used in some, but not all the projects using SPOCO; in the URB project, most
transcribers prefer PRAAT, which is more stable and arguably affords a quicker work flow. Here
ELAN is used only to convert the PRAAT files to ELAN format before inclusion.

JLCL 2006 – Band 21 (1) 3JLCL 2016 – Band 31 (1) – 133-148 147

Waldenfels, Woźniak

Figure 1: An example query result in ANNIS3, with query builder pasted into the image. ANNIS is
very powerful, but also rather complex in use.

Two such systems seem to be particularly relevant for the kind of task that we are
faced with. First, ANNIS3 (Krause and Zeldes, 2016) is a corpus system that is geared
towards handling annotations of great complexity with multiple corpora of many types.
However, ANNIS3 does not fulfill at least two of our requirements since it has a rather
complex interface (see figure 1) and does not allow users to download chunks of the
aligned primary audio data for further analysis. A second such tool is GLOSSA (Kosek
et al., 2015), developed at the University of Oslo for the inclusion of a great variety
of data, including the Nordic dialect corpus; GLOSSA has a number of functions that
directly cater to dialect corpora building. However, in our experience, it proved difficult
to install and it is unclear how to maintain and adapt it to our specific needs without
offering the GUI simplicity that we are looking for. Moreover, it does not address the
archiving problem since the corpus is essentially kept in CWB vertical format, rather
than a standard XML format of some sorts.

Other, more specialized tools are likewise too complex to handle for a small dialecto-
logical group; these include the tools developed by the Czech national corpus project
for the DIALEKT and ORTOFON corpora (Kopřivová et al., 2014), or the Edisyn
interface (Barbiers, 2015).

In the design of SpoCo, we aim to cover the ground between complex, one-size-fits-all
interfaces, such as GLOSSA, ANNIS, or CQPWeb (Hardie, 2012) on the one hand, and
specialized corpus interfaces on the other hand, such as Edisyn Barbiers (2015) and
many other in-house solutions that are never released to the general public as software.

4 JLCL148 JLCL

SpoCo for dialect corpora

Our approach is to straddle these two worlds by developing a system that is constructed
bottom-up, driven by concrete tasks, but at the same time stays flexible and adaptable
to new projects, all of which share development costs in a network of related projects.

3 SpoCo architecture and set-up

3.1 Overview of the architecture

SpoCo consists of three main components: 1) the actual linguistic data, 2) the corpus
management back end, which supplies concordancing and statistical functions, and 3)
the web interface. Each part is largely independent from the rest, which makes changing
or replacing individual parts straightforward. SpoCo is designed to be deployed on
a standard machine running Ubuntu Linux with Apache (LAMP server) and CWB;
no further components are required. Currently, a number of different technologies are
involved in the corpus preparation and management process, most notably XML, XSLT,
PHP and Apache Server, perl, python and AngularJS. Below we describe the three
components in more detail.

3.2 Linguistic data: types and import procedures

The linguistic resources SpoCo uses consist of three types: audio recordings, tran-
scriptions of these, and speaker metadata (i.e., gender, age, place of residence and
recording, mobility, etc.). Speaker metadata are technically optional, but they play a
potentially crucial role in analysis and are thus useful when searching and presenting
results. During corpus encoding, the transcription is split into text segments that were
delimited as utterances during transcription in ELAN (or a different transcription tool
which the data is converted from). Sound files (supplied in lossless wav format) are
split into the corresponding audio segments.

Audio and transcription data are kept in two separate directories and are implicitly
linked by identical files names. Adding new files is as simple as copying them into the
appropriate directory and issuing a command to re-encode the corpus. Note that while
new sound files are typically only added after field work trips, ELAN files are added
and updated continuously as transcriptions become completed.

Metadata concerning speakers and recordings are managed separately in a dedicated
database (for that purpose we use a DJANGO-based system not described here5). For
archiving and inclusion purposes into the query system, they are exported and saved as
an XML-file; specific metadata fields which should be available in the corpus can be
specified during installation.

3.3 Corpus management back end

For storing and querying corpus data, SpoCo uses Corpus Workbench (CWB), a stable
and powerful corpus management software which provides sophisticated query and

5Metadata management was implemented as part of the TriMCo project by Ilya Khait, Leipzig.

