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Editorial

The automatic recognition of text in images and its transformation into machine-
readable formats is a long-standing promise of research in computer science to the
text-based humanities and natural sciences but also to libraries. But while users can
expect virtually error-free results for modern sources, the situation is different for more
challenging materials: For example, newspapers from the first half of the 20th century
already show many difficulties in recognition. The prospects for documents from the
15th-18th century are even worse.

Libraries expect no more and no less than reliable and efficient methods for the
text digitization of their own collections. This is associated with the hope of greater
outreach, especially via the Internet. With the help of virtual collections, libraries may
reach substantially larger user groups which would hardly find their way into the local
reading rooms. Unfortunately, text digitization is currently all too often implemented
as a by-product of image digitization. A thorough analysis of the results is only carried
out to a very limited extent.
On the part of the text-based humanities and natural sciences, there is a desire

for large amounts of text data, which do not have to be collected by means of time-
consuming, detailed transcription work but can be conveniently retrieved, searched and
analyzed. Scientific investigations could thus concentrate on the actual research instead
of spending a great deal of time and effort on data collection and processing. However,
this requires easy-accessible research data of high quality.
For computer sciences, automatic text recognition is primarily a scientific problem.

The aim is to develop algorithmic solutions the quality of which can be verified in a
comparable manner using standardized, more or less representative data sets. The
results which are presented, practically domain-independent error rates of below 1 %,
always read promisingly, but often have only a very limited validity for their application
in mass digitization scenarios and consequently for the creation of a reliable basis for
text-based research. It took a critical examination of the results of industrial projects
such as Google Books or research projects such as IMPACT (Improving Access to Text)
to bring the task of text recognition back into the focus of scientific efforts.

However, there are legitimate reasons to hope that error rates which can be observed
for modern sources may also be in range for historical documents: The use of statistical
learning methods based on (deep) neural networks has led to an enormous leap in
quality also in the field of text and layout recognition. This is reflected in a significant
reduction of error rates due to a substantially higher tolerance to variances in the
material which is to be processed. In addition, the task of handwriting recognition and
the recognition of printings are regarded as instances of the same scientific problem.
A prerequisite for the successful use of machine learning methods, however, are

great amounts of texts and structural annotations which are sufficiently accurate and
representative of the subject (and therefore called ground truth). They serve as a
reference point for training and evaluation. The creation of such materials is therefore
at least as important as the development and adaptation of algorithms which make use
of ground truth data.

JLCL 2018 – Band 33 (1) i



This volume of the Journal for Language Technology and Computational Linguistics
aims to meet both basic requirements for successful automatic text recognition. It
contains methodological contributions concerning the actual recognition process as well
as contributions dealing with the creation and optimization of necessary training and
evaluation data. It is completed by the presentation of concrete resources and tools
intended to contribute to the quality of automatic text recognition results with the
perspective to qualify them as genuine research data in the not too distant future.

We would like to thank all authors for their contributions. Next, we would also like
to thank the reviewers, who have contributed to the quality of the published articles in
an excellent way. Last but not least we want to express our gratitude to the German
Society for Computational Linguistics and Language Technology and especially Adrien
Barbaresi and Lothar Lemnitzer for providing a forum for the topic of automatic text
recognition.

The guest editors, Kay-Michael Würzner, Alexander Geyken, Günter Mülberger.
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Christian Reul, Uwe Springmann, Christoph Wick, Frank Puppe

Improving OCR Accuracy on Early Printed Books by combining
Pretraining, Voting, and Active Learning

Abstract

We combine three methods which significantly improve the OCR accuracy of OCR mod-
els trained on early printed books: (1) The pretraining method utilizes the information
stored in already existing models trained on a variety of typesets (mixed models) instead
of starting the training from scratch. (2) Performing cross fold training on a single set
of ground truth data (line images and their transcriptions) with a single OCR engine
(OCRopus) produces a committee whose members then vote for the best outcome by
also taking the top-N alternatives and their intrinsic confidence values into account.
(3) Following the principle of maximal disagreement we select additional training lines
which the voters disagree most on, expecting them to offer the highest information
gain for a subsequent training (active learning). Evaluations on six early printed books
yielded the following results: On average the combination of pretraining and voting
improved the character accuracy by 46% when training five folds starting from the same
mixed model. This number rose to 53% when using different models for pretraining,
underlining the importance of diverse voters. Incorporating active learning improved
the obtained results by another 16% on average (evaluated on three of the six books).
Overall, the proposed methods lead to an average error rate of 2.5% when training on
only 60 lines. Using a substantial ground truth pool of 1,000 lines brought the error
rate down even further to less than 1% on average.

1 Introduction

Recent progress on OCR methods using recurrent neural networks with LSTM architec-
ture (Hochreiter and Schmidhuber, 1997) enabled effective training of recognition models
for both modern (20th century and later) and historical (19th century and earlier)
manuscripts and printings (Fischer et al., 2009; Breuel et al., 2013; Springmann et al.,
2014; Springmann and Lüdeling, 2017). Individually trained models regularly reached
character recognition rates of about 98% for even the earliest printed books. The need
to train individual models in order to reach this level of recognition accuracy for early
printings sets the field of historical OCR apart from readily available (commercial and
open-source) general (also called polyfont or omnifont) models trained on thousands of
modern fonts which yield better than 98% recognition rates on 19th century printings
and better than 99% on modern documents. Training historical recognition models on
a variety of typesets results in mixed models which may be seen as a first approximation
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to modern polyfont models, but their predictive power is considerably lower than that
of individual models.

In view of the mass of available scans of historical printings we clearly need automatic
methods of OCR which in turn require good historical polyfont models. As long as
these models are not available and at present cannot be easily constructed (we lack the
necessary historical fonts to be able to synthesize large amounts of training material
automatically), our next best approach is to maximize the recognition rate of a small
amount of manually prepared ground truth (GT). This is the subject of the present
paper which applies the methods of pretraining, voting, and active learning (AL) to
the field of historical OCR. Using an already trained model as a starting point for
subsequent training with additional individual material requires the capability to add
specific characters not previously included in the symbol set (the codec) and the dynamic
expansion (and reduction) of the output layer of the neural network. In the context
of recurrent neural networks this was recently made possible by Christoph Wick1 as
reported in Reul et al. (2017c). Voting is a well known method of classifier combination
resulting in fewer errors than the best single classifier output (Rice et al., 1992). Active
learning ensures that lines showing maximal disagreement among classifiers are included
in the training set to enable the maximal learning effect. While more training data is
always better, combining these three methods results in a level of recognition accuracy
that could otherwise only be reached by a much larger amount of GT and therefore a
much larger manual effort to generate it.
Section 2 summarizes the extensive corpus of related work for each of the three

methods. In Section 3 we describe the printing material which the experiments of
Section 4 are based on. Section 5 contains the discussion of our results and we conclude
the paper with Section 6.

2 Related Work

In this section we first sum up a selection of important contributions concerning OCR
relevant to our task and introduce findings with regard to training and applying mixed
models using OCRopus. Next, a brief summary of the history of voting techniques and
applications in the field of OCR is provided. After a short section on transfer learning
we give an overview over some basic AL concepts.

2.1 OCR and Mixed Models

Breuel et al. (2013) used their own open source tool OCRopus2 to recognize modern
English text and German Fraktur from the 19th century by training mixed models,
i.e. models trained on a variety of fonts, typesets, and interword distances from different
books. The English model was trained on the UW-III data set3 consisting of modern

1https://github.com/ChWick/ocropy/tree/codec_resize
2https://github.com/tmbdev/ocropy
3http://isis-data.science.uva.nl/events/dlia/datasets/uwash3.html
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English prints. Applying the model to previously unseen lines from the same dataset
yielded a character error rate (CER) of 0.6%. The training set for the Fraktur model
consisted of mostly synthetically generated and artificially degraded text lines. The
resulting model was evaluated on two books of different scan qualities yielding CERs of
0.15% and 1.37%, respectively.
Ul-Hasan and Breuel (2013) promoted an approach not only mixing different types

but also various languages by generating synthetic data for English, German, and
French. Apart from three language specific models they also trained a mixed one. While
the language specific models unsurprisingly performed best when applied to test data of
the same language yielding CERs of 0.5% (English), 0.85% (German) and 1.1% (French)
the mixed model also achieved a very low CER of 1.1% on a mixed dataset. These
experiments indicate a certain robustness or even independence of the OCRopus LSTM
architecture regarding different languages in mixed models.

After proving that OCR on even the earliest printed books is not only possible but can
be very precise (down to 1% error rate, Springmann, 2015), Springmann et al. adapted
the idea of training mixed models to early prints in different application scenarios. In
Springmann et al. (2016) their corpus consisted of twelve Latin books printed with
Antiqua types between 1471 and 1686. Training on one half of the books and evaluating
on the other half mostly yielded CERs of under 10%. Admittedly, these results are far
off the numbers reported above which can be explained by the vastly increased variety
of the types. Still, the trained models provide a valid starting point for further model
improvements through individual training. Additionally, a clear correlation between
the intrinsic confidence values of OCRopus and the resulting CER was demonstrated.
In Springmann and Lüdeling (2017) a similar experiment was conducted on the 20

German books of the RIDGES Fraktur corpus4. Again, by training mixed models on
half of the books and evaluating on the held-out data impressive recognition results
of around 5% CER on average were achieved. As expected, the individually trained
models performed even better, reaching an average CER of around 2%.

2.2 Alignment and Voting

Handley (1998) gives an overview regarding topics concerning the improvement of OCR
accuracy through the combination of classifier results and discusses different methods
to combine classifiers and string alignment approaches.

Rice and Nartker (1996) released a collection of command line scripts for the evaluation
of OCR results called the ISRI Analytic Tools. Their voting procedure first aligns
several outputs using the Longest Common Substring (LCS) algorithm (Rice et al.,
1994) and then performs a majority vote. In several competitions they applied their
tools to evaluate the results of various commercial OCR engines on modern prints (see,
e.g., Rice et al., 1992, 1996). By voting on the output of five engines on English business
letters the character accuracy rate (CAR = 1− CER) increased from between 90.10%
and 98.83% to 99.15%.

4http://korpling.org/ridges
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A simple but effective way to achieve variance between the voting inputs was proposed
by Lopresti and Zhou (1997) by simply scanning each page three times. While using
only a single OCR engine they still achieved a reduction of error rates between 20%
and 50% on modern prints resulting in a CAR of up to 99.8%.

Boschetti et al. (2009) improved the output of the best single engine (ABBYY, up to
97% CAR) by an absolute value of 2.59 percentage points by applying a Naive Bayes
classifier on the aligned output of three different engines on Ancient Greek editions
from the 19th and 20th century. Beforehand, they performed a progressive alignment
which starts with the two most similar sequences and extends the alignment by adding
additional sequences.
Lund et al. (2011) used voting and dictionary features as well as maximum entropy

models trained on synthetic data. Applied to a collection of typewritten documents
from Word War II they recorded a relative gain of 24.6% over the word error rate of
the best of the five employed OCR engines.

An approach for aligning and combining different OCR outputs applicable to entire
books was introduced by Wemhoener et al. (2013). First, a pivot is chosen among the
outputs. Then, all other outputs are aligned pairwise with the pivot by first finding
unique matching words in the text pairs to align them using an LCS algorithm. By
repeating this procedure recursively, two texts can be matched in an efficient way.
Finally, all pairs are aligned along the pivot and a majority vote determines the final
result.

Liwicki et al. (2011) tackled the task of handwritten text recognition acquired from
a whiteboard by combining several individual classifiers of diverse nature. They used
two base recognizers which incorporated hidden Markov models and bidirectional
LSTM networks and trained them on different feature sets. Moreover, two commercial
recognition systems were added to the voting. The multiple classifier system reached an
accuracy of 86.16% on word level and therefore outperformed even the best individual
system (81.26%) significantly.
Al Azawi et al. (2015) trained neural LSTM networks on two OCR outputs aligned

by weighted finite-state transducers based on edit rules in order to return a best voting.
After training the network on a vast amount of data very similar to the test set, it was
able to predict even characters which were not correctly recognized by either of the two
engines. During tests on printings with German Fraktur and the UW-III data set the
LSTM approach led to CERs of around 0.40%, considerably outperforming the ISRI
voting tool and the method presented in Wemhoener et al. (2013) (between 1.26% and
2.31%). However, applying this method to historical spellings has a principal drawback
as it relies on fixed input-output relationships. Since historical spelling patterns are
much more variable than modern ones and the same word is often spelled and printed
in more than one form even in the same document, it is not possible or at least may
not be desired to map each OCR token to a single ‘correct’ token.

In Reul et al. (2018) we implemented a cross-fold training procedure with subsequent
confidence voting in order to reduce the CER on early printed books. This method
shows considerable differences compared to the work presented above. Not only is it
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applicable to some of the earliest printed books, but it also works with only a single
open source OCR engine. Furthermore, it can be easily adapted to practically any given
book using even a small amount of GT without the need for excessive data to train on
(60 to 150 lines of GT corresponding to just a few pages will suffice for most cases).

By dividing the GT into N different folds and aligning them in a certain way we were
able to train N strong but also diverse models. Then, these models acted as voters both
in the default sequence voting (see ISRI tools above) and a newly created confidence
voting scheme which also takes the intrinsic confidence information of the top-n (not
just top-1) predictions of OCRopus into consideration. Experiments on seven books
printed between 1476 and 1675 led to the following observations:

1. For all experiments the cross fold training and voting approach led to significantly
lower CERs compared to performing only a single training. Gains between 19%
and 53% were reported for several books and different number of lines of GT.

2. OCR texts with a lower CER benefitted even more than more erroneous results.

3. The amount of available GT did not show a notable influence on the improvements
achievable by confidence voting. Yet, a very high number of lines leads to a drop
in voting gains for most books. This has to be expected for models that get
closer to perfection as most of the remaining errors are unavoidable ones such as
characters with defects or untrained glyphs missing in the training set.

4. Increasing the number of folds can bring down the CER even further, especially
when training on a large set of lines. However, considering the range of available
GT lines and the required computational effort, five folds appeared to be a sensible
default choice until further testing regarding parameter optimization has been
performed.

5. The confidence voting always outperformed the standard sequence voting approach
by reducing the amount of errors by another 5% to 10%.

2.3 Transfer Learning and OCR Pretraining

While to the best of our knowledge there is no suitable related work regarding transfer
learning in the field of OCR, it was applied successfully to a variety of other tasks (e.g.
Yosinski et al. (2014) for labeling arbitrary images and Wick and Puppe (2017) for
leaf classification) by deploying deep convolutional neural networks after performing a
pretraining on data from a different but somewhat similar recognition task.
Admittedly, these examples of transfer learning used far deeper networks than

OCRopus with only a single hidden layer, resulting in a dramatically increased number
of parameters and consequently more opportunities to learn and remember useful
low-level features. Nonetheless, since scripts in general should show a high degree of
similarity we still expected a noteworthy impact of pretraining and studied the effect of
building from an already available mixed model instead of starting training from scratch

JLCL 2018 – Band 33 (1) 7
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(see Reul et al., 2017c). As starting points we used the models for modern English,
German Fraktur from the 19th century, and the Latin Antiqua model described above.
From our experiments we arrived at the following conclusions:

1. Building from a pretrained model significantly reduced the obtainable CER
compared to starting the training from scratch.

2. Improvement rates decrease with an increasing amount of GT lines available for
training. While models trained on only 60 lines of GT gained over 40% on average
over starting from scratch, this number went down to around 15% for 250 lines.

3. The incorporation of a whitelist for standard letters and digits which cannot be
deleted from the codec even if they do not occur in the training GT showed an
additional average gain of 5%.

4. Even the mixed models for modern English and 19th century Fraktur which were
completely unrelated to the individual books in terms of printing type and age of
the training material led to significant improvements compared to training from
scratch.

2.4 Active Learning

Settles (2012) gives a very comprehensive overview over the literature dealing with
Active Learning (AL). Apart from introducing different usage scenarios and discussing
theoretical and empirical evidence for the application of AL techniques they define a
typical AL scenario as follows: A learner starts out with access to a (possibly very small)
pool of labeled examples to learn from. In order to improve performance it is possible
to send queries consisting of one or several carefully selected unlabeled examples to a
so-called oracle (teacher/human annotator) who then returns a label for each example in
the query. Afterwards, the learner can utilize the obtained additional data. Obviously,
the progress of the learner heavily depends on the examples selected to be labeled.
Furthermore, the goal is to learn as much as possible from as few as possible queried
examples, keeping the oracle’s effort to a minimum.
One of the most successful query techniques is called query by committee and was

introduced by Seung et al. (1992). The basic idea is that a committee of learn-
ers/models/voters is trained on the current labeled set. Each member of the committee
is allowed to cast a vote on a set of query candidates (unlabeled examples). The
assumption is that the candidate the voters disagree most on is also the one which
offers the biggest information gain when being added to the training set. This is called
the principle of maximal disagreement.