JLCL 2006 – Band 21 (1) 5JLCL 2016 – Band 31 (1) – 133-148 149

Waldenfels, Woźniak

statistical functions. CWB is widely supported, so that, e.g., integration into R is easily
accomplished, and it is actively under development (Hardie and Evert 2014). CWB is
not resource intensive, in our experience very stable and easy to install, and thus ideal
for our purposes. We anticipate that the current version of CWB will eventually be
replaced, quite possibly by its successor CWB4 which promises better handling of XML
files as well as a new, improved data structure (Evert and Hardie, 2015)

3.4 Web interface

The transcribed data are available for advanced querying through a corpus interface that
prepares and sends queries to the corpus manager; this interface is based on previous
interfaces for parallel and diachronic data (von Waldenfels, 2011; von Waldenfels and
Rabus, 2015). CWB is configured to return the results in XML, which are then displayed
using XSLT sheets. This approach affords the advantage of clear separation of corpus
manager and output display, as well as simple adaptation of the result page to different
needs. Thus, using a different corpus manager is greatly simplified and adding new
export formats (e.g., csv) is as simple as specifying a different XSLT sheet in the output.
Altogether, this makes the inclusion of new data types straightforward.

Currently, this interface exists in two versions, both of which are geared towards
maximal simplicity to make it accessible for a wide range of users. Both versions share
most of their functionalities: user management, corpus querying, a correction module,
full-text browsing. The main difference between them is the technology they are built
on: the initial version (developed for the URB) uses mostly simple HTML and some
JavaScript and PHP, while the second version is built with the modern JavaScript
framework AngularJS (version 2.1). We chose this framework because it is interface
oriented, flexible and scalable; web-page content is easily updated without the need to
refresh, and therefore features such as the construction of the CQL query on-the-fly or
switching interface languages are easily accessible for both the user and the developer.
Both interfaces produce identical output: CQP queries that are channeled through the
back end. A more detailed comparison is provided in the next section. Both interfaces
are completely interchangeable, which is a good example of the flexibility that the
SpoCo modular architecture allows.

4 Using SpoCo I: the back end

4.1 SpoCo integration

For the installation of SpoCo for use with a specific corpus, the interface is copied into
a directory that Apache can access, and the settings files are set to contain paths to
CWB and data directories, as well as (in the second version) information about the
metadata fields in use and languages available in the interface. Depending on specifics
of the corpus data (e.g. the number of transcription levels and automatic annotation
procedures), the web interface and the inclusion script require adaptation.

6 JLCL150 JLCL

SpoCo for dialect corpora

4.2 Corpus preprocessing and conversion

After the ELAN-encoded transcriptions are added to the corpus (i.e., copied into the
appropriate directories), these are enhanced using automatic tools and converted to
the corpus manager CWB for easier querying and simple html files for reading. This
involves the following steps triggered by a shell script calling a heterogeneous set of
utilities:

• the ELAN files and the XML file containing the metadata are converted into a
single, CWB-compatible file in vertical format: one token or xml tag on each line

• further annotation such as lemma and morphological tags are then added to this
file using standard tools. This is, in general, corpus-specific: in the case of the
URB, the Treetagger (Schmid, 1999) is employed using a model trained on the
Russian National Corpus. In the case of Rusyn corpus, a custom-made approach
to tagging with Levenshtein distances is being developed to take into account
variation due to diverse transcription standards (ongoing work by Achim Rabus,
Freiburg, and Yves Scherrer, Geneva.); this approach is expected to be relevant
for other corpora in the network, as well.

• based on the segmentation in the ELAN file, the audio files are cut into small
chunks for downloading and broadcasting

• html versions of each transcribed text are prepared for full in-context reading

This script is invoked each time the corpus data is changed and can be triggered by
users via the web interface.

5 Using SpoCo II: interface features

5.1 Corpus query

In the following, we focus on describing the initial version that was developed for the
URB but also highlight differences in the newer version used in the two other projects.

Initially, users are asked to log in to reach the query page. There are three user cate-
gories: guests can only search the corpus; registered users can also correct transcriptions;
administrators can validate corrections and re-encode the corpus.