Among others, the effect of this approach was demonstrated by Krogh and Vedelsby
(1995) who trained five neural networks to approximate the square-wave-function. They
performed 2x40 independent test runs starting from a single example and using passive
and active learning. While the next example was chosen randomly during the passive
tests the networks always got handed the example with the largest ambiguity among
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Table 1: Books used during the experiments as well as the amount of GT lines set aside for Training,
Evaluation, and Active Learning.

ID/Year Language Training Evaluation Active Learning

1476 German 1,000 1,000 750
1488 German 1,000 1,000 1,928
1505 Latin 1,000 1,000 1,039
1495 German 1,000 1,114 -
1500 Dutch 1,000 1,250 -
1572 Latin 1,000 1,098 -

the five voters out of 800 random ones. Evaluation showed that AL led to a significantly
better generalization error and that the individual additional training examples on
average contributed much more to the training process when chosen according to the
principle of maximal disagreement.

As for OCR, Springmann et al. (2016) performed some initial experiments on selecting
additional training lines in an active way. After recognizing lines with a mixed model
they tested several strategies according to which they chose lines for further transcription.
The best result was obtained when using a mixture of randomly selected lines combined
with lines with low confidence values. It is worth mentioning that after transcribing
these lines they started their training from scratch since the pretraining approach
introduced above had not been developed, yet.

3 Materials and Methods

In this section we first introduce the early printed books and mixed models we used for
our experiments. Then our previous approaches for separate voting and pretraining are
briefly described on a technical level. Finally, we show how the principle of maximal
disagreement can be utilized in order to choose additional training lines in an informed
way within an iterative AL approach.

3.1 Books

The experiments were performed on six early printed books (see Table 1). The AL
experiments were carried out on the three books above the horizontal line. We focused
on these books as they provided a large amount of GT which is needed to perform
the procedure. In a real world application scenario it would be sensible to choose the
additional training lines by recognizing all lines without GT and choose the worst ones.
Therefore, as many lines as possible are required to be able to evaluate this scenario.

To avoid unwanted side effects resulting from different types or varying line length
only lines from running text were used and headings, marginalia, page numbers, etc.
were excluded. 1505 represents an exception to that rule as we chose the extensive

JLCL 2018 – Band 33 (1) 9
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Figure 1: Different example lines from the six books used for evaluation. From top to bottom:
excerpts from books 1476, 1488, 1495, 1500, 1505, and 1572.

commentary lines instead, as they presented a bigger challenge due to very small inter
character distances and a higher degree of degradation. Figure 1 shows some example
lines.
The books published in 1495, 1500, and 1505 are editions of the Ship of Fools

Narrenschiff and were digitized as part of an effort to support the Narragonien project
at the University of Würzburg5. Despite their similar content these books differ
considerably from an OCR point of view since they were printed in different print
shops using different typefaces and languages (Latin, German, and Dutch, see Figure 1).
Ground truth for the 1488 book was gathered during a case study of highly automated
layout analysis (see Reul et al., 2017a). 1476 is part of the Early New High German
Reference Corpus6 and 1572 was digitized in order to be added to the AL-Corpus7 of
Arabic-Latin translations.

3.2 Mixed Models

During our experiments we made use of three mixed models. Our first model LH
(abbreviated for Latin Historical) was trained on all twelve historical books introduced
in Springmann et al. (2016). The books are printed in Latin and with Antiqua types.
The training was performed on 8,684 lines and was stopped after 109,000 iterations.
We evaluated all resulting models on 2,432 previously unseen test lines in order to
determine the best model which occurred after 98,000 training steps achieving a CER
of 2.92% .

5http://kallimachos.de/kallimachos/index.php/Narragonien
6http://www.ruhr-uni-bochum.de/wegera/ref/index.htm
7http://arabic-latin-corpus.philosophie.uni-wuerzburg.de
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Additionally, we used the freely available OCRopus standard models for English
(ENG)8 and German Fraktur (FRK)9 introduced in Breuel et al. (2013) and described
above.
It is worth mentioning that all the books, which were introduced in the last section

and will be used for evaluation, were disjoint with the training materials of the mixed
models.

3.3 Cross Fold Training and Confidence Voting

In the absence of viable alternatives to OCRopus we introduced variations in the
training data in order to obtain highly performant individual yet diverse voters. This
was done by applying a technique called cross fold training: The available GT is divided
into N folds with N being the number of models which will later participate in the
vote. Then, N training processes take place by using one fold for testing, i.e. choosing
the best model, and the rest for training. While the training data shows a significant
overlap for each training the folds used for testing are distinct.
After determining the best model of each training process each one of the resulting

best models recognizes the same set of previously unknown lines. As an output not only
the OCR text is stored but also so-called extended lloc (LSTM location of characters)
files which store the probability of the actually recognized character as well as the
probabilities of its alternatives.
During the confidence voting process the different result texts are first aligned by

applying the ISRI sync tool which identifies the positions of OCR differences as well
as the output of each voter at this position. The confidence voting is performed by
identifying the corresponding extended llocs and adding up the confidence values for
each of the character alternatives. The character with the highest confidence sum gets
voted into the final output (Reul et al., 2018).

3.4 Pretraining utilizing Transfer Learning

The character set of pretrained mixed models often comprises more or fewer characters
than the data the new model is supposed to be trained on. In order to assure full
compatibility we had to make some enhancements on the code level regarding the
OCRopus training process which are available at GitHub10. These changes allow us to
comfortably extend or reduce the codec depending on the available training GT and
the characters it contains. When starting the training process the character sets of the
existing model and the GT are matched. For each character which occurs in the GT
but is not part of the model an additional row is attached to the weight matrix and
the corresponding weights are randomly initialized. A character which is known to the
model but is not part of the GT leads to the deletion of the corresponding row in the

8http://www.tmbdev.net/en-default.pyrnn.gz
9http://tmbdev.net/ocropy/fraktur.pyrnn.gz

10https://github.com/ChWick/ocropy/tree/codec_resize
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matrix. In order to avoid blind spots especially when dealing with small amounts of GT
and important but less frequent characters like numbers or capital letters it is possible
to define a so-called whitelist. Characters on the whitelist will not get deleted from the
matrix regardless of whether they occur within the GT or not (Reul et al., 2017c).

3.5 Active Learning

As explained above the basic idea behind Active Learning is to allow the learners, i.e. the
different voters (see 3.5), to decide which training examples they benefit the most from
instead of selecting additional lines randomly. Since in a real world application scenario
there usually is no GT available for potential new training lines, we cannot just use the
ones for which our current models give the worst results, i.e. the ones with the highest
CER. However, we can still identify the lines we expect to be most suitable for further
training by following the principle of maximal disagreement.
After recognizing a line with each model of an ensemble consisting of n voters, all

outputs are compared to each other in pairs. As a measure for the difference between
two OCR output strings a, b, we define the Levenshtein Distance Ratio LDR(a, b) as
the Levenstein distance between a and b, divided by the maximum string length of a
and b. These ratios are then summed up between all pairs of different OCR output
strings and divided by the number of pairs n(n− 1)/2 to yield the average LDRø. The
pseudo-code in Algorithm 1 details our calculations.

Data: line image without GT, ensemble of n voters (n > 1)
Result: the LDRø of the line

outputs← recognizeW ithAllV oters(line)
sum = 0
foreach ai, aj with (i < j) ∈ outputs do

LDR(a, b)← Lev(a,b)
max{|a|,|b|}

sum← sum + LDR(a, b)
end
LDRø = sum

n(n−1)/2

Algorithm 1: The calculation of a line’s average Levenshtein Distance Ratio (LDRø).
Lev(a, b) denotes the Levenshtein distance between two outputs a and b. The length
(= the number of characters) of an output a is given by |a|.

Finally, after processing various lines, they are sorted in descending order according
to their LDRøs. In a real world application scenario the lines are handed to a human
annotator who then produces GT by transcribing them or by correcting one of the
individual OCR results or the output of the confidence voting, if available. While the
idea of the whole process is to give the committee the lines it requested, it is still up to
the human annotator to decide whether a line is suitable for further training or not.
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For example, a line might have been badly recognized due to a severe segmentation
error or due to an unusually high degree of degradation making recognition pretty much
impossible. These lines cannot be expected to make a noteworthy contribution to the
training process and are therefore discarded.

4 Experiments

In order to evaluate the effectiveness of the methods described above we performed
two main experiments. First, the voting and pretraining approaches were combined11

by performing the voting procedure with models which were not trained from scratch
but started from one or several pretrained mixed models. Second, the voters resulting
from the first experiment served as a committee during an AL approach following the
principle of maximal disagreement.

Since the train/test/evaluation distribution of the GT lines has changed, the results
can differ from the ones obtained from earlier experiments. Based on the previous
results reported in sections 2.2 and 2.3 we chose to implement the following guidelines
for all of the upcoming experiments.

1. The number of folds during cross-fold training and consequently the number of
voters is set to 5.

2. OCR results are always combined by enforcing the confidence voting approach.

3. Whenever pretraining is used a generic minimal whitelist consisting of the letters
a-z, A-Z and the digits 0-9 is added to the codec.

4. Each model training is carried out until no further improvement is expected (e.g.
30,000 iterations for 1,000 lines of training GT).

4.1 Combining Pretraining and Voting

Naturally, the combination of voting and pretraining seems attractive and should be
evaluated. The number of lines used for training was varied in six steps from 60 to
1,000. Each set of lines was divided into five folds and the allocation was kept fixed for
all experiments. We used two different approaches for pretraining. First, we trained
the five voters by always building from the LH model since it yielded the best results
during previous experiments. Second, we varied the models used for pretraining. We
kept voters 1 and 2 from the first setup (trained from LH). For voters 3 and 4 FRK
was utilized as a starting point since it was trained on German Fraktur fonts which
are somewhat similar to the broken script of the books at hand. Only one voter (5)
was built from ENG as it was the least similar one out of the available mixed models
regarding both age and printing type of the training data. This setup was slightly
11The corresponding code is available at GitHub: https://github.com/chreul/mptv
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Figure 2: Comparison of the CERs (averaged over all books for each set of lines) of four different
approaches: Baseline (no pretraining, no voting), NoP (no pretraining, voted), LH (all
five folds trained from the LH model, voted), and Mix (mixed pretraining, voted).

adapted for book 1572 as it was printed using Antiqua types. Therefore, in this case
one of the two FRK folds was pretrained with ENG instead.

The idea was to still train strong individual models while increasing diversity among
them, hoping for a positive effect on the final voting output. The results are summed
up in Table 2. For reasons of clarity, detailed numbers are only provided for three
books, i.e. the ones which will be used for further experiments. The general behaviour
averaged over all books can be seen in Figure 2 and an overview over the progress made
by adding more training lines is presented in Figure 3.
In the majority of cases the combination of pretraining and voting considerably

outperforms both the default voting approach showing gains of 14% (LH) and 26%
(Mix) as well as the default pretraining approach showing gains of 29% (LH) and 39%
(Mix) when averaging over all six books and lines. As expected, the best improvements
can be achieved when using a small number of GT lines, resulting in gains ranging from
40% (LH) and 51% (Mix) for 60 lines to 2% (LH) and 14% (Mix) for 1,000 lines.

Overall, the average CER on individual folds pretrained with LH (2.70%) is effectively
identical to the one achieved by building from a variety of mixed models (2.69%).
However, in the case of applying the voting procedure over all five folds, the Mix
approach yields considerably better results than just using LH as a pretrained model,
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Table 2: CER in % of combining pretraining (Single Folds) and voting (Voting Result). Single Folds
contain the baseline without pretraining (Base), pretraining with LH model (LH), and with
a mixture of models (LH, LH, FRK, FRK/ENG, ENG) (Mix). Voting Result shows the
results of different voters based on no pertraining (NoP), pretraining with LH model (LH),
and with mixed model (Mix). The Improvement columns show the voting gains of LH
over NoP (NL), Mix over NoP (NM), Mix over LH (LM), and Mix over the base (BM).
The underlined CERs represent the starting points for the upcoming AL experiment.

1476 Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 8.12 5.58 4.96 4.72 4.10 2.79 13% 41% 32% 66%
100 6.82 3.99 3.92 3.49 2.67 2.23 23% 36% 16% 67%
150 4.10 3.15 3.03 2.47 2.14 1.66 13% 33% 22% 60%
250 3.24 2.40 2.37 1.70 1.63 1.47 4% 14% 10% 55%
500 2.11 1.73 1.75 1.17 1.13 1.03 3% 12% 9% 51%

1000 1.55 1.30 1.22 0.97 0.88 0.75 9% 23% 15% 52%
1488 Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 7.28 3.97 4.28 4.38 3.05 2.50 30% 43% 18% 66%
100 4.19 2.85 3.20 2.73 2.06 1.84 25% 33% 11% 56%
150 2.96 2.26 2.33 1.81 1.51 1.24 17% 31% 18% 58%
250 2.59 1.82 1.89 1.29 1.21 1.07 6% 17% 12% 59%
500 1.50 1.40 1.38 0.91 0.95 0.79 -4% 13% 17% 47%

1000 1.17 1.06 1.13 0.71 0.72 0.61 -1% 14% 15% 48%
1505 Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 6.54 5.00 5.27 4.58 3.70 3.45 19% 25% 7% 47%
100 4.54 3.96 4.15 3.16 2.82 2.68 11% 15% 5% 41%
150 3.54 3.16 3.16 2.34 2.27 2.02 3% 14% 11% 43%
250 2.85 2.66 2.18 1.98 1.77 1.60 11% 19% 10% 44%
500 2.24 2.18 2.11 1.59 1.60 1.43 -1% 10% 11% 36%

1000 1.84 1.85 1.82 1.35 1.40 1.26 -4% 7% 10% 32%

All Single Folds Voting Result Improvement
Lines Base LH Mix NoP LH Mix NL NM LM BM

60 7.98 4.42 4.49 5.34 3.22 2.64 40% 51% 18% 67%
100 4.97 3.38 3.49 2.97 2.41 2.12 19% 29% 12% 57%
150 3.46 2.78 2.87 2.15 1.96 1.67 9% 23% 15% 52%
250 3.06 2.28 2.20 1.79 1.59 1.42 11% 21% 11% 54%
500 2.05 1.86 1.77 1.34 1.27 1.12 5% 16% 12% 45%

1000 1.59 1.46 1.42 1.08 1.07 0.93 2% 14% 13% 42%
Avg. 3.85 2.70 2.69 2.45 1.92 1.65 14% 26% 13% 53%
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Figure 3: Influence of the number of GT training lines compared for the approaches Baseline (no
pretraining, no voting), NoP Voted (no pretraining, voted), and Mix Voted (pretrained
with different mixed models, voted) on a logarithmic scale for CER.

leading to an additional reduction of recognition errors by over 13% without an apparent
correlation regarding the amount of training GT.

Comparing the best method (Mix + Voting) with the baseline, i.e. the default
OCRopus approach (training a single model without any pretraining or voting), shows
the superiority of the proposed approach yet more clearly. Even the error rates of
strong individual models trained on a 1,000 lines of GT are reduced by more than 40%
on average. In general, a substantial amount of GT (>250 lines) is required in the
standard OCRopus training (see ‘baseline’ in Figure 2) to match the result achieved
by a mere 60 lines when incorporating mixed pretraining and voting, indicating a GT
saving factor of 4 or more. A similar factor can be derived when considering the average
baseline CER for 1,000 lines of GT.
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Table 3: Results of comparing active to passive learning. Base Lines is the number of lines used to
train the voters of the previous iteration. The lines added (Add. Lines) randomly (RDM)
or by maximizing the LDRø (AL) correspond to 50% of the base lines. Compared are the
resulting error rates (CER) after performing a confidence vote and (in case of RDM) an
averaging calculation. Finally, (Avg. Gain) shows the average improvement of the voters
trained by AL.

Book Base Add. Lines
Rdm/AL

CER Average
GainLines CER Rdm AL

1476 100 2.23 50 1.80 1.31 26%
250 1.47 125 1.18 0.90 24%

1488 100 1.84 50 1.54 1.05 32%
250 1.07 125 0.86 0.65 24%

1505 100 2.68 50 2.17 2.21 -2%
250 1.81 125 1.60 1.57 2%

4.2 Incorporating Active Learning

To select additional training lines we utilized the models (voters) obtained from the
previous experiment. Each model recognized the GT lines set aside for AL and the best
candidates were determined by choosing the ones with the highest LDRø as explained
in section 3.5. Next, the candidates underwent a quick visual inspection in order to
sort out lines where a positive impact on the training was considered highly unlikely
due to very rare segmentation errors or extreme degradations. Indeed, this adds a bit
of subjectivity to the task but we expected the decision whether to keep or drop a
line to be trivial in most cases. However, in our experiments we never skipped a line
proposed by the AL approach despite coming across several borderline cases which will
be discussed below.
We performed two experiments starting with different numbers of (base) GT lines

(100/250) which we kept from the previous experiment. For the passive learning
approach we added an additional 50% (50/125) of randomly selected lines. This was
performed five times and the results were averaged. As for AL we chose the lines by
following the principle of maximal disagreement incorporating the LDRø. Since the
number of characters per line my vary we made an effort to select only as many lines as
necessary to match the average amount of characters in the passive learning approach.

After selecting the lines the base fold setup was kept and we distributed the additional
GT evenly over the five folds to ensure an effect on the training itself but also on the
selection of the best model. Afterwards, the training was started from scratch/from the
default mixed models while the voters were discarded.
Since the previous experiment showed the superiority of the mixed pretraining

approach we decided to omit the pretraining using LH during the upcoming experiments.
Table 3 shows the results.
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Figure 4: Results of the AL experiments for three books at two different sets of lines comparing the
Baseline (no pretraining, no voting), Mix Voted (pretrained with different mixed models,
voted) and Mix Voted + AL (Mix with additional lines chosen by AL).

Incorporating AL leads to lower CERs for four out of six tested scenarios. While
important improvements with an average gain of almost 27% can be reported for 1476
and 1488, 1505 does not improve at all (see the discussion in the next section).

Moreover, it is worth mentioning that no clear influence of the number of the GT lines
available for training can be inferred on the basis of these results. Even when starting
from an already quite comprehensive GT pool of 250 lines AL yielded an average gain
of 16% compared to randomly chosen lines.

Finally, Figure 4 sums up the results by comparing the baseline to the best pretraining
(Mix) approach combined with confidence voting with and without AL.

5 Discussion

The experiments show that the combination of pretrained models and confidence voting
is an effective way to further improve the achievable CER on early printed books.
While the obtainable gain is highest when the number of available GT lines is small,
a substantial reduction of OCR errors can still be expected even when training with
several hundreds of lines.

An interesting result of our experiments is that the variability of the voters has a clear
influence on the voting result and can even outweigh a superior individual quality of the
single voters. This explains why using a variety of models for pretraining considerably
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Figure 5: Snippet of a scanned page for 1488 and its best OCR output by combining mixed
pretraining and voting. The resulting CER of 0.60% was achieved by training on 1,000
GT lines. The remaining four recognition errors are marked in red and underlined.

outperformed N -fold training from the LH model even though it represented the best
fitting one of the available mixed models. Since training from an available model skips
the random initialization of values in the weight matrix for pre-existing characters an
important chance of introducing diversity to the training process is skipped, resulting
in quite similar models even when trained on different but still heavily overlapping folds
of training GT.
Following the proposed approach of combining a mixed pretraining with confidence

voting allows for a substantially more efficient use of the available GT. On average we
were able to achieve the same results as the standard OCRopus approach requiring less
than one fourth of the number of GT lines to do so. Moreover, a tiny amount of GT –
only 60 lines – was enough to reach an average CAR of close to 97.5%. Only two out of
six books showed a CER greater than 3% but comfortably surpassed this value when
adding another 40 lines of GT, raising the average to almost 98% character accuracy,
which is already considered good enough for many areas of application.

Despite these improvements, there are opportunities for optimizing the achieved
results even further, e.g. in applications where the goal is to manually check and correct
an entire book in order to obtain a CER of close to 0%. The experiments showed that
our method also significantly outperforms the standard approach when training on a
very comprehensive GT pool of 1,000 lines, resulting in an average CER of less than
1%. As an example, Figure 5 gives an impression of input (scanned page image) and
output (best possible OCR result) for the 1488 printing with a CER of 0.60% reached
by training on 1,000 lines combining pretraining using a variety of mixed models and
confidence voting.
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Even if transcription of an entire book is intended, the goal still should be to
minimize the CER by investing the least possible manual correction effort. Therefore,
an iterative training approach makes sense and a efficient selection of further training
lines is important. Our experiments on AL showed that choosing additional lines in an
informed manner can offer an even more efficient way to use the available GT. Despite
one of the books not responding at all to the proposed method due to heavily and
inconsistently degraded glyphs the three evaluated books still showed an improvement
of 17% compared to the mixed voting approach when selecting additional training lines
randomly for transcription. It is worth mentioning that during our experiments the
number of lines presented to the committee of voters was considerably smaller than in a
real world application scenario where it might be sensible to take all yet unknown lines
into consideration in order to choose the most promising ones in terms of information
gain. This might have a positive effect on the achievable results of the AL approach.
A likely explanation for the lack of improvements of the 1505 book by AL is the

degree and type of degradations of the lines queried for training by the voting committee
which is illustrated by some example lines shown in Figure 6. The lines on the left are
examples the voters fully agreed on and, as expected, got recognized correctly by the
base models trained with 100 lines of GT. On the right some of the lines for which
the committee disagreed the most are shown, i.e. the ones with highest LDRø. For
1476 (top) the lines shown had a ratio of 0.45 and CER of 9.44%. There are some
signs of degradation, mostly moderately faded glyphs. The worst lines selected from
1488 (middle, 0.72 LDRø, 33.68% CER) mostly suffered from noise while the glyphs of
1505 (bottom, 0.64 LDRø, 30.77% CER) frequently show severe deformations. This
might be a sensible explanation why AL works very well for 1476 and 1488 but not at
all for 1505. Despite the fading and the noise the glyphs of 1476 and 1488 look much
more regular than the deformed ones of 1505, at least to the human eye. Therefore,
the models trained for 1476 and 1488 using AL learned to see through the effects of
fading and noise and earned additional robustness, resulting in a considerable gain in
CER. In the case of 1505 the AL models were fed many lines showing severe but very
irregular degradations which may have led to an increased robustness but probably did
not improve the recognition capability of regular lines as much as the passive learning
lines did.

6 Conclusion and Future Work

In this paper we proposed a combination of pretraining, confidence voting, and AL in
order to significantly improve the achievable CER on early printed books. The methods
were shown to be very effective for different amounts of GT lines typically available
from several hours’ transcription work of early printings.

In the future we aim to utilize the positive effect of more diverse voters even further.
In general, a higher degree of diversity can be achieved in two ways:
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Figure 6: Example lines of the three books 1476 (top), 1488 (middle), and 1505 (bottom) which
were presented to the committee. The left column shows perfectly recognized lines
(LDRø of 0.0). On the right some of the most erroneous lines are presented (LDRø of
0.45 (1476), 0.72 (1488), and 0.64 (1505)).

1. By the inclusion of more mixed models for pretraining. Since there are only a
few good mixed models freely available to date, there is a great need and sharing
is key. To lead by example we made part of our GT data and models available
online12.

2. By varying the network structure used for training representing a viable leverage
point to increase diversity even further. First steps in this direction have recently
been made by Breuel (2017) and Wick et al. (Comparison of OCR Accuracy on
Early Printed Books using the Open Source Engines Calamari and OCRopus; this
issue).

Clearly, the combination of both intended improvements also represents a very promising
approach.
To optimize the achievable results, extensive experiments regarding parameter opti-

mization are required. This includes the number of folds/voters, the kind of network
they have been trained on, and the method of combination of mixed models used for
pretraining, as well as the number of lines the training is performed on.

As for AL an important additional approach is to not only utilize it in order to choose
new training lines before the actual training process but also to get involved during the
training itself. The standard OCRopus approach is to randomly select lines and feed
them to the network. A more efficient method might be to decrease the chance to get
picked for lines which already got perfectly recognized and consequently increase it for
lines which still cause the current model a lot of problems.

12https://github.com/chreul/OCR_Testdata_EarlyPrintedBooks
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Concerning the maximal disagreement approach for line selection, it would be in-
teresting to experiment with other ways to determine those lines that offer a max-
imal information gain. Utilizing the intrinsic OCRopus confidence values that we
already use during our voting approach comes to mind but also measures like the
Kullback-Leibler-Divergence.

Finally, despite our focus on early printed books the proposed methods are applicable
to newer works as well. Especially 19th century Fraktur presents an interesting area
of application. Since the typically used Fraktur typesets are more regular than those
of the books used during our experiments the goal is to produce a mixed model with
excellent predictive power and to avoid book specific training at all.
Nevertheless, the present paper is just a first step to the larger goal of creating

an effective, open-source, computer-assisted OCR workflow that is automated to the
largest extent possible. In the context of the OCR-D project this also encompasses
methods of page segmentation (Reul et al., 2017b) in the preprocessing phase as well as
postcorrection (Fink et al., 2017) in the postprocessing stage which are just as important
for the quality of the end result as the recognition process itself. To enable further
progress in the direction of better recognition results and better polyfont models, we
made an extensive set of historical GT data comprising over 300,000 lines available in
the GT4HistOCR (Ground Truth for Historical OCR) corpus under a CC-BY-SA-4.0
license at Zenodo13 (see the article of Springmann, Reul, Dipper, Baiter in this issue).
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Crowdsourcing the OCR Ground Truth of a German and French
Cultural Heritage Corpus

Abstract

Crowdsourcing approaches for post-correction of OCR output (Optical Character
Recognition) have been successfully applied to several historical text collections. We
report on our crowd-correction platform Kokos, which we built to improve the OCR
quality of the digitized yearbooks of the Swiss Alpine Club (SAC) from the 19th century.
This multilingual heritage corpus consists of Alpine texts mainly written in German
and French, all typeset in Antiqua font. Finding and engaging volunteers for correcting
large amounts of pages into high quality text requires a carefully designed user interface,
an easy-to-use workflow, and continuous efforts for keeping the participants motivated.
More than 180,000 characters on about 21,000 pages were corrected by volunteers
in about 7 months, achieving an OCR ground truth with a systematically evaluated
accuracy of 99.7% on the word level. The crowdsourced OCR ground truth and the
corresponding original OCR recognition results from Abbyy FineReader for each page
are available as a resource for machine learning and evaluation. Additionally, the
scanned images (300 dpi) of all pages are included to enable tests with other OCR
software.

1 Introduction

Crowdsourcing approaches for post-correction of Optical Character Recognition (OCR)
output have been successfully applied to several historical text collections (Holley,
2009b; DTAQ, 2016). We report on our crowd-correction platform Kokos,1 which we
built to improve the text quality of the digitized yearbooks of the Swiss Alpine Club
(SAC)2 from the 19th century. This multilingual heritage corpus consists of Alpine
texts mainly written in German and French, all typeset in Antiqua font.

Finding and engaging volunteers for correcting large amounts of automatically OCRed
pages into high quality text requires a carefully designed user interface, an easy-to-use
workflow, and continuous efforts for keeping the participants motivated.

The scanned images, the uncorrected output of a standard OCR software and the
high-quality text corrected by our crowd are a valuable resource.3 It can be used for

1http://kokos.cl.uzh.ch
2http://www.sac-cas.ch
3http://pub.cl.uzh.ch/purl/OCR19thSAC
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extracting heritage lexicons covering 19th century German in particular, or for training
as well as testing automatic OCR error correction systems.
In the following section, we introduce our multilingual corpus and describe the

process of its digitization. We report on our efforts in building and maintaining a
crowd-correction platform and compare them to other work in the field. In Section 3,
we analyze and evaluate the corrections performed by the volunteer collaborators. The
released resource is described in the last subsection.

2 Materials and Methods

2.1 Corpus Data

In the Text+Berg project4 we digitized the yearbooks of the Swiss Alpine Club (SAC)
from 1864 until today (henceforth SAC corpus) for building a multilingual heritage
corpus of Alpine texts (Göhring & Volk, 2011).
In this paper we focus on the yearbooks from the 19th century. Including tables of

content and index pages, the books from 1864 to 1899 amount to 21,246 pages with
around 304,000 sentences and 6.3 million tokens (before correction). This is about 16%
of our complete SAC corpus.

Thematically, the corpus contains detailed mountaineering and travel reports (mostly
from Switzerland, but also from abroad), historical and biological articles (flora and fauna
of the Alps), geological and geographical studies (including frequent glacier observations),
linguistic articles (e. g. on language boundaries in the Alps), and protocols of the annual
club meetings. The text contains a huge number of proper names, geographical names,
and Latin botanical names.
Our statistical sentence-based language identification (Dunning, 1994)5 assigns 5.5

million tokens to German and 0.74 million tokens to French. See Figure 3 for the
distribution of these languages across yearbooks. Additionally, there are a few thousand
tokens in English (mostly book and article titles), Italian, Swiss German, and Romansh,6
but note that these numbers do not reflect code-switching within sentences (Volk &
Clematide, 2014).

2.2 OCR

All the yearbooks from 1864 until 2000 have been collected in printed form. From 2001
until 2009 the SAC has provided us with PDF files, and since 2011 the SAC generates
structured XML files directly out of their authoring system.
We obtained the first 10 yearbooks as leather-bound copies. Through collaboration

with the Austrian Academy Corpus (AAC) group in Vienna, we scanned them without
destroying them. All yearbooks from 1874 until 2000 were cut open so that we were

4http://textberg.ch
5We use M. Piotrowski’s PERL reimplementation Lingua::Ident.
6Most of the 384 sentences (the vast majority) of the 19th century that were automatically classified
as Romansh were in fact Latin, French, toponyms, or OCR errors.
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Figure 1: A book page in Kokos: synoptic view of the editable text on the left and the facsimile
image on the right. Note the small edit window within the text and the corresponding
highlighted word in the facsimile.

able to use a scanner with paper feed. From 1957 onwards, the SAC has published
parallel French and German versions of the yearbooks, both of which we processed in
the same manner.
After scanning all book pages with 300 dpi, we used the OCR software Abbyy

FineReader Pro 7 to convert the images to text (selecting the recognition languages
German, French and Italian). This led to mixed text recognition results. The text on
some pages was recognized excellently whereas other pages contained a multitude of
OCR errors.
Our initial idea was to manually correct these errors in the OCR system since it

preserves the mapping between words recognized in the text and the corresponding
position on the page. But we soon realized that manual correction is very time-
consuming even when working on well-recognized yearbooks of the 20th century. It is
prohibitively time-consuming for the yearbooks of the 19th century, where recognition
accuracy is inferior because of (a) words that are unknown to the OCR system lexicon
(foreign words, old German spellings, toponyms, special terms used in mountaineering,
person names, dialect words), (b) special characters (fraction glyphs, Greek letters, old
symbols), (c) stains on the paper and curved pages. Generally, the corpus contains
many challenges for OCR and Optical Layout Recognition, such as tables, mathematical
formulae, spaced type, or words in images.
We investigated various means of improving the OCR quality and correcting OCR

errors automatically (Volk, Marek, & Sennrich, 2010). There are only few ways in
which a commercial OCR system can be tuned. The most obvious way is to add
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“unknown” words to its lexicon. In order to extend the coverage of the built-in lexicon,
we collected words with old German spelling patterns (e. g. acceptiren, acceptieren,
Mittheilung) and also added the names of 4000 Swiss mountains and cities. This led to
some improvements of the OCR quality but a multitude of seemingly random OCR
errors persisted.7

Then we experimented with two ways of automatic error correction. First we employed
a second OCR system (OmniPage) and compared the output of the two systems (Volk
et al., 2010). Wherever they disagreed we checked with a German morphological system
(Gertwol, see Koskeniemmi & Haapalainen, 1996) whether both words were known
German words. If so, then we chose the word that occurred more frequently in our
corpus. If only one of the words was known, then this was the obvious choice. If none of
the words was known, then we trusted Abbyy FineReader as the more reliable system.
This method also led to a small reduction of errors.

Finally we experimented with automatic error correction based on character similari-
ties of words. If an unknown word deviates only in one or two characters from another
known word which frequently occurs in our corpus, then we automatically substitute
the unknown word with the known word. This method is similar to grammar checking
as used in popular text processing software, but needs to work with high precision since
human intervention (i. e. manual choice of the correct option) is not possible given the
large amounts of text. Therefore we applied this method only for words with a length
of more than 15 characters. After all these efforts many spurious OCR errors persisted.

2.3 Crowd Correction

It became obvious that we can only achieve a clean corpus if we organize a large
distributed effort for correcting OCR errors via a crowd of volunteers. Therefore, we
built the collaborative web-based correction system Kokos.8 Kokos is based on the wiki
idea and is technically built on top of PmWiki.9 The initial OCR content in Kokos
consists of the original Abby FineReader output of all yearbooks of the 19th century,
as one of our goals was the assessement of quality of crowdcorrection.

2.3.1 User Interface

We modified the wiki such that it displays the OCRed text of a page and the scan
image side by side (see Figure 1). The text is an HTML export from the OCR software,
and the layout, paragraphs and font sizes resemble the facsimile.
In the recognized text, each word is a clickable and editable unit. While reading

through the text, Kokos correctors can simply click on faulty words in order to open a
small editing window (Figure 1). In this window they can modify the word and save the
correction. Quick access buttons help to insert frequent incorrectly recognized special

7Holley (2009a) comes to similar conclusions.
8http://kokos.cl.uzh.ch
9http://www.pmwiki.org
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characters, e. g. æ, ß, ¼, or Greek letters. The corrected word immediately becomes
visible in the text.