Figure 2 shows the main query page (a second pane with help, sample queries and
corpus statistics is not shown here for reasons of space). Queries are available on three
levels of complexity: simple search allows users to search for contiguous phrases just
like in the search field of a word processor; advanced search allows users to specify
search words in terms of wordform, lemma and morphological tag with variable distance
between them. This option is very similar to the RNC’s interface and therefore familiar
to scholars working on Russian. Finally, the complex (CQP) search allows users to enter
any valid CQP query. This is used for more complex queries, sorting and metadata

JLCL 2006 – Band 21 (1) 7JLCL 2016 – Band 31 (1) – 133-148 151

Waldenfels, Woźniak

Figure 2: Search interface for the URB, with simple, advanced and expert search options, offering
drop-down lists of word forms and lemmata and an interactive panel for morphological
tag construction.

filtering; for example, negative conditions or restrictions on specific categories of speakers
can be formulated here.

For the Corpus of Spoken Rusyn (Rabus and Šymon, 2015) and subsequently for the
Spisz Dialect Corpus, the query page was taken to the next step. While the rest of the
system remains essentially identical, the query page was reprogrammed in AngularJS,
allowing for multiple interface languages to be included and for search fields to be
more easily adapted, and thus for customization for different corpora. It introduces
three new features (see Figure 3): First, metadata can now be searched for in the GUI;
this is customized in a settings file where these fields, their display names and default
values are specified during installation. Second, the interface now integrates a Google
maps application for geographic visualization and filtering. The interface is described
in detail in Rabus and Šymon (2015). Third, the basic and CQP searches are now
linked dynamically: filling in fields in the basic search automatically constructs the
CQP search, which can then be manually adapted as needed for more advanced queries.

8 JLCL152 JLCL

SpoCo for dialect corpora

Figure 3: The search interface for the Spisz Dialect Corpus, with additional metadata search options,
interactive maps for places of recording (not shown), and a dynamic link between the
basic search and CQP search.

This last feature not only has the effect that complex CQP queries can be constructed
more quickly, it also makes learning CQP much easier for novice users who can now
observe the CQP queries as they are being constructed in response to their filling in the
basic search fields. Then, users can learn to use CQP by changing these queries, rather
than having to construct them from scratch. In our experience, this greatly lowers the
threshold for beginning to use complex queries in CQP.

5.1.1 Corpus query results

Figure 4 displays the beginning of the concordance for the lexeme sobaka ‘dog’; here,
each example includes the respective audio segment. Each corpus hit is provided with
links to a tab-delimited csv view, with directly downloadable audio segments for analysis
in PRAAT or other speech analysis software, and with a file containing basic metadata
for each speaker. Users can also examine each example with more context in a separate
window (see Figure 5); the URLs for these separate windows serve as a unique identifiers
based on the location in the audio timeline. To the very right, registered users can click
the paper-and-pen icon in order to be able to edit the transcription.

JLCL 2006 – Band 21 (1) 9JLCL 2016 – Band 31 (1) – 133-148 153

Waldenfels, Woźniak

Figure 4: Query results for sobaka ‘dog’. Each row in the result list provides access to (from left
to right): context view with persistent URL (blue icon), csv-export view (green icon),
link to speaker metadata found in a google spreadsheet, audio fragment in wav format
(headphones icon), the date the transcription was added, the text itself with search item
highlighted in red, a link for registered users to provide corrections (paper-and-pen icon).

Figure 5: Context view, with citation instructions and multiple speakers.

10 JLCL154 JLCL

SpoCo for dialect corpora

Figure 6: Window for transcription correction.

5.1.2 Transcription edit function (error correction)

The interface for editing transcriptions is implemented using XSLT and JavaScript and
shown in figure 6. It is only available to registered users. The user is provided with
an option to enter a new transcription and leave a comment; the segmentation itself
cannot be changed online. This new transcription is written directly to the ELAN
files as an additional transcription together with the user name, time stamp, and a
status field stating that this is an unconfirmed correction. This new and all previous
versions are kept in the ELAN file in parallel; unconfirmed changes need to be reviewed
and validated by an administrator before they are marked as accepted (or reverted if
necessary); see Figure 7. In this way, each correction is double-checked.
Changes appear in corpus results only after the corpus has been re-encoded in

CWB; this is done every night automatically or on demand after the validation process.
Corrections are flagged in the query results, together with their status as confirmed
or unconfirmed, and the edit function gives access to all previous versions of the
transcription segment. This function is used quite a lot; in the URB corpus today,
which has roughly 750 000 tokens (excluding interviewers), around 3000 lines have been
corrected.