In addition to the correction of characters within a word, three generic operations on
the level of one or more adjacent words are frequently needed. First, a delete button
removes spurious tokens typically caused by dirt or stains on the page. A second button
joins incorrectly split tokens into the edit window, for instance, in the case of spaced
type, which was often used to highlight certain words in the 19th century. Third,
inadvertently connected words can be split by inserting a blank character.
When the editing window is open or when the user hovers over a word, the corre-

sponding rectangle in the facsimile is highlighted. This is an important and motivating
feature that allows the user to quickly spot and doublecheck a suspicious word in
the image. The positions of each word were computed by the OCR system during
recognition. These coordinates provide the alignment between each word in the text
and the corresponding area in the image.
In order to draw the reader’s attention to words where the OCR software had low

recognition confidence (that is, potential OCR errors), a blue font color was used.
Unfortunately, the confidence values of the software were not as reliable as we had
hoped, and therefore not as helpful for guiding the human correctors.

In addition to correcting OCR errors, we asked the users to perform dehyphenation,
i. e. recomposing words that were hyphenated at a line break.

2.3.2 Workflow

In order to attract correctors to work on the task it is important to make initial access
as easy as possible. In Kokos we allowed all interested persons to read through the
text by browsing and searching. It was then an easy step to register with user name,
password and email address in order to sign up as a volunteer corrector. The downside
of this is that we know very little about our correctors.
In order to achieve consistent corrections, we provided a set of concise guidelines

with typical examples. Additionally, we curated a list of frequently asked questions
(FAQ), which was updated according to the problems which our correctors reported.
It probably would have been a good idea to introduce the task and the correction
guidelines with a short tutorial video.
Users can access the text through a table of contents sorted by yearbook, or a

text search, or a “Quick Start” button that leads to a page without or only a few
corrections, or an overview of finished and unfinished pages. Especially in the final phase
of correction, this view guided our volunteers to correct yearbooks completely. Our
basic workflow is “correct errors while reading a text of interest”. That crowd correction
is driven by curiosity became obvious to us when we noticed that all reports about
accidents in the mountains were corrected early on. They are exciting and thrilling.
On the other hand, articles about the geology of the Alps with many technical terms
(like e.g. Quarzporphyr, Kreideprotogine, paläozoische Granite in 1889) were left until
the end.
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By clicking on a button, users can mark a page as finished when they consider the
text carefully corrected. This button will also automatically advance the view to the
next page. Other users can still apply corrections to “finished” pages if need be. We
had pondered over whether to lock a page after a user has marked it as finished. The
advantage would have been that the page then cannot be affected any more by vandalism.
We decided against this automatic locking in order to allow for post-corrections and to
send a signal of trust to our contributors. This worked fine.
Kokos also supports an orthogonal workflow via global search and replace, which

includes a keyword-in-context view of the search results with facsimile image snip-
pets of the search word (see Figure 2). This speeds up the correction of repeated
recognition errors. In order to prevent users from introducing damage by accidental
mass replacements, we limited the amount of global replacements to 15 hits per user
interaction.
On each page, the correctors were reminded to preserve the spelling of the original

text,10 even if it deviated from modern orthography, or even if they encountered one of
the very rare printing errors in our carefully typeset books.

2.3.3 Crowd Management

In January 2014, the SAC monthly magazine LES ALPES, DIE ALPEN, LE ALPI (in
all three language versions: French, German and Italian) published a call for volunteer
helpers to correct our SAC heritage yearbooks. Dozens of users registered in Kokos
and started to contribute within days. After 7 months our active crowd had finished
correcting all of the 21,000 pages. We observed a performance pattern which seems
to be typical for crowd correction (Holley, 2009b, 15): there were not thousands of
volunteers doing tiny bits of work (typical for paid micro-work crowdsourcing), but
there was a small crowd of dedicated correctors doing most of the work.
Our correctors were cooperative and reliable, for instance, regarding marking pages

as corrected, and we never had to deal with vandalism. Our initial fears that we needed
to invest a lot of time to monitor the correction quality, or that a double correction of
all pages would be necessary in order to achieve the envisaged quality turned out to be
unsubstantiated. This is very much in line with Holley’s tip 14 “Assume volunteers will
do it right rather than wrong” (Holley, 2010).
In order to keep the top performers motivated and to give them feedback, a user

ranking based on the number of corrections proved to be useful. In our opinion, this
kind of gamification is sufficient for volunteers who are inherently interested in a task.
For community building, we regularly sent emails to the correctors once a month,
informing them about progress and system improvements.
Via social media buttons which we had integrated into each Kokos web page, the

users could promote interesting pages to common social media channels. However, this

10The most important deviations from modern orthography are “c” instead of “z” or “k”, “i” instead
of “ie” (acceptiren, modern form: akzeptieren), “th” instead of “t” (Thal).
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Figure 2: Search result in KWIC view with facsimile snippets for each hit for quick verification.

feature was not used a lot by our correctors, and therefore did not help to attract more
volunteer workers.

Even though our crowd correction initiative was advertised in all Swiss language
regions, the French texts in our collection were corrected late. We suspect that one of the
reasons was that we only offered a German user interface which made the Kokos system
foreign to French speakers. It is clearly important that the user interface including the
guidelines and the FAQ must be provided in the languages of all targeted contributors.

2.4 Related Work

In order to achieve high quality in the retrodigitization of printed historical text material,
there are two viable options (DFG, 2009): (a) manual transcription, or (b) OCR and
post-correction.

In the case of manual transcription, independent double-keying by non-native speakers
achieves the highest quality (typically, the contracted accuracy on character level is
higher than 99.95%), but is most expensive.11 For historical German, Haaf, Wiegand,
and Geyken (2013) confirmed these transcription accuracy numbers in their systematic
and representative evaluation on texts from 1780 to 1899 taken from the Deutsches
Textarchiv (DTA).12 A sample of 7,208 pages with 9.9 million characters in total was
proofread in DTA’s quality assurance platform DTAQ (2016) and 830 transcription
errors were revealed. This translates into an overall character-level accuracy of 99.99%.
Surprisingly, the accuracy of Antiqua and Gothic typeface was roughly the same.
In the case of OCR, post-correction can be done automatically or manually, for

instance, by crowd correction. In the remainder of this section, we discuss relevant
manual approaches and initiatives related to our work.
11Offshore double-keying costs between 0.4 and 0.8 euros per 1,000 keystrokes, depending on structural

markup and typeface (Piotrowski, 2012). An accuracy higher than 99% is standard (Long, 1993).
12http://www.deutschestextarchiv.de
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2.4.1 Crowd Correction

The Distributed Proofreaders web site,13 founded in 2000 by Charles Frank in order to
assist the Project Gutenberg in the digitization of Public Domain books, is probably
the first crowd-correction initiative, and still active with several thousands of volunteers.
The users proofread the OCRed raw text in a simple textual input form while reading
through the facsimile. No visual synchronization between the transcribed words and their
image location is available. Proofreading is done page per page in two separate rounds
by two different proofreaders, optionally, a third round can be applied. In contrast
to independent double-keying, these rounds follow each other. The site provides an
interesting spell-checking correction mode that presents a view of the text where only
words unknown to the spellchecker are editable and, in this way, guides the proofreading
process. Book-specific white lists of known and verified word forms can be updated in
this mode during the correction in order to adapt the spellchecker to the vocabulary
of a text. A qualification system based on the amount of accomplished corrections
and successfully passed quizzes concerning the guidelines regulates the type of work a
volunteer is allowed to perform. Different statistics monitor the progress of the projects
and the individual contributors. The user interface of the website is complex, which
partly is due to the fact that the site also includes functionality for formatting the
proofread e-books.
Wikisource,14 another long-term volunteer crowd correction infrastructure, was

founded in 2003 and has hundreds of active members. Its German and French in-
stances contain several hundred thousand public domain German and French pages
(books and single-leaf prints), many from the 19th century. The technical backbone
of every wikisource site is a mediawiki plugin that displays scans and OCRed text
side-by-side. No visual synchronization between the transcribed words and their image
location is available. Wikisource aims at producing corrected material that satisfies
scientific citability and needs. Wiki markup can be used directly in the proofreading
phase in order to render some of the typographic layout, for instance spaced type. A
page must be proofread in sequence by two different correctors in order to be considered
as validated. The correction workflow is openly managed by wiki tags that are set by
the users, however, validated pages are protected against further edits, and further
corrections must be requested by the wiki discussion pages. On the Wikisource as
well as on the Distributed Proofreaders web site, anyone can import new scanned text
material for correction.
The reCAPTCHA system (von Ahn, Maurer, McMillen, Abraham, & Blum, 2008)

has earned early fame for hiding crowdsourcing effort in OCR correction behind an
access system to websites. Users are shown two artificially distorted image snippets
where one is known to the system and used for preventing automated abusive access
to a website. The other is unknown15 and its text content will be determined by a
13http://www.pgdp.net
14https://wikisource.org
15Actually, the selection criterion for these words is that two different OCR systems suggested two

different words.
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majority vote of many contributors. Of course, users do not know which word is known
and which is unknown. An evaluation on a sample of 50 articles (24,080 words) of
the New York Times archive from 1860 to 1970 revealed an accuracy of 99.1% on the
word level. This is a large improvement over the standard OCR software word accuracy
of 83.5%, and very close to the 99.2% accuracy of the double-keyed transcription in
its initial state. The final ground truth was produced by carefully comparing every
difference between the manual transcription and the reCAPTCHA output.
The National Library of Australia has set up trove,16 a system for crowd correction

of OCRed historical newspapers (Holley, 2009a). The main goal of this initiative is
to have the corrected text content accessible for fulltext search, therefore, typograph-
ical formatting information is not preserved. The guidelines also explicitly allow for
corrections of obvious typesetting errors in the facsimile, however, they encourage the
users to add corresponding comments. The user interface has to deal with the complex
newspaper column layout. Corrections are applied line by line to segmented articles
and the user interface dynamically highlights the corresponding line in the facsimile.
There is no proofreader workflow defined on the level of articles or pages, correctors
can change any text anytime.

An important technical measure of trove for avoiding vandalism is the transparency
of user edits: recent edit operations are streamed “live” in the user interface and
any user can inspect the recent corrections of any other user. If users detect large
amounts of spam or malicious corrections, they can request a roll back. Small fonts
in combination with low paper and print quality of historic newspapers often produce
bad OCR output, even with the best software available. From 2008 to the end of 2016,
almost 220 million lines have been corrected manually. At the end of 2016, there were
about 46,000 registered users, but many of them contributed only few corrections, but
few correctors contributed a lot. The hall-of-fame reveals that the top ten volunteers
have corrected 4.2, 2.9, 2.7, ..., 1.4 million lines by the end of 2016, which amounts to
21.4 millions in total and almost 10% of all corrections.

Commercial platforms for digitization and document collection management such
as Veridian17 have also successfully integrated user correction of digitized historical
newspapers. Veridian is in use by several large libraries around the world. For instance,
the California Digital Newspaper Collection18 counted 7.45 million lines corrected by
2,582 users at the end of 2016. Again, the distribution of corrections per user is extreme:
the top ten volunteers produced 4.06 millions (54.5%) of all corrections. The user
interface and workflow is similar to trove; some functionality is missing though, such as
the addition of lines that were not recognized at all by the OCR engine. Rose Holley’s
blog entry (Holley, 2013) lists five US historical newspapers that employ crowdsourcing
for OCR corrections, as well as an Australian, Finnish, Russian, and Vietnamese one.
The amount of newspaper pages in combination with the quality of the OCR output

16http://trove.nla.gov.au
17http://www.veridiansoftware.com
18http://cdnc.ucr.edu/cgi-bin/cdnc
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make volunteer crowd correction a cost-effective instrument for improving access to
these heritage data.
The Deutsches Textarchiv (DTA) (Geyken & Gloning, 2015), a large philological

archive of 15th–19th-century German texts, includes a web-based quality assurance
platform which is open to anyone (Haaf et al., 2013). Although many texts have been
transcribed manually by double-keying and are almost free of errors, recently more
OCRed texts have been added to the archive.19 The document representation in the
DTA is a highly structured XML format (Haaf, Wiegand, & Geyken, 2014), which
requires specific expertise. Therefore, the correction workflow for volunteers is more
restricted and adopts the paradigm of issue tickets known from software development.
If a user detects a transcription error, he opens a ticket linked to the faulty words,
describes the type of error in a form (which covers other issues as well, for instance,
formatting or structural problems), and inserts the corrected words in a text field of the
form. Each ticket is then resolved by a DTA staff member. This procedure for correcting
text errors is more cumbersome for the user, slower than the aforementioned workflows,
and probably not suited for the initial correction of raw OCR output. However, it
guarantees the preservation of the high philological quality standards of the project.
The correction workflow is based on pages and the user has to explicitly mark a page
as corrected; the platform distinguishes two types of transcription validation, (a) a
confirmation that the extracted text has been read carefully and no text problems have
been found, and (b) a confirmation that the extracted text corresponds to the shown
facsimile. No visual synchronization between the transcribed words and their image
location is available.
The PoCoTo system for postcorrection of OCRed historical text comprises several

tools and a web-based interface with an interactive workflow whose efficiency has been
attested by a small user study (Vobl, Gotscharek, Reffle, Ringlstetter, & Schulz, 2014).20

An interesting feature is the interlinear-like view where facsimile snippets of individual
tokens and their recognized text are presented in reading order. The system suggests
correction candidates computed in a corpus-based unsupervised manner (Reffle, 2011).
The interface also offers batch correction of precomputed error series (e. g. u→ n) in a
concordance view.
Citizen science web sites such as crowdcrafting21 offer a PDF transcription task

template which can be used for hosting small-scale projects.
Our review shows that crowd correction for books typically works on the level of

pages. For newspapers, corrections are typically applied on the level of individual lines
in the context of an article. Yet another approach for involving the crowd into OCR
correction is reported by Wang, Wang, and Chen (2013) for ancient Chinese books.
They first extract graphically similar Chinese characters and present them to the users
in a row for quick verification. This reduces the correction task to the question whether

19Some of them were taken from the German wikisource site in their corrected form.
20https://github.com/cisocrgroup/PoCoTo
21See http://www.crowdcrafting.org, which is based on the popular pybossa crowdsourcing framework.
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all logograms in a row are the same. A prototype with a similar approach for old Venice
manuscripts has been explored by Simeoni, Mazzei, and Kaplan (2014).
Chrons and Sundell (2011) present Digitalkoot,22 a gamification-based system for

correcting OCR errors in old Finnish newspapers typeset in Gothic font. The words
are taken out of context and inserted into simple games. The authors monitored the
activities for the initial two months, in which 4,800 persons played the games and
completed 2.5 million microtasks. This was the result of heavy media coverage with
more than 30 newspaper articles and some TV programs reporting on the project.
The authors remark that a small percentage of users provided one third of the work,
therefore showing a similar user behavior compared to volunteers. The quality of the
crowd corrections was very high and improved the text from 85% word accuracy to
over 99%. At the end of the project after 22 months, 8 million microtasks had been
solved by the gamers, however, this did not result in 8 million corrected tokens. Several
gamers had to agree on a transcription before it will be accepted. Additionally, many
known items had to be presented in order to identify “cheaters”. Therefore, Kettunen
(2016) concludes that “this approach is clearly not feasible” for the correction of the 837
million words in this corpus and advocates improved automatic OCR post-correction.
Seidman, Flanagan, Rose-Sandler, and Lichtenberg (2016) describe another OCR

correction initiative set up as purposeful gaming.23 The basic idea is similar to
reCAPTCHA: words which have been recognized differently by two independent OCR
systems are presented to the crowd. The key challenge in the gamification of OCR
corrections is the question of how to decide whether a user contribution for an “unknown”
word should be rewarded as correct or not. Seidman et al solve the problem by decoupling
the reward to the player from the decision on the ground truth. The player is rewarded if
his/her contribution exactly matches one of the OCR suggestions, or if it exactly matches
an accepted contribution created earlier by another player.24 New contributions by
players are only accepted in the system if they match the common substrings of the OCR
systems. The ground truth for an unknown word is determined by a threshold of how
many times an exact match was found for a contribution. Although the professionally
designed game worked technically and even received an award in the field of purposeful
gaming, Seidman et al. (2016) had to concede that this approach does not deliver the
needed amount of corrections.
The main differences between our platform and the ones mentioned above are the

following. First, our system is not practical for documents with complex layout such as
newspapers. Second, from a technical point of view our platform is simple, however, it
relies on specific HTML output formats produced by the OCR software. Third, instead
of trying to create an artificial gaming setup where volunteers would only see single
words in isolation, it is important for us to let them read historical documents while
correcting OCR errors.