5.1.3 Full text views

In many cases, users want to read interview transcripts in their entirety as full text.
In addition to using the query page, registered users may listen to and read complete
transcriptions, as shown in figure 8. These full texts are derived from the ELAN files

JLCL 2006 – Band 21 (1) 11JLCL 2016 – Band 31 (1) – 133-148 155

Waldenfels, Woźniak

Figure 7: List of unconfirmed edits for administrators, with basic information on who made the
change, its status, and the possibility of one-click confirmations.

Figure 8: Full text view. The note symbols after each sentence enable the researcher to listen to
audio segments and jump to the corpus view for each utterance.

12 JLCL156 JLCL

SpoCo for dialect corpora

Figure 9: A result page from the glossed Pite Saami corpus.

using an XSLT transformation, and provide links to the full audio file, audio segments
as well as to the corpus view for each utterance.

5.2 Adapting SpoCO: a sample case case

In late 2016, SpoCo was adopted for two non-Slavic corpora; first, a corpus of Pite Saami
(Wilbur, 2017), and second, a corpus of dialectal Lithuanian (as part of the planned
TrimCo6 corpus). As many projects aimed at documenting endangered languages, these
corpora supply morphological glosses; support for this feature was added to SpoCo on
this occastion. The adaptation of SpoCo consisted in three steps:

• adaptation of the scripts converting ELAN to CWB; this entailed decoding the
hierarchical relationship in the ELAN-file to obtain token-based glosses and
encoding free translations as xml attributes at utterance level

• adaptation of settings in SpoCo to query and return glosses and free translations

• adaptation of the XSLT sheet that displays the resulting XML using an open
source library that displays glossed text

Figure 9 shows the results of a query in the Pite Saami corpus.

6 A sample workflow and desirable features

To exemplify the role of SpoCo, below we describe the workflow of a typical investigation
of a dialect variable in the URB project. Specifically, our example concerns the dialectal
shift of /a/ to /e/ between palatalized consonants (a-raising, see Požarickaja 2005,
42f.) that is characteristic of the speech of older speakers of the Ustja dialect. In the
URB, as well as in most of the projects using SpoCo, transcriptions are written in
standard orthography with only very limited representation of dialectal features; see von
Waldenfels et al. (2014); Gerstenberger et al. (2017) for discussions of the advantages of
such an approach.

6Triangulation Approach for Modelling Convergence with a High Zoom-In Factor; see http://
www.trimco.uni-mainz.de/. PI: Björn Wiemer, Mainz; Lithuanian Subcorpus: Kirill Kozhanov,
Moscow.

JLCL 2006 – Band 21 (1) 13JLCL 2016 – Band 31 (1) – 133-148 157

Waldenfels, Woźniak

Figure 10: An example variable (Kazakova, 2016). The plot gives the relative instances of historical
/a/raising to [e] between soft consonants for speakers born between 1922 and 1995;
red circles represent females, green circles males. The size of the circles represent the
number of instances in the study.

In a first step, the envelope of variation is defined and searched for in terms of
the standard language – in this case, all word forms that contain /a/ between soft
consonants in the standard orthography are queried, downloaded as csv, copied, and
pasted in OpenOffice Calc or some other offline tool. The CSV contains links to the
audio segment files, so that each example is categorized with respect to the actual audio
data (rather than a transcription). Since the download also includes basic speaker
metadata, the resulting categorization thus affords a simple plot of speakers, ordered
by date of birth, and with respect to the relative proportion of dialectal as opposed to
standard pronunciation. Figure 10 gives an example of such a plot, which nicely shows
the dialectal feature’s tendency to recede in an apparent time perspective.

Transcription into standard orthography as opposed to a phonetic alphabet (IPA or
similar) effectively allows the phonetic analysis to be postponed until it is needed for
specific research question, thereby streamlining and focusing it and limiting the overall
work load involved. In the future, it would be highly desirable to allow users to upload
the result of such annotation tasks so that they can be viewed and used by future users.