22http://www.digitalkoot.fi
23A working version of the game is online under http://smorballgame.org.
24The game logic tries to minimize false negatives at the cost of allowing the gamer to be rewarded

for false positives. Seidman et al. (2016) estimate the false negative rate to be 3%.
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In summary, it is safe to state that crowd correction by motivated volunteers is the
best strategy to correct annoying OCR errors if your budget does not allow for paid
work. Gamification cannot help to correct large amounts of OCR data, even when the
input for the correction is reduced to the material where OCR systems disagree. Crowd
correction of a large amount of text in a language with a large group of speakers will
generally work better; however, even then typically only very few volunteers are doing
most of the work. The example of Trove newspaper correction shows that volunteers
are also helpful for correcting OCR output with a much lower quality than ours. As a
positive side effect, involving a crowd of users is also a good way to disseminate the
digitized cultural heritage material.

3 Results

We investigated our crowdsourced corrections in two ways: with a quantitative analysis
of the modifications, which is detailed in Section 3.1, and by evaluating the quality
of the corrected texts in a representative sample that was checked separately by two
persons (Section 3.2).

3.1 Amount of Corrections

For assessing the amount of corrections, we compared two snapshots of the texts, taken
at the start and at the end of the correction phase. We determined the amount of
corrections by means of the modification rate between the two versions, which is the
character edit distance (Levenshtein, 1966) divided by the length of the corrected text.
We computed the modification rate with the ISRI frontiers toolkit (Rice, 1996), which
is meant for analyzing modifications in OCR text. Across the entire corpus, the edit
distance sums up to a total of almost 300,000 edit operations (see Table 1). This means
that 0.79% of the text was modified in the correction process (micro-average). The
mean modification rate per page (macro-average) is more than ten times higher, which
means that a significant portion of the modifications originates from pages with a small
amount of text. Both average figures show an exceptionally high standard deviation of
430%.25

A major source for this high variability are errors in Layout Recognition, an early
stage of OCR responsible for detecting and ordering blocks of text and other page
elements, such as figures and tables. When addressing these errors, the correctors
often had to rearrange contiguous spans of text (up to multiple paragraphs) in order
to establish the correct reading order. However, corrections that involve moving text
regions are not appropriately reflected by tools that focus on local changes on the
word or character level: While the actual edit action requires only a few clicks and
keystrokes independent of the size of the moved text, the tool records a sequence of

25Deleting major portions of a page may lead to an edit distance greater than the length of the
corrected text, which results in a modification rate of more than 100%.
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Table 1: Effects of filtering on corpus size and modification rates.

para- cumul. modification rate
filtering pages graphs tokens characters LD macro (SD) micro (SD)

% % % %
none 21,246 137,395 6,451,906 37,158,538 293,366 8.51 (430.0) 0.79 (430.1)
page-wise 19,029 110,726 5,857,982 33,886,068 180,987 2.83 (18.9) 0.53 (19.1)
./. DE 17,190 93,575 5,236,748 30,720,939 160,625 2.55 (18.0) 0.52 (18.1)
./. FR 1839 17,151 621,234 3,165,129 22,969 4.36 (23.3) 0.72 (23.6)
para-wise 19,024 107,043 5,838,302 33,773,261 141,592 1.28 (4.5) 0.42 (4.6)
./. DE 17,186 90,855 5,221,461 30,632,199 127,316 1.26 (4.3) 0.42 (4.4)
./. FR 1838 16,188 616,841 3,141,062 14,276 1.39 (5.9) 0.45 (5.9)

deleted characters in one spot and a corresponding insertion elsewhere, measuring a
value proportional to the number of characters shifted.

In order to avoid this distorting effect and to measure the amount of typical corrections
in running text more reliably, we removed pages that were prone to artificially enlarge
the number of edit operations for the evaluation. In particular, we removed table-of-
content pages (which had been manually corrected in the initial digitization phase
already) and pages with large tables or page-size images. Furthermore, we discarded
pages written in one of the sparsely represented languages, i. e. languages other than
French or German, and pages containing more than one language,26 which enabled us
to analyze the modifications separately for the two major languages.

Identifiers embedded in the HTML markup allowed us to easily align both versions at
the paragraph level. We removed paragraphs that were missing in one of the snapshots
(which means that they were either completely deleted or inserted in the correction
phase). After this filtering, we were left with a set of around 19,000 pages with a
total of 111,000 paragraphs and 33.9million characters, resulting in a reduction of
approximately 10% (see the rows concerning page-wise filtering in Table 1).

In this filtered corpus, the modifications in the French and German sentences affect
180,000 characters, which equals to an overall modification rate of 0.54% (micro-average).
For French the modification rate is 0.72%, which is considerably higher than for German
(0.52%). The mean modification rate of all paragraphs (macro-average) shows an even
more substantial difference between German and French.

The difference between micro- and macro-average as well as the large variance indicate
that, still, a small number of paragraphs have a high modification rate. Inspecting such
cases revealed that many occurrences of text reorganisation had remained, e. g. in tables
that had not been removed in the first filtering method. Since our ID-based paragraph
alignment does not capture text regions moved across paragraphs, we decided to exclude
these cases in an additional filtering step. We removed all paragraphs which showed a

26As identified by our downstream processing pipeline.
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Table 2: Word error rate of the paragraph-wise filtered corpus.
macro (SD) micro (SD)

4.23% (13.25%) 1.58% (13.51%)
./. DE 4.39% (13.50%) 1.59% (13.78%)
./. FR 3.09% (11.59%) 1.54% (11.69%)
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Figure 3: Text size and modification rate (micro-average) in the paragraph-wise filtered data.

change in length of 10% or more between the two snapshots. This reduced the corpus
size by only around 0.3% (see the rows concerning paragraph-wise filtering in Table 1).
The overall modification rate decreased by a fifth to 0.42%, and the gap between
German and French became smaller (0.42/0.46% respectively in micro-average). As a
side effect, this filtering also removed spurious paragraphs caused by spots or dirt.

The modification rate is computed on the level of characters, rather than words. This
has the advantage that it can be easily derived from the edit distance and that it reflects
directly the amount of edit operations (keystrokes) which the correctors performed.
Also, it avoids the complexity of different tokenization rules for different languages, and
the rate includes modifications that affect non-word characters (punctuation). However,
the amount of words that were changed in the correction phase is a meaningful figure
too. Therefore, Table 2 shows the proportion of word tokens in the paragraph-wise
filtered corpus that were modified by the correctors. We used the ocrevalUAtion tool
(Carrasco, 2014) to compute the word error rate of the original text, as compared
to the crowd-corrected version. It is interesting to see that the word error rate is
lower for French than for German (clearly for the macro-average), whereas the inverse
distribution is found for the character-level modification rate. This suggests that more
misrecognized characters are concentrated in fewer words in the French texts.
Figure 3 shows the modification rates across all yearbooks, plotted against the text

size. We found no correlation between the size of a yearbook and its modification
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rate, nor did we observe a clear tendency over time (correlation age–modification rate).
Often, the modification rates for French and German develop in parallel, which seems
intuitive given that paper and printing quality as well as the condition of preservation is
the same within one multilingual yearbook. French tends to have a stronger amplitude,
showing low values for volumes with a low total rate and even much higher values for
highly modified volumes. At least partially, the increased variability might be due to
the relatively small amount of French texts, which gives more weight to individual
outliers. Some of the slumps in the modification rate (e. g. 1890, 1899) can be attributed
to correction efforts early in the digitization process, which were carried out using the
user interface of the OCR software. This means that, occasionally, the text quality
was already considerably improved before exporting into the online correction system,
leaving less work to do for the crowd correctors.

A selection of frequent corrections is given in Table 3. All examples are misrecognized
tokens that were corrected multiple times in different places. In many cases, the affected
word posed increased challenges to the OCR system, in that it is not expected to be
found in a dictionary that covers the general vocabulary of contemporary German or
French. Often this is due to orthographic and linguistic variation, such as regional
(examples 10–14) and historical spelling (13–16, 34–37) as well as outdated morphology
(17–19), or because the word belongs to an open class, such as toponyms (20–23, 44–52),
and person names (24–27, 38–40). Many errors are related to spurious or missing
diacritic marks (11–14, 17–19, 32–37, 43–44, 48–50). Also, non-alphanumeric characters
(55–57), superscripts (51–54), and certain letters (e. g. upper-case R, see 7–9, 47) are
generally badly recognized. Occasionally, French words appear as if the background
dictionary of another language was in place during recognition (41–45). Some place
names show a spelling alternation adapted to French orthography, whereas they had
been recognized in the spelling of their original language (48–50).

From a natural language processing point of view, it is worthwhile to look at cases that
are particularly hard to tackle in automated post-correction. As such, many corrections
deal with real-word errors (3–6, 10–14, 16–21, 38), i. e. tokens that match an existing
word, which means that their erroneous nature can only be revealed through their context
or by comparison with the facsimile. A similarly tricky issue is dehyphenation, which
cannot be performed mechanically in a linguistically unaware fashion (see example 28
vs. 30). We tried to estimate the amount of different real word error types for words
(excluding their non-alphanumeric characters such as quotation marks or hyphenation
characters). About 19% of all word types that were corrected at least once can be
found in the corrected version of our corpus, and therefore, might be considered as real
word errors.

Table 4 shows the most frequent edit operations. Most of the top modifications
are concerned with fixing word boundaries through insertion and deletion of spaces
and hyphens. Some operations had been carried out using the search and replacement
interface, such as the global replacement of quotation marks or the removal of squares
and bullets. 35.9% of the modifications are deletions of one or more characters (mostly
punctuation and whitespace characters). Many corrections are related to letters with
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Table 3: Frequent word corrections.

German
OCR corr.
nnd und (1)
zn zu (2)

sieh sich (3)
Ton von (4)
Über über (5)
lieber Ueber (6)

Eichtung Richtung (7)
Kichtung Richtung (8)
Bedaktion Redaktion (9)

Hessen liessen (10)
massig mässig (11)
Händen Handen (12)

Centralcomite Centralcomité (13)
Bureau Büreau (14)
Thaies Thales (15)

grossenteils grossentheils (16)
altern ältern (17)

Schütze Schutze (18)
Schlüsse Schlusse (19)
Eimer Elmer (20)

Gesehenen Geschenen (21)
Unterwaiden Unterwalden (22)

Bergeil Bergell (23)
Bubi Dübi (24)

Imfeid Imfeld (25)
111. Ill. (26)

Franche Francke (27)
Ueber-gang Uebergang (28)

all-mälig allmälig (29)
Schnee-und Schnee- und (30)

French
OCR corr.

11 Il (31)
ä à (32)

oü où (33)
complètement complétement (34)

mètres mêtres (35)
privilège privilége (36)

sécher sècher (37)
Aimer Almer (38)
Ford Forel (39)

Nsegeli Nægeli (40)
Tun l’un (41)
Us Ils (42)

ä l’etude à l’étude (43)
See Scé (44)

Mordes Morcles (45)
VOfenpass l’Ofenpass (46)

Ehône Rhône (47)
Lütschine Lutschine (48)
Saas-Fee Saas-Fée (49)

Palù Palu (50)
S*-Bernard St-Bernard (51)
S'-Gothard St-Gothard (52)

language-independent
OCR corr.

') 1) (53)
m 8 m3 (54)
-f- + (55)

°/o % (56)
Va ½ (57)

diacritic marks, which appear to be particularly challenging for OCR in a multilingual
corpus. 7.6% of the observed edit operations differ only by diacritics (e. g. a→ä or vice
versa).

3.2 Quality of Corrections

In order to assess the quality of the corrected pages, we decided to carefully validate
them using a representative sample. For having a wide base, sampling units should be as
small as possible, e. g. words or even single characters. However, proofreading individual
characters is tedious, and judging words also often requires additional context. In the
trade-off between coverage and sufficient context, we set the unit size to a span of 1–2
printed lines, on which the proofreaders consented that it is considerably less tiring than
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Table 4: Most frequent edit operations.

German French
freq. OCR corr. freq. OCR corr. freq. OCR corr. freq. OCR corr.

13,970 ‹ › ‹› 528 ‹a› ‹ä› 2024 ‹ › ‹› 49 ‹»› ‹s›
10,006 ‹-› ‹› 496 ‹Y› ‹V› 701 ‹e› ‹é› 45 ‹B› ‹R›
7175 ‹"› ‹“› 486 ‹é› ‹e› 526 ‹-› ‹› 44 ‹œ› ‹æ›
3669 ‹› ‹ › 461 ‹•› ‹› 417 ‹› ‹ › 42 ‹› ‹.›
2644 ‹i› ‹l› 411 ‹u› ‹n› 372 ‹"› ‹“› 41 ‹*› ‹1›
1942 ‹e› ‹c› 407 ‹ii› ‹ü› 183 ‹.› ‹› 39 ‹O› ‹0›
1354 ‹.› ‹› 383 ‹o› ‹ö› 141 ‹-› ‹ › 38 ‹V› ‹l'›
1147 ‹K› ‹R› 380 ‹ii› ‹n› 128 ‹ä› ‹à› 38 ‹*› ‹t›
1146 ‹E› ‹R› 358 ‹ti› ‹ü› 126 ‹,› ‹› 37 ‹- › ‹›
1079 ‹u› ‹ü› 353 ‹™› ‹ m› 124 ‹e› ‹è› 36 ‹,› ‹.›
1070 ‹"› ‹› 337 ‹0› ‹O› 114 ‹n› ‹„› 35 ‹. › ‹›
912 ‹,› ‹› 332 ‹,› ‹.› 113 ‹i› ‹l› 35 ‹I› ‹l›
847 ‹B› ‹R› 294 ‹› ‹.› 112 ‹e› ‹c› 34 ‹se› ‹æ›
824 ‹li› ‹h› 275 ‹*› ‹1› 98 ‹é› ‹e› 34 ‹-› ‹—›
783 ‹-› ‹ › 269 ‹a› ‹u› 98 ‹n› ‹› 33 ‹'› ‹›
782 ‹U› ‹ü› 268 ‹—› ‹-› 95 ‹•› ‹› 33 ‹è› ‹é›
766 ‹n› ‹u› 236 ‹«› ‹e› 94 ‹'› ‹› 32 ‹li› ‹h›
741 ‹ö› ‹o› 229 ‹ii› ‹u› 91 ‹E› ‹R› 32 ‹0› ‹O›
722 ‹ü› ‹u› 226 ‹- › ‹› 85 ‹—› ‹-› 32 ‹Y› ‹V›
713 ‹'› ‹› 225 ‹B› ‹D› 82 ‹ii› ‹ü› 32 ‹'› ‹t›
655 ‹n› ‹› 221 ‹tt› ‹ü› 82 ‹K› ‹R› 32 ‹e› ‹ê›
625 ‹ä› ‹a› 218 ‹*› ‹› 80 ‹'› ‹1› 31 ‹.› ‹ ›
604 ‹'› ‹1› 214 ‹a› ‹n› 76 ‹™› ‹ m› 31 ‹a› ‹s›
573 ‹e› ‹é› 213 ‹i› ‹› 73 ‹n› ‹u› 27 ‹k › ‹›
533 ‹m› ‹rn› 202 ‹»› ‹s› 50 ‹"› ‹› 27 ‹'› ‹ ›

reading randomly sampled words. Therefore, we divided the filtered corpus into snippets
with a soft target size of roughly 100 visible characters (117 including whitespace, on
average), which was adjusted accordingly to meet word and page boundaries.

For determining the minimal required size of the sample, we regarded the problem as
an application of empirical probability of one character being incorrectly recognized.
Preliminary investigation suggested that the rate of remaining errors did not exceed
0.1% on the level of characters. Since the distribution of the two classes (correctly
vs. incorrectly recognized) are very skewed (999:1), we chose a narrow error band of
±0.02%. With a significance level of p < 0.01 (and thus z2 ≈ 6.635), the minimal
required sample size in terms of characters is:27

z2

0.00022 × 0.001× (1− 0.001) = 165706.54

27Assuming that recognition errors are independent of each other, so that sampling sequences of
contiguous characters yields the same distribution as sampling individual characters.
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As this number is close to 1
200 of the corpus, we divided the corpus into 200 stratified

folds and picked one for proofreading. Each fold contained approximately 1440 snippets
that were randomly sampled, but with a distribution representative for the entire corpus
with regard to yearbook and language.

The selected sample had a size of approximately 25,000 word tokens. It was indepen-
dently proofread by two German native speakers with good knowledge of French. They
were asked to correct the snippets according to the guidelines of the crowd correctors.
For each snippet, an appropriately cropped facsimile image was provided for collation.
5% of the snippets were modified by at least one proofreader. Well over half of the

modifications were done by both correctors in agreement, the rest was contributed by
either of them in similar parts. When both proofreaders modified the same word, their
modifications were always identical, i. e. they never disagreed on how to correct an
error, but only on its mere presence. It is most likely that the disagreements arose
from varying attentiveness, rather than differences in judgment: Some of the errors just
slipped through, as they already had for our crowd correctors.

We sought for a way to quantify the agreement between the correctors with a standard
measure. If we assume that the correction of each detected error is unambiguous, the
modifications can be modeled as a binary classification task (namely error detection) on
the word level. Thus, each word in the sample is a data point, comparing the correctors’
decisions to change this word or leave it unchanged. Measuring the agreement with
Fleiss’ κ (Fleiss, 1971) yielded a value of 0.67. Discussions between the proofreaders
revealed that the guidelines were not detailed enough concerning whitespace (e. g. spaces
separating the integer and fractional part in decimal numbers). By applying appropriate
adjudication to these cases, κ raised to 0.73.
We then merged the proofread snippets into a single gold standard. Judging from

the κ score, a few errors may have remained undetected, but we expect them not to be
more than a handful, as the number of errors found by only one of the proofreaders
and missed by the other was small.

By comparing to the gold standard, we measured the spelling quality of the sample
as corrected by the online collaborators. In total, the proofreaders corrected 113
characters in 72 words, which means that the crowd-corrected texts achieved a high
accuracy of 99.71% on the level of words and 99.93% on the level of characters.
Qualitatively, most of the remaining errors were hard-to-spot details, such as missing
commas or diacritics (e. g. avance/avancé) or substitutions of similarly looking letters
(e. g. Clnbhütte/Clubhütte, Generalyersammlung/Generalversammlung).

Based on the accuracy figures, we estimate the proportion of errors removed by the
crowd correctors. The modification rate of the filtered corpus tells us that 141,592
characters were edited (see Table 1). Under the assumption that every modification by
the correctors effectively contributed to an error correction, this can be considered as
the number of removed character errors. Extrapolating the observed rate of remaining
errors in the sample (0.07%28) to the entire corpus (33.8 million characters), we can

28The exact observed character error rate is 113
169619 .
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estimate the amount of remaining errors to be approximately 22,500 character errors.
This means that our online collaborators removed a proportion of 141592

141592+22500 of all
errors, which is a reduction rate of 86%. For the word level, an analogous computation
yields an estimated reduction rate of 85%.

3.3 OCR19thSAC: an OCR Resource for Training and Testing

While correcting the OCR errors in our heritage corpus of German and French texts
from the Alpine domain, we created a large OCR ground truth that can be either used
as OCR training and testing material, or for optimizing automatic OCR post-correction,
or as a resource for lexicon extraction. The estimated word-level accuracy of 99.7%
provides a good basis for evaluating systems that either process the scanned images of
the pages or try to improve upon the output of a standard OCR system. We provide
the scanned images, the initial snapshot of the extracted text, and the crowd-corrected
ground truth (final snapshot).
We distribute the textual portion of our OCR19thSAC corpus in three different

versions:

1. Complete multilingual corpus without filtering, page-wise aligned with the scan
images. Provided in two variants: text only and text plus image coordinates
of word boundaries. The latter is suited for extracting training material for an
OCR engine which often requires image snippets of lines and their corresponding
ground truth text.

2. Corpus with page-wise filtering (as described in Section 3.1), paragraph-wise
aligned across snapshots; suitable for training a post-correction system.

3. Same as 2, but with additional paragraph-wise filtering, that is, without paragraphs
that changed more than 10 % (measured in characters) between the two snapshots,
also suitable for post-correction training.

All versions are provided as UTF-8 encoded plain text for both snapshots, that is OCR
output quality and crowd-corrected quality, under a Creative Commons Attribution 4.0
International License.29

Although many project are involved in the digitization of heritage text material
and OCR correction, surprisingly few OCR datasets are available in a suitable form
for training and testing. In the course of the IMPACT project (Tumulla, 2008), a
collection of ground-truth texts was created from digitized historical printed texts. The
resource is advertised on the Impact Centre of Competence’s website,30 however, it is
only accessible to members.

The open-source OCR framework OCRopus (Breuel, 2008) could be trained with our
resource. More recently, Breuel, Ul-Hasan, Al-Azawi, and Shafait (2013) have shown
that an OCR system based on LSTM neural networks is able to outperform commercial
29See http://pub.cl.uzh.ch/purl/OCR19thSAC for download
30http://www.digitisation.eu/tools-resources/image-and-ground-truth-resources/
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systems even with a rather small training set. Berkeley’s GPU-enabled state-of-the-art
historical OCR system Ocular (Berg-Kirkpatrick & Klein, 2014)31 can easily be trained
for documents with simple one-column book-like layouts and performs substantially
better on historical data than commercial off-the-shelf systems.

4 Conclusion

We have shown that interested volunteers can effectively solve annoying OCR quality
problems for the scientific community. In our case we were able to recruit volunteers
from an inherently interested community that additionally has a long tradition of citizen
science. Other success factors that we consider relevant for projects like ours are: (a)
simple and concise guidelines, (b) an easy to use user interface with intuitive user
interactions, (c) visual aids for quickly moving between the textual representation and
its location in the facsimile image, (d) support for different ways of accessing the text
and detecting possible errors, for instance, by reading sequentially or by investigating
search results, (e) constant feedback about the correction progress on the level of
validated pages, (f) personal correction statistics and high score rankings. The latter
is needed in order to keep motivation up for the top volunteers who typically show
an incredible amount of dedication to the task. The achieved accuracy of 99.93% on
character-level comes close to the performance of double-keying transcription methods.
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Abstract

For indexing the content of digitized historical texts, optical character recognition
(OCR) errors are a hampering problem. To explore the effectivity of new strategies
for OCR post-correction, this article focuses on methods of character-based machine
translation, specifically neural machine translation and statistical machine translation.

Using the ICDAR 2017 data set on OCR post-correction for English and French, we
experiment with different strategies for error detection and error correction. We analyze
how OCR post-correction with NMT can profit from using additional information and
show that SMT and NMT can benefit from each other for these tasks. An ensemble of
our models reached best performance in ICDAR’s 2017 error correction subtask and
performed competitively in error detection.
However, our experimental results also suggest that tuning supervised learning

for OCR post-correction of texts from different sources, text types (periodicals and
monographs), time periods and languages is a difficult task: the data on which the MT
systems are trained have a large influence on which methods and features work best.
Conclusive and generally applicable insights are hard to achieve.

1 Introduction

Optical character recognition (OCR) is an important processing step for text digitization,
especially with the growing interest in digital humanities. Unfortunately, the output
of OCR systems for historical documents is often faulty due to both orthographic
and typographic variation as well as due to poor condition of the source material
(especially for newspapers). Therefore, it is necessary to take measures to improve
the quality of existing OCR-generated text if re-OCRing of the image material is
not an option. Recently natural language processing (NLP) tasks have profited from
neural methods. Neural machine translation (NMT) outperformed statistical machine
translation (SMT), thus, NMT now supersedes SMT in research and practice. Since
string-to-string translation methods have been used to correct OCR errors for a long
time, it is interesting to explore how character-based NMT can be employed for this
task.
This paper focuses on two questions: How does character-based NMT perform

compared to character-based SMT in the case of OCR post-correction? How can these
approaches be improved by using more information during training and translation?
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Note that our historical data we are working with represents the task of correcting
OCR output into the spelling found in the original documents and does not include any
modernization of the texts. The rest of this article is structured as follows: In the next
section, we discuss previous work relevant to OCR post-correction, neural modeling of
related NLP tasks and character-based MT. Section 3 describes the data used in our
experiments and Section 4 presents the methods. Section 5 gives details on the results
and discusses the major findings. In Section 6, we offer our ideas for future work and
finally, we conclude in Section 7.

2 Related Work

2.1 OCR Post-Correction

Volk et al. (2011) discuss three possible ways to tackle the problem of OCR errors:
Modifying the input images, altering the OCR system, or post-processing the output
text. Since it does not involve re-OCRing, a considerable number of approaches have
focused on the last option. Kukich (1992) discusses various automatic methods to find
and correct errors, such as n-gram or dictionary-based techniques. Eger et al. (2016)
compare traditional spelling error correction techniques with general string-to-string
translation methods, and evaluate on an OCR data set. They show that the latter
methods achieve significantly better results than (weighted) edit distance or the noisy
channel model (Brill and Moore, 2000).
Based on the idea that OCR post-correction can be cast as a translation task, Afli

et al. (2016) have successfully trained an SMT system to translate historical French
texts with OCR errors into corrected text. Their model outperforms language model
based techniques. However, they use a large training set of more than 60 million tokens.
This exceeds by far the size of the ICDAR training sets used in our experiments. In
previous experiments, Afli et al. concluded that word-level SMT systems perform
slightly better than character-level systems for OCR post-correction (Afli et al., 2015).
The size of the training set there was over 90 million tokens.

2.2 OCR Correction of Historical Texts

The introductory book by Piotrowski (2012) resumes the problems of OCR, historical
spelling and correction. The TICCL system by Reynaert (2016) is an unsupervised
corpus-based approach to OCR post-correction that has been developed over many
years and works for several languages. However, it requires high-quality lexicons in
order to be effective. Silfverberg et al. (2016) present an interesting supervised approach
for historical Finnish OCR correction of isolated words that formulates the problem as a
sequence labeling task and uses weighted finite-state transducer techniques to implement
it. The official ICDAR OCR post-correction paper (Chiron et al., 2017) contains concise
descriptions of the different approaches that the shared task participants used for their
solutions.
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The recent paper of Schulz and Kuhn (2017) presents a complex architecture for OCR
post-correction of historical texts that includes token and character-level SMT as well
as specialized tools for merging and splitting of erroneous tokens. Their related work
section gives a good overview on older and newer approaches. Due to space restrictions
and our focus on experimenting and evaluation, we refer the interested reader to their
discussion.

2.3 Neural Networks for NLP Tasks

Recently, neural networks have been given much attention in the field of computational
linguistics. Especially the work of Sutskever et al. (2014) has prompted much research
which focused on employing sequence-to-sequence (seq2seq) neural networks in various
NLP tasks. Examples include effectively using neural networks for transliteration (Rosca
and Breuel, 2016), for grapheme-to-phoneme conversion (Yao and Zweig, 2015), for
historical spelling normalisation (Bollmann and Søgaard, 2016) and language correction
of second language learners (Xie et al., 2016).
All of these tasks can (at least partly) be viewed as string-to-string translation

problems and are, thus, closely related to OCR post-correction. The models were all
successful, performing at least equally but mostly better than traditional NLP methods
such as methods based on (weighted) edit distance (Xie et al., 2016).
However, Schnober et al. (2016) express their doubt whether neural networks are

already at the point where they can entirely replace traditional approaches. They
evaluated the performance of encoder-decoder neural networks against established
methods for spelling correction, OCR post-correction, grapheme-to-phoneme conversion
and lemmatisation. Some of the string-to-string translation systems they used as
baselines were also evaluated by Eger et al. (2016). It is particularly interesting to
see how neural network approaches performed compared to these models which were
previously shown to exceed (weighted) edit distance and other techniques.
In the experiments of Schnober et al. on OCR post-correction, the neural network

systems did not manage to outperform a system built with Pruned Conditional Random
Fields on a training set of 72,000 misrecognized words. Despite these negative results,
the work gives valuable insight into model selection for neural network approaches.
Attention-based models (Bahdanau et al., 2015) show significant improvements over
plain seq2seq models. On a smaller training set, the attention-based models also
performed better than the Pruned Conditional Random Fields. In contrast to the
experiments conducted by Schnober et al., our data does not only contain misrecognized
words. Therefore, the task becomes harder since the systems also need to detect
erroneous words before trying to correct them.

2.3.1 Character-based NMT

NMT (Koehn, 2017) needs a fixed vocabulary to generate fixed-size vectors as input
to the neural network. The larger this vocabulary is, the less unknown words occur,
but the longer it takes to train the model and to apply it. To address this drawback,
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Monograph Periodical
Language fr en fr en

Total # of Tokens in Ground Truth 597967 624678 255527 249483
Total # of Tokens in Original OCR Output 604444 649604 268742 274413

Erroneous Tokens 6.34% 6.22% 11.89% 12.11%

Table 1: Overview of the training set: Percentage of erroneous tokens (relative to the number of
tokens in the OCR output using whitespace tokenization).

many approaches have been proposed to design open vocabulary NMT systems. These
range from simple dictionary lookup techniques (Luong et al., 2015) over integrating
SMT features (He et al., 2016) to specific design choices for the NMT architecture itself.
Luong and Manning (2016) use a hybrid-system which translates primarily on word-level
and falls back to a character-based representation for OOV words. Similarly, Sennrich
et al. (2016) propose to translate on subword-level. They use byte pair encoding to
create a vocabulary that is built bottom up, starting with characters and then adding
larger subwords made from already known entries. The resulting vocabulary will contain
characters, subwords as well as whole words.

Chung et al. (2016) designed a character-based decoder without explicitly segmenting
the character sequences to match words. They motivate their approach with the following
arguments: There is always a risk of introducing artificial errors when sentences are
explicitly segmented into words. Furthermore, a character-based model will not suffer
as much from data sparsity since stem forms and affixes can be treated separately.
Finally, the system has a much better chance at generalization for unseen word forms.
Extending this idea, Lee et al. (2017) aimed to design a fully character-based NMT
system without explicit segmentation. They observe that their model is capable of
locating spelling errors and still producing the correct translation. This finding is shared
by Zhao and Zhang (2016).
Motivated by the mentioned approaches and their outcomes, we employ character-

based NMT for post-correcting OCR errors. Since character-based NMT proved to
handle spelling errors we assume that it will also perform well on OCR errors.

3 ICDAR 2017 OCR Post-correction Data

Our experimental data comes from the OCR post-correction Shared Task1 of the 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR 2017)
(see (Chiron et al., 2017) for more information). The data set is a subpart from a corpus

1https://sites.google.com/view/icdar2017-postcorrectionocr/home
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Monograph Periodical
Language fr en fr en

Total # of Chars in Ground Truth 3560500 3592543 1637087 1574796
Total # of Chars in Original OCR Output 3569285 3592763 1640237 1575613

Insertions 0.32% 0.51% 0.68% 0.63%
Deletions 0.57% 0.52% 0.87% 0.68%

Substitutions 0.75% 0.78% 1.88% 2.46%
Errors Total 1.64% 1.81% 3.43% 3.77%

Unrecognizable 0.42% 3.32% 5.27% 9.33%

Table 2: Edit operations needed to correct training set: Percentage of total characters (relative to
the characters in the OCR output) that need to be inserted, deleted, or substituted.

that was built in the AmeliOCR project2. The documents in the corpus originate from
different digital collections and vary in terms of their condition and date of origin as
well as the OCR engine and the post-correction initiative used to create the corpus (e.g.
project-internal correction or external projects such as Gutenberg or Wikisource).
The equally sized English and French data consists of 12M OCRed characters and

their alignments to a ground truth (GT)3. The training set has 10M characters (83%)
and the official test set 2M (17%). The data is distributed as raw text files (one
paragraph per file) where the first line contains the OCR output. On the second line,
the OCRed text is vertically aligned with the GT. Wherever a character has to be
inserted to match the length of the GT (which means there is no possible alignment)
an “@" is inserted. On the third line that contains the GT, an “@" is inserted for all
characters that appear in the OCR output but cannot be aligned with a GT character.
The following example from 1860 illustrates the format:

(1) ATRAVELLER STOPPED AT A WIDOW’S GATE. [OCR]
A@TRAVELLER STOPPED AT A WIDOW’S GATE. [OCR aligned]
A TRAVELLER STOPPED AT A WIDOW@S GATE. [GT aligned]

Additionally, “unrecognizable” character sequences that cannot be identified with
certainty in the original image are aligned with the “#" character in the GT. Probably
due to different processing of soft hyphens, the GT for hyphens is very inconsistent.
Following the decision of the shared task organizers, we ignore all hyphens in evaluations
and error analyses, however, we keep them in the training data.

2https://bit.ly/2BLsN7B
3We use terms “gold standard” and “ground truth” interchangeably.
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Monograph Periodical fr en both
fr en fr en form freq form freq form freq

1. f → s 1 → I t → l fi → fi f → s 2346 1 → I 2279 f → s 2653
2. u → v é → e , → . b → h é → e 870 b → h 1250 1 → I 2310
3. é → e U → ll e → é u → n e → é 790 fi → fi 993 é → e 1647
4. i → j e → é o → e - → - u → v 740 u → n 898 b → h 1338
5. v → u h → b . → , ff → Ď t → l 677 é → e 777 u → n 1320
6. e → é b → h é → e f → s , → . 639 - → - 720 . → , 1225
7. l → t d → ll i → l o → e l → t 562 ff → Ď 712 , → . 1214
8. c → e e → c a → e li → h . → , 535 c → e 701 e → é 1209
9. 1 → ! f → s u → n c → e o → e 521 . → , 690 c → e 1157
10. è → e ’ → e l → t . → , i → j 504 li → h 666 o → e 1110

Table 3: 10 most common substitutions of characters ngrams (excluding hyphens). x → y means x
was recognized instead of y.