14 JLCL158 JLCL

SpoCo for dialect corpora

7 Summary and future developments

We have presented SpoCo, a system to query and analyze spoken corpora with aligned
audio data. The system is pragmatic in that it aims to provide facilities that are
needed in a number of concrete Slavic dialect projects. At the same time, it follows an
overarching agenda to enable collaborative tool development across different projects;
with this in mind, care is taken that the system is modular and expandable for use with
other, related projects.
An important aim of SpoCo is to create a system with a low threshold of use for

a wide range of projects, including those with limited computational expertise and
resources. Specifically, we aim for a stable, hassle-free, easy-to-use system that is simple
yet effective. We see this as as an important methodological contribution to the field
since using such a system and its collaborative development goes hand in hand with
data sharing and the adoption of innovative research methods. An important aim for
the future is thus to make the deployment of SpoCo easier for new projects and to work
on making the customization of SpoCo simpler yet more flexible as well as to work on
further integration of the workflow of corpus file management (including distributed
archiving), metadata acquisition, and subsequent data annotation.

References

Arhar Holdt, Š., Kosem, I., and Logar Berginc, N. (2012). Izdelava korpusa Gigafida in
njegovega spletnega vmesnika. In Erjavec, T. and Žganec Gros, J., editors, Zbornik Osme
konference Jezikovne tehnologije, pages 12–17. Institut Jožef Stefan, Ljubljana.

Barbiers, S. (2015). European dialect syntax: Towards an infrastructure for documentation
and research of endangered dialects. In Jones, M., editor, Endangered Languages and New
Technologies. Cambridge: CUP. CUP, Cambridge.

Evert, S. and Hardie, A. (2011). Twenty-first century Corpus Workbench: Updating a
query architecture for the new millennium. In Proceedings of the Corpus Linguistics 2011
Conference, Birmingham, UK. University of Birmingham.

Evert, S. and Hardie, A. (2015). Ziggurat: A new data model and indexing format for large
annotated text corpora. In Proceedings of the 3rd Workshop on the Challenges in the
Management of Large Corpora (CMLC-3), page 21–27, Lancaster, UK.

Gerstenberger, C., Partanen, N., Rießler, M., and Wilbur, J. (2017). Utilizing language
technology in the documentation of endangered Uralic languages. In Pirinen, T. A., Trosterud,
T., and Tyers, F. M., editors, Northern European Journal of Language Technology: Special
Issue on Uralic Language Technology.

Grochola-Szczepanek, H. (t.a.). Korpusowe badania języka mieszkańców spisza w polsce – cele
i zadania. Jezikoslovni zapiski, 22(2).

Hardie, A. (2012). CQPweb - combining power, flexibility and usability in a corpus analysis
tool. International Journal of Corpus Linguistics, 17(3):380–409.

Kazakova, P. (2016). Alternation of [a]/[e] between palatalized consonants under stress in the
dialect of the village mikhalevskaya. Unp. manuscript.

JLCL 2006 – Band 21 (1) 15JLCL 2016 – Band 31 (1) – 133-148 159

Waldenfels, Woźniak

Kopřivová, M., Klimešová, P., Goláňová, H., and Lukeš, D. (2014). Mapping diatopic and
diachronic variation in spoken Czech: the ORTOFON and DIALEKT corpora. In Chair),
N. C. C., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A.,
Odijk, J., and Piperidis, S., editors, Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14), pages 376–382, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Kosek, M., Nøklestad, A., Priestley, J., Hagen, K., and Johannessen, J. B. (2015). Visualisation
in speech corpora: maps and waves in the Glossa system. In Grigonytė, G., Clematide, S.,
Utka, A., and Volk, M., editors, Proceedings of the Workshop on Innovative Corpus Query
and Visualization Tools at NODALIDA 2015, May 11-13, 2015, Vilnius, Lithuania, pages
23–31. Linköping University Electronic Press.

Krause, T. and Zeldes, A. (2016). ANNIS3: A new architecture for generic corpus query and
visualization. Digital Scholarship in the Humanities, 31(1):118–139.

Požarickaja, S. K. (2005). Russkaja dialektologija. Gaudeamus, Moscow.

Rabus, A. and Šymon, A. (2015). Na novŷx putjax isslidovanja rusyns’kŷx dialektu: korpus
rozhovornoho rusyns’koho jazŷka. In Koporova, K., editor, Rusyn’skŷj literaturnŷj jazŷk na
Slovakiji. 20 rokiv kodifikaciji / The Rusyn literary language in Slovakia. 20th anniversary
of its codification. IV. International Congress of the Rusyn Language. Prjašiv, 23. - 25. 09.
2015, pages 40–54.