The data set is difficult since the documents (a) origin from different collections (the
BnF and the British Library), (b) were published either in periodicals or monographs,
(c) cover a large time span (1654 to 2000). 92% of the documents with a known
publication date are from the 19th century.
Diachronic document collections pose several challenges for OCR post-correction.

OCR quality is generally lower for historical documents, typically worse for documents
typeset in black letter fonts than in antiqua fonts. Additionally, old and modern
spellings coexist, for instance, compleated (1744) vs completed (1894). Some characters
as long s “ s ” disappear over time.

Tables 1 and 2 summarize the size of our training data, the proportion of “unrecogniz-
able” characters, and the edit operations needed for error correction. Overall, periodical
texts need more correction operations, as OCR quality for these texts is worse than
for monographs. The better the OCR quality is, the harder it is to improve it with
post-correction. Consequently, it will be easier to correct the periodical texts than the
monographs. Note that English texts contain many more unrecognizable characters
than the French texts.

Statistics on character level Table 3 shows the ten most frequent substitutions over
character n-grams aggregated according to different text criteria. The substitutions
are derived from the precomputed alignments of the data, and most of them can be
explained due to the visual similarity of the glyphs. Note that the frequencies of the
substitutions are not only specific to language but also to text type. Additionally,
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Figure 1: Changes of frequencies of the most frequent error types over time in English monograph
data sampled in buckets of 30 years.

error frequencies also differ due to font type, paper quality and other document-related
characteristics. However, since the source images of the data set were not provided, the
influence of these factors on error frequencies cannot be assessed here. The confusion
pair “e/é” in English is related to code-switching.
How do error types develop over time? Figure 1 is a screenshot from an interactive

visualization of the frequency of the ten most frequent errors per 30 years in English
monographs. The y axis is logarithmic and shows the number of errors normalized
by the number of files for the specific time period. It is not essential to know which
error belongs to which line. Instead, it is interesting to see the error development, for
instance, the most frequent error from 1800 appears 1000 times less in 1830. Many
errors in early documents occur rarely in later periods. Even though not all data sets
show such extreme differences between the periods, similar observations can be made.
Thus, it can be concluded that the different time periods all offer distinct challenges for
OCR post-correction.

Statistics on word level 87.2% (en) and 90.2% (fr) of the wrong tokens only appear
once in the training set (see Table 4). These numbers are computed by excluding any
punctuation characters, e.g. a comma at the end of a word. The large percentage of
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fr en
OCR GT Freq OCR GT Freq

1. font sont 470 1 I 2245
2. a à 331 tbe the 513
3. 1 ! 286 thé the 510
4. d de 167 tlie the 303
5. !. !... 164 aud and 211
6. do de 145 1 ’I 195
7. ta la 139 tho the 188
8. ie je 129 he be 172
9. vn un 116 hut but 165
10. dé de 101 ail all 165

all 51699 47583
hapax legomena 46644 41487

Table 4: Distribution of most frequent word errors

hapax legomena suggests that supervised post-correction on character level will be more
beneficial than on word level due to data sparsity issues.
Table 4 also shows the ten most frequently misspelt words. Both datasets contain

frequently occurring real word errors that cannot be corrected in isolation. Considering
the Zipfian distribution of words, it is probably not surprising that four OCR error
types of “the” are among the most frequently misrecognized English words. The
mean of spelling versions per misrecognized GT type is 1.7 for English and 1.77 for
French. The English word “the” has the highest number of spelling variants (275 unique
types), for French it is the word “de” (214 types). Again, these findings suggest that a
character-based approach is suitable for our task.

4 Methods

4.1 Experimental Setup

In order to keep the official test data untouched while exploring many different exper-
imental settings, we randomly split the official training data in an internal training
(80%), development (10%) and test set (10%). Unrecognizable characters are excluded
from our data. Table 5 characterizes the resulting data sets.

Our baseline approach for character-level OCR correction preprocesses the data into a
verticalized text format as follows: Whenever two space characters are aligned between
the OCR output and the GT, a newline is inserted. After each actual text character

56 JLCL



Supervised OCR Error Detection and Correction Using SMT and NMT

Periodical Monograph Combined
fr en fr en fr en both

Train 1320728 1268194 2862351 2887538 4183079 4155732 8338811
Dev 165449 158748 360090 362068 525539 520816 1046355
Test 165032 158492 356580 360228 521612 518720 1040332

Table 5: Character counts of internal train, dev and test sets (including whitespace and hyphens)
for all four document types. The combined data sets contain periodicals and monographs.

(@ can be ignored), we add a space to force the MT systems to translate on character
level. Example 2 illustrates the conversion into the common line-based training format
of MT systems. Having one word per line makes the training of the MT model simple,
however, it results in a context-insensitive approach.

(2) This@couise@was agretd to, [. . . ] Aligned OCR output
This course was agreed to, [. . . ] Aligned GT
OCR (Source) GT (Target)
T h i s c o u i s e w a s T h i s ␣ c o u r s e ␣ w a s
a g r e t d a g r e e d
t o , t o ,

Character-based SMT We train a baseline character-based SMT model analogous
to (Pettersson et al., 2013) using the Moses toolkit (Koehn et al., 2007), GIZA++
character alignment (Och and Ney, 2003), and MERT optimization (Och, 2003). We
use a 10-gram language model in all experiments. For a more extensive introduction to
SMT, please refer to Koehn (2009).

Character-based NMT For a more in-depth and general introduction to NMT, we
refer to Koehn (2017).

We first tested the convolutional framework described in Lee et al. (2017), which is a
character-level NMT system by design. However, as early experiments did not show
satisfactory results we discarded this option.
Nematus4 is a high-performing NMT framework (Sennrich et al., 2017). Character-

level MT can be enforced by using the same whitespace insertion “trick” in the data
format as for Moses. Initial experiments showed positive results and we relied on this
framework for all subsequent experiments.

4https://github.com/EdinburghNLP/nematus
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Nematus – as most neural translation frameworks – has many hyperparameters that
influence its performance. Given training times of several hours even on fast GPUs, it
is not feasible to tune these parameters systematically for each data set. We decided to
explore them on the French periodical data for two reasons: First, as one of the smaller
data sets it is faster to train, and, second, prior SMT experiments had shown that this
set is harder to correct than others. In the following, we quickly introduce our base
hyperparameter settings that we determined by experiments on the French periodicals.
Input or output embeddings are low-dimensional dense continuous vector represen-

tations of one-hot encoded categorial data with typically much larger dimensionality.
The dimensionality of characters is orders of magnitude lower than that of words.
We choose an embedding size of 256, tested against 32 and 512. We configure them
as tied embeddings, meaning that the embedding of a character on the source side
is the same as on the target side. This seems reasonable given that both sides are
the same language apart from OCR errors. According to our experiments, not using
tied embeddings achieves better results in error detection but worse results in error
correction. Eventually, we decided to use tied embeddings as they speed up training.

Dropout is a useful regularization method for neural architectures. During training,
some units in the network are switched off. Consequently, the model does not have
access to all its information and is less prone to overfit. The dropout rate specifies how
many units are switched off at the same time. We set it to 0.2.

Batch size refers to the number of training examples which are used to compute the
gradient and update the weights in the network. A larger batch size leads to a speed-up
in training, but it can also have a negative impact on learning. We set it to 100, tested
against 50 and 200.

For a few hyperparameters, we use the default values from Nematus: hidden layer size
(1000), optimizer (adadelta), gradient clipping threshold (1) and learning rate (0.0001).
Furthermore, we set the maximum sequence length to 23 for all context-insensitive
experiments and to 53 for context-sensitive experiments. These limits cover 99.99% of
all training examples.

4.2 Using More Training Material

In MT, the most straightforward method to increase translation quality is by adding
more training material. Since OCR errors mostly occur due to the visual similarity
of characters, the same errors occur in periodicals as in monographs and also in both
languages. Therefore, it makes sense to combine the training sets of the individual text
types (henceforth, “medium” data set size), maybe also combining all the available
data across languages (henceforth, “large” data set). The latter especially because we
noticed code switching effects in Section 3.

4.3 Using More Context

Some OCR errors introduce wrong tokens that are valid words of the document language.
For example, in Table 4 the most frequent French OCR error on word-level is “sont”
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wrongly recognized as “font” (probably because of the long s glyph). However,“font”
cannot be corrected in isolation since it is a frequent French word. We need some
context in order to change it appropriately. Our context-sensitive format with two
preceding and one succeeding words with respect to a focus word inbetween is shown in
Example 4.3.

(3) Si ces principes font fondés sur le goût Aligned OCR
Si ces principes sont fondés sur le goût Aligned GT
OCR (Source)
S i # c e s # p r i n c i p e s # f o n t
c e s # p r i n c i p e s # f o n t # f o n d é s
p r i n c i p e s # f o n t # f o n d é s # s u r
GT (Target)
S i # c e s # p r i n c i p e s # f o n t
c e s # p r i n c i p e s # s o n t # f o n d é s
p r i n c i p e s # s o n t # f o n d é s # s u r

An artificial word boundary marker which otherwise does not occur in the training
data needs to be chosen.5 Alternatively, we could have chosen to translate only the
focus word, however, forcing the MT system to produce the context on the target side
as well, produced better results. This representation increases the training material,
which is good, but unfortunately also extends training time.

4.4 Factored Character-based NMT

Nematus supports “factored” NMT models (Sennrich and Haddow, 2016) where struc-
tured information can be included on the source side: for instance, the time span from
which the text originates, or its text type, or even its language if we want to merge
both languages in order to have more training material.6 In Nematus, factors are
implemented as embedding vectors that are concatenated with the input character
embeddings.7
Factors can be conveniently expressed in the input format. Example 4 with a text

snippet from English periodicals between 1800 and 1849 shows the context-insensitive
input format with factors. The symbol | marks the beginning of a factor. The first
factor refers to the text type, and the second stands for the time span8 when the text
was written. This “feature” can be helpful to model time-dependent OCR errors which
occur due to orthographic or typographical changes as illustrated in Figure 1.

(4) who may wish Aligned OCR
who may wish Aligned GT

5If the boundary marker does not appear 3 times on the translated target side, we select the word
with the smallest edit distance to the input focus word as its translation.

6OCR errors for French and English can be similar due to their common Latin script system.
7Due to a problem in Nematus, we could not use tied embeddings in combination with factors.
8Split in bins of 50 years and represented by YYYY//50 (integer division).
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OCR (Source) GT (Target)
w|peri|36 h|peri|36 o|peri|36 w h o
m|peri|36 a|peri|36 y|peri|36 m a y
w|peri|36 i|peri|36 s|peri|36 h|peri|36 w i s h

4.5 Glyph Embeddings

State-of-the-art NMT often uses pre-trained distributional word embeddings, which
mainly put words closer together in the vector space if they share the same contexts.
For OCR post-correction, characters do not necessarily need to be substituted with
characters that often share the same context, but rather share similar character shapes.
Therefore, we generate pre-trained embeddings that express some visual similarity
between characters. As no source images are available for our data, we simply use 16
by 16 grey-scale pixel values of every character from the Helvetica font as a proxy.9

Of course, there are better ways how visual information can be included in an NMT
system. However, this is a straightforward and time-saving technique and is therefore
used in this experiment.

4.6 Error-focused Models

Most of the OCR output is simple to process for an MT system since it is already
correct and does not need to be translated. This means that for the most part the
NMT system just learns how to copy characters from the source to the target side.
If the system is trained on a data set which contains a larger proportion of errors, it
will become better at detecting errors and will do this more aggressively at the cost of
over-correction. However, these systems might over-correct. Therefore, it is essential to
determine a reasonable amount of non-error tokens in the training data to boost the
error detection recall but not affecting precision too much. For our experiments, we
first tried a split of 75% error and 25% non-error tokens. Since there are fewer errors
in the monographs, we adjust to 50% errors for French monograph and 37.5% for the
English. We randomly filter out examples without errors in this subsampling process.

4.7 Ensemble Decoding

Ensemble decoding is a common technique in NMT where the individual probability
distributions of different models are averaged. The rationale is that the biases of single
models’ outputs even out by the combination of several models. With Nematus it is
possible to do ensemble decoding by using either models from the same training run at
different time steps or multiple models. For our experiments, we try both. In order
to distinguish them, the former will be called “single ensemble” (using different time
stamp models of the same system) and the latter “multi ensemble” (using the best
model of different systems). All experiments with ensemble decoding are conducted on

9The values are normalized into a range between -1 and 1 and then scaled by 0.01 as done in
Nematus for randomly initialized values.
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the context-sensitive input formats. Single ensembles are tested for the base context-
sensitive NMT system and the error-focused NMT system. For single ensembles,
we combine the best model with the models from two previous time stamps. Multi
ensembles use the base context-sensitive NMT system, the one with glyph embeddings
and the error-focused system.

4.8 System Combinations

The final method explored in our experiments is combining the outputs of multiple MT
systems. The output from such post-translation combination of systems was submitted
to the ICDAR shared task.
Different strategies are used for error detection and error correction. Keep in mind

that for the error correction test set, the shared task organizers published the positions
of erroneous tokens. Therefore, we translate all data for error detection, however, for
the error correction we only translate the erroneous tokens.
A flow diagram of our decision procedure is shown in Figure 2. The error detection

algorithm uses the output of five MT systems for a specific data set which worked best
in combination as tested on the dev set. We have four conditions which trigger the
error detection. First, if the model with the smallest Levenshtein distance proposes a
change, we assume there is an error. Second, we check the five best systems, and if the
most frequently proposed token is different from the OCR output, we also assume an
error. Third, if the original OCR token does not occur in the GT training and dev sets
for both text types, we assume an error. Finally, if the current token and one of its
neighbors (both can be translated or untranslated) do not occur in the training set, but
their concatenation does, we assume that the tokens have to be merged.
The algorithm for error correction works slightly different. The five models with

the smallest Levenshtein distance on the dev set are used to generate correction
candidates. Since the evaluation script for the shared task evaluates two scenarios,
a “fully-automated” one where only one correction candidate is given and a “semi-
automated” one where a ranked list of candidates with confidence scores is given, we
pay special attention to our choice of candidates. If the system with the smallest
Levenshtein distance on the dev set suggests a correction, we take this as an exclusive
correction candidate. Otherwise, we look at the candidates of all five systems and
model the weights according to the frequency distribution of their suggestions which
are different from the OCR output.

5 Results and Discussion

5.1 Evaluation Setup

All configurations are evaluated on our internal test set by macro-averaging the scores
of three individual models using the same configuration. This reduces effects caused
by system variance. Error detection is measured on word level using the following
measures:
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Figure 2: Algorithms for error detection and correction explained with an example.
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Error Detection Error Correction
P ↑ R ↑ F1 ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

English Periodicals
OCR baseline Char/Tok ER: 3.47% / 11.28% 0.1898 0% -
SMT baseline * 83.82 61.84 71.17 0.1347 40.96 53.42
SMT medium 91.33 46.87 61.94 0.1461 29.96 57.28
SMT large 93.26 40.51 56.47 0.1510 25.71 56.78

NMT baseline 87.33 59.27 70.61 0.1472 28.95 49.00
NMT medium 90.60 46.60 61.53 0.1584 19.85 47.52
NMT large 91.47 42.51 58.04 0.1593 19.13 47.42

SMT context * 85.19 58.87 69.62 0.1339 41.83 58.98
NMT context * 89.31 59.56 71.46 0.1406 34.95 51.34

NMT time factor no context 87.38 60.27 71.33 0.1475 28.68 48.24
NMT time factor context 89.99 57.77 70.37 0.1420 33.65 51.38
NMT factor medium 88.82 58.94 70.85 0.1448 31.12 49.94
NMT factor large 89.32 57.28 69.79 0.1415 34.10 50.95

NMT glyph embeddings * 89.62 59.16 71.27 0.1422 33.44 51.17
NMT error-focused 76.95 68.01 72.20 0.1591 19.28 41.09

NMT single ensemble * 89.92 59.54 71.64 0.1388 36.73 52.22
NMT single ensemble error 78.41 68.28 72.99 0.1533 23.80 43.35
NMT multi ensemble * 89.20 60.79 72.30 0.1369 38.68 52.37

English Monographs
OCR baseline Char/Tok ER: 1.79% / 6.38% 0.0830 0% -
SMT baseline * 92.84 33.92 49.68 0.0631 31.50 72.03
SMT medium 86.32 36.58 51.37 0.0649 27.84 64.52
SMT large 89.41 32.84 48.03 0.0652 27.30 68.56

NMT baseline * 91.77 35.50 51.19 0.0652 27.33 65.94
NMT medium 87.56 36.74 51.76 0.0668 24.18 61.54
NMT large 87.82 33.92 48.93 0.0678 22.45 62.52

SMT context * 88.85 39.07 54.27 0.0628 32.25 70.34
NMT context * 87.97 39.93 54.92 0.0632 31.27 65.38