Schmid, H. (1999). Improvements in part-of-speech tagging with an application to German.
In Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., and Yarowsky, D.,
editors, Natural Language Processing Using Very Large Corpora, volume 11 of Text, Speech
and Language Processing, pages 13–26. Kluwer Academic Publishers, Dordrecht.

Sloetjes, H. and Wittenburg, P. (2008). Annotation by category – ELAN and ISO DCR. In
Proceedings of the 6th International Conference on Language Resources and Evaluation
(LREC 2008).

von Waldenfels, R. (2011). Recent developments in ParaSol: Breadth for depth and XSLT
based web concordancing with CWB. In Majchráková, D. and Garabík, R., editors, Natural
Language Processing, Multilinguality. Proceedings of Slovko 2011, Modra, Slovakia, 20–21
October 2011, pages 156–162, Bratislava. Tribun EU.

von Waldenfels, R., Daniel, M., and Dobrushina, N. (2014). Why standard orthography? Build-
ing the Ustya River Basic Corpus, an online corpus of a Russian dialect. In Komp’juternaja
lingvistika i intellektual’nye technologii: Po materialam ežegodnoj Meždunarodnoj konferencii
«Dialog» (Bekasovo, 4 — 8 ijunja 2014 g.) Vyp. 13 (20), Moskva. Izd-vo RGGU.

von Waldenfels, R. and Rabus, A. (2015). Recycling the metropolitan: building an electronic
corpus on the basis of the edition of the Velikie Minei Čet’i. Scripta & e-Scripta, 14/15:27–38.

Wilbur, J. (2008–2017). Pite saami. In Endangered Languages Archive (ELAR). SOAS,
University of London.

16 JLCL160 JLCL

Author Index

Bryce Anderson-Cooper
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
b.anderson1@lancaster.ac.uk

Alistair Baron
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
a.baron@lancaster.ac.uk

Nils Diewald
Institut für Deutsche Sprache
R5 6-13, 68161 Mannheim, Germany
diewald@ids-mannheim.de

David Gullick
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
david.s.gullick@gmail.com

Ulf Leser
Institut für Informatik
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
leser@informatik.hu-berlin.de

Andreas Kerren
Department of Computer Science
Linnaeus University
SE-351 95 Växjö, Sweden
andreas.kerren@lnu.se

Thomas Krause
Institut für deutsche Sprache und Linguistik
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
krauseto@hu-berlin.de

Anke Lüdeling
Institut für deutsche Sprache und Linguistik
Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany
anke.luedeling@hu-berlin.de

Eliza Margaretha
Institut für Deutsche Sprache
R5 6-13, 68161 Mannheim, Germany
margaretha@ids-mannheim.de

John Mariani
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
j.mariani@lancaster.ac.uk

Andrew Moore
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
a.moore@lancaster.ac.uk

Arne Neumann
Applied Computational Linguistics
Department Linguistik, Haus 14
Karl-Liebknecht-Straße 24-25
14476 Potsdam, Germany
arne.neumann@uni-potsdam.de

Carita Paradis
Centre for Languages and Literature
Lund University
Box 201
SE-221 00 Lund, Sweden
carita.paradis@englund.lu.se

Christian Pölitz
Lehrstuhl für künstliche Intelligenz
Institut fuer Informatik
OH12 R4.012, Otto-Hahn-Straße 12, 44227 Dortmund, Germany
christian.poelitz@tu-dortmund.de

Paul Rayson
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
p.rayson@lancaster.ac.uk

Thomas Schmidt
Oral Corpora PA
Institut für Deutsche Sprache
R5 6-13, 68161 Mannheim, Germany
thomas.schmidt@ids-mannheim.de

Maria Skeppstedt
Gavagai
Slussplan 9, SE-111 30 Stockholm, Sweden
Department of Computer Science
Linnaeus University
SE-351 95 Växjö, Sweden
maria@gavagai.se

Ruprecht von Waldenfels
Slavisches Seminar
Universität Zürich
CH-8032 Zürich
ruprecht.waldenfels@gmail.com

Stephen Wattam
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
s.wattam@lancaster.ac.uk

Michał Woźniak
Institute of Polish
Polish Academy of Sciences
Al. Mickiewicza 31, 31-120 Cracow, Poland
michal.wozniak@ijp-pan.krakow.pl