NMT time factor no context 90.19 40.64 56.03 0.0668 24.26 58.39
NMT time factor context * 85.31 45.04 58.94 0.0644 28.77 61.06

NMT factor medium 92.33 39.66 55.48 0.0652 27.27 61.22
NMT factor large 91.62 39.24 54.95 0.0654 26.83 61.91

NMT glyph embeddings * 87.75 40.27 55.20 0.0631 31.46 65.73
NMT error-focused 50.51 50.81 50.60 0.0884 -6.01 35.80

NMT single ensemble 89.95 39.51 54.90 0.0625 32.87 67.39
NMT single ensemble error 49.38 51.70 50.43 0.0888 -6.31 35.58
NMT multi ensemble * 86.85 41.14 55.82 0.0627 32.38 65.78

Table 6: English macro-averaged experiments results. Best results are marked in blue, worst results
in red. Asterisks mark indicates systems used for ICDAR submission. (ER = error rate)
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Error Detection Error Correction
P ↑ R ↑ F1 ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

French Periodicals
OCR baseline Char/Tok ER: 3.41% / 11.85% 0.1930 0% -
SMT baseline * 83.48 35.31 49.62 0.1656 16.54 47.39
SMT medium 86.93 38.00 52.87 0.1663 16.06 46.97
SMT large 87.18 35.37 50.31 0.1675 15.22 44.43

NMT baseline * 87.87 43.52 58.21 0.1700 13.53 39.25
NMT medium 88.49 41.75 56.72 0.1695 13.88 38.93
NMT large 88.01 40.07 55.06 0.1735 11.21 35.84
SMT context 81.75 40.00 53.71 0.1614 19.64 53.66
NMT context 88.53 44.26 59.01 0.1645 17.32 42.53

NMT time factor no context 85.81 44.58 58.66 0.1755 10.02 37.77
NMT time factor context * 87.78 46.74 61.00 0.1655 16.68 40.88

NMT factor medium 87.51 44.20 58.72 0.1699 13.64 39.09
NMT factor large 86.28 43.83 58.11 0.1704 13.30 39.24

NMT glyph embeddings * 88.30 43.22 58.03 0.1657 16.45 41.81
NMT error-focused * 67.47 60.72 63.91 0.1956 -1.32 28.99
NMT single ensemble 88.30 44.26 58.96 0.1631 18.34 43.45

NMT single ensemble error 69.54 61.55 65.30 0.1903 1.40 30.99
NMT multi ensemble * 86.79 47.84 61.68 0.1621 19.08 42.17

French Monographs
OCR baseline Char/Tok ER: 1.61% / 6.18% 0.0692 0% -
SMT baseline * 82.69 38.55 52.52 0.0558 24.00 55.04
SMT medium 80.81 36.30 50.10 0.0574 20.59 51.95
SMT large 82.44 36.24 50.18 0.0587 18.07 48.84

NMT baseline 84.22 40.10 54.38 0.0602 15.00 44.13
NMT medium 83.59 38.23 52.37 0.0593 16.71 43.89
NMT large 82.81 37.15 51.05 0.0610 13.66 40.66

SMT context * 82.49 40.51 54.18 0.0568 22.15 58.47
NMT context * 84.17 42.95 56.85 0.0586 18.26 46.10

NMT time factor no context 84.37 41.53 55.75 0.0591 17.28 45.38
NMT time factor context 81.60 43.04 56.45 0.0583 18.85 45.68
NMT factor medium 85.94 40.97 55.46 0.0580 19.31 47.32
NMT factor large 85.63 39.36 53.86 0.0577 20.11 47.48

NMT glyph embeddings * 83.55 43.30 57.00 0.0583 18.73 45.43
NMT error-focused 58.53 54.56 56.48 0.0756 -8.28 30.23

NMT single ensemble * 85.72 42.98 57.29 0.0575 20.43 48.10
NMT single ensemble error 59.71 55.15 57.37 0.0744 -6.99 31.87
NMT multi ensemble * 82.27 45.73 58.91 0.0581 19.09 46.30

Table 7: French macro-averaged experiments results. Best results are marked in blue, worst results
in red. Asterisks mark indicates systems used for ICDAR submission. (ER = error rate)
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Precision P How many of the tokens predicted as incorrect actually needed a correction?

Recall R How many of the incorrect tokens were actually predicted as incorrect?

F1-Measure Harmonic mean of precision and recall: F 1 = 2∗P ∗R
P +R

Error correction is measured on character level using Damerau-Levenshtein distance
averaged over all tokens.10 Levenshtein distance between tokens t1 and t2 measures the
minimal amount character substitutions, deletions or inserts needed to turn t1 into t2
(Levenshtein, 1966). Damerau distance (Damerau, 1964) additionally allows to swap
two adjacent characters.11 Note that for the official submissions in task 2, a list of
candidate corrections combined with their probability was evaluated. In this setup, the
evaluation reports the weighted sum of edit distances for all candidates (weight equals
probability). For the results shown on our internal test set, we always sticked to only
one correction candidate.

For task 2, i.e. the error correction, the positions of erroneous tokens were given and
only those were evaluated. Of course, evaluating error correction only on erroneous
tokens is an artificial scenario. In practice, it is not known if a token is correct or
not. Any potential corrections may also introduce new errors to correct tokens. This
evaluation is therefore not ideal but the evaluation setup was given by the competition.
Note that we used the same training data for both tasks.

In the following, we present and discuss the results for different experimental settings
in the same order as they were introduced in the preceding section. Table 6 summarizes
all results on English data sets, Table 7 on French. In addition to the F1-score and
the relative Levenshtein distance improvement, these tables also report character- and
token-level error rates as well as the Levenshtein distance for the original OCR output,
precision and recall scores for all experiments as well as the percentage of translated
words that are correct.

5.2 More Training Material

What is the effect of combining the different data sets for training? Against our
expectations, error detection and correction performance mostly decreases with medium
training sets, especially in the case of English periodicals (see Tables 6 and 7). Only
SMT can sometimes profit from more data. This suggests that OCR errors are particular
to a text type and that NMT approaches specifically adapt to the specific OCR error
distribution (frequency and types) of a training set. This trend is even stronger when
cross-linguistically combining larger training sets. There, performance drops even more.
More general observations about context-insensitive correction can be made: First,

SMT models perform better than NMT in error correction and worse in error detection.
10The official evaluation script was released via https://git.univ-lr.fr/gchiro01/icdar2017. Al-

though the official ICDAR report refers to Levenshtein distance, the implementation actually uses
Damerau-Levenshtein distance.

11Damerau-Levenshtein actually is more useful for measuring human spelling distance than OCR
spelling distance.
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Figure 3: Effect of the inclusion of context (two preceding and one succeeding token) on performance

Second, error correction works better on English than on French. Third, error detection
works better on the periodical data, probably due to the higher a priori error rate of
this text type.

5.3 Using More Context

The results of the experiments described in Section 4.3 are shown in Figure 3. As
expected, more context for translation effectively improves results in all but one data
set. The transparent columns with black borders show the context-sensitive baseline
trained separately on language-specific text types. The colored columns show the results
using the context-insensitive sets. The scatter plots above the bar plots give the relative
improvement (scales are not comparable between figures).

The overall performance pattern as discussed before still applies to the individual data
sets, and SMT still performs better for error correction and NMT for error detection.
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Figure 4: Effect of time-factored training material

5.4 Factored Character-based NMT

Using factors as described in Section 4.4 is another strategy to include more information
when training an NMT system. Figure 4 shows the influence of the factor on the
publication time. Overall, time factors result in a better performance in error detection
for most data sets, especially for English monographs. This phenomenon can be
explained with a quick look at Figure 1. Most English monograph texts do not need
many corrections. However, this is problematic for the earlier files (around 1800), which
contain many more errors than the later ones. Time factors allow the model to detect
errors more aggressively on texts that were published around 1800. Therefore, time
factors control the aggressiveness of an NMT model’s error detection. In contrast to
error detection, there is a decrease in the relative Levenshtein distance improvement in
error correction for all but two data sets. This development could be simply because
there is an improvement in error detection. Detecting more errors does not automatically
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mean providing accurate corrections. Trying to correct more tokens can lead to an
overall higher distance to the GT. Another explanation could be that, especially, with
smaller data sets there might be data sparsity issues.

Unfortunately, also adding factors for languages and combining all data folds into a
large data set still does not generally improve the performance (results not shown).

5.5 Glyph Embeddings

The use of glyph images as pre-trained embeddings only shows a small improvement
for monographs in both F1-score and relative Levenshtein distance (results not shown).
For periodicals, the results are even slightly worse than with randomized embeddings.
Adding the intuitively promising information about glyph similarity therefore needs
another modeling approach than ours for more general applicability. Maybe using glyph
images with closer resemblance to the actual fonts helps, maybe we should concatenate
the glyph vector representation with the character embeddings instead of using them
as initialization weights.

5.6 Error-Focused Models

We have seen in Table 2 that periodicals contain many more errors in need of correction
than monographs. Therefore, we subsample error-focused training sets as described
in Section 4.6. As expected, error correction suffers a lot from such unrepresentative
training material and over-corrects the texts. As intended, error detection F1 score
improves for periodicals as recall and precision get more balanced. Without subsampling
precision is typically 20 to 40 percentage points higher than recall. Unfortunately,
F1 decreases for monographs (especially for English). Maybe an improved tuning of
the optimal error proportion for subsampling can remedy these rather unexpected
differences.

5.7 Ensemble Decoding

The results confirm that in almost all cases error detection and correction improve when
single model ensembles are used. Relative improvement for error correction is much
higher than for error detection. This suggests that at different training moments the
models provide different correction candidates which in combination converge to better
suggestions.
Context-sensitive neural multi ensembling as described in Section 4.7 is strong for

error detection and competitive for NMT error correction. However, SMT generally
outperforms neural multi ensembles on error correction by a large margin. The perfor-
mance pattern of multi ensembles across languages and text types is still similar to the
patterns seen for the context-insensitive baseline, suggesting that these patterns are
not due to specific idiosyncrasies of one of our models.
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Data Set Error Detection (Task 1) Error Correction (Task 2)
en Periodical 73.0 NMT single ensemble error 41.8 SMT context
en Monograph 58.9 NMT time factor context 32.8 SMT baseline
fr Periodical 65.3 NMT single ensemble error 19.6 SMT context
fr Monograph 58.9 NMT multi ensemble 24.0 SMT context

Table 8: The best systems for each data set. For error detection, macro-averaged F1 score is consid-
ered and for error correction macro-averaged relative Levenshtein distance improvement.

5.8 Summary on Systems

Generally, the performances across data sets vary a lot, except for error detection on
monographs. Table 8 collects all best-performing systems for error detection (macro-
averaged F1-measure) and error correction (macro-averaged relative Levenshtein distance
improvement). All best systems for error detection use NMT, while all best systems
for error correction use SMT. Context-sensitive SMT consistently works best in all
but one case. For error detection, all but one system are ensembles. We explain the
exception of English monographs by its high error variation over time, something that
time-factored models capture effectively. Our results indicate that the optimal choice
of an MT systems for OCR post-correction strongly depends on the task (detection or
correction), language, text type, time span and error distribution. Ensemble decoding
in NMT models almost always boosts performance. Ensembling of SMT output could
also help, but we did not conduct such experiments.

5.9 Our ICDAR 2017 OCR Post-Correction Competition Submission and Results

As described in Section 4.8, our submission combines the outputs from different systems.
Unfortunately not all system types presented in this article were available at submission
time of the shared task, for instance, the well-performing ensembles of the error-focused
models. The systems for submission were selected such that their combination performs
best on an internal tuning set (see Table 9 for a complete listing for each data set).
Note that the selected systems are not necessarily the top five systems on that data set
as their combined performance is considered.
Table 10 summarizes the results of the best 6 teams (out of 11) from the official

paper on the ICDAR 2017 OCR post-correction shared task (Chiron et al., 2017).12

Our approach (Char-SMT/NMT) achieved the best results of all submitted methods
in error correction (task 2). The relative improvement columns report the relative

12Probably due to the rather complex output format defined by the shared task organizers, many
teams seem to have produced inconsistent data.
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Error Detection (Task 1) Error Correction (Task 2)
en Periodical en Monograph en Periodical en Monograph

NMT multi ensemble NMT baseline SMT context * SMT baseline *

SMT baseline * SMT context * SMT baseline SMT context

NMT single ensemble NMT multi ensemble NMT multi ensemble NMT baseline

NMT glyph embeddings NMT context NMT single ensemble NMT glyph embeddings

NMT context NMT time factor context NMT context NMT multi ensemble

fr Periodical fr Monograph fr Periodical fr Monograph

NMT multi ensemble NMT multi ensemble NMT multi ensemble * SMT context *

NMT baseline * SMT context * NMT time factor context SMT baseline

NMT time factor context NMT single ensemble NMT error-focused NMT multi ensemble

NMT error-focused NMT context NMT glyph embeddings NMT single ensemble

NMT glyph embeddings NMT glyph embeddings SMT baseline NMT context

Table 9: Systems which were included in our system combination for task 1 and 2. Systems marked
with an asterisk have the smallest Levenshtein distance of the systems in that combination.

token-level improvement if the top-ranked correction candidate of a system is applied.
Compared to the other approaches, we consistently deliver best results across all data
sets. A hyphen in the cells indicates that a system actually deteriorated more tokens
than it improved. In contrast to our submission, quite a lot of system failed to improve
the texts, which is an indication of the difficulty of the task.
In error detection (task 1), we performed comparatively to other submissions. The

best approach for task 1 applies a noisy channel model to the OCR post-correction, and
uses the Google Books Ngrams for their vocabulary and language model. Therefore,
error detection probably profits from external data. In contrast, our approach does not
need additional resources to train the MT systems. Other models that achieve similar
results as our method use character-based NMT with context, SMT on character and
token level, spell checkers, error frequency patterns, or a 2-pass RNN architecture where
the first RNN works on character level and the second on token level. The official shared
task report (Chiron et al., 2017) contains short summaries of the chosen approach from
all participating teams.
Table 11 shows the results of task 1 in more detail. Accuracy and recall can be

compared directly. Our method achieved by far the highest accuracy. However, even
though we tried to increase the recall for error detection via system combination, our
recall is not as high as it is for other methods. Still, the amount of documents that our
system actually improves (102 documents) is much higher than for all other systems.
The best system for error detection is only able to improve about 60% of documents
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Task 1 (F-measure) Task 2 (%Improvement)
(top-ranked correction candidate)

Teams/Data Sets en
mono

en
peri

fr
mono

fr
peri

mean en
mono

en
peri

fr
mono

fr
peri

# tokens
(error rate)

63371
(10%)

33176
(15%)

32274
(5%)

48356
(7%)

63371
(10%)

33176
(15%)

32274
(5%)

48356
(7%)

WFST-PostOCR 0.73 0.68 0.55 0.69 0.66 28% - - -
2-pass-RNN ‡ 0.66 0.66 0.43 0.60 0.59 x - x x
EFP 0.69 0.54 0.40 0.54 0.54 13% - 23% 5%
Char-SMT/NMT 0.67 0.64 0.31 0.50 0.53 43% 37% 44% 29%
CLAM 0.67 x 0.36 0.54 0.52 29% 22% 1% 5%
MMDT ‡ 0.66 0.44 0.36 0.41 0.47 20% - 3% 2%
Post-Submission 0.62 0.59 0.35 0.51 0.52 18% 21% 40% 24%

Table 10: Official ICDAR OCR post-correction results (only 6 best teams out of 11 shown). Systems
marked with “‡” had partially malformed submission format. Cell entries with “x” indicate
missing or malformed submissions for this data set. Cell entries with “-” indicate that no
improvement was achieved, meaning there was a deterioration of the texts. The last row
shows the performance of our high-performing single system post-submission.

compared to our submission.
Table 11 provides valuable information on what could be improved with our method

and in what cases it makes sense to use it. Our approach is optimal for an automatic
OCR correction scenario with high precision requirements for error detection and high
correction quality. On the other hand, if recall is more important, for instance, if
manual verification is applied to the correction candidates, our method might need to
be adapted further, or another approach should be used for the error detection.
There is a practical issue with our approach if we want to apply it to new datasets.

Building all the necessary systems for our system combination is a bit complex and
laborious. In a post-submission experiment, we therefore tried to build the most
promising single system according to our experimental experience.
Our post-submission system is a combination of the strategies with the greatest

potential to profit from each other13: For each language, we combined the context-
sensitive (two preceding and one following token) training material for periodicals and
monographs and used factors to encode information on the time period and text type
of the documents. The last row in Table 10 shows that such a single system performs
reasonably across all data sets, however, there is a substantial drop in comparison to
the best reported result.

13We did not empirically test all combinations systematically, though.
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en fr en fr all
mono peri mono peri mo pe mo pe all

System Acc./Rec. Acc./Rec. Acc./Rec. Acc./Rec. # # # # #
Char-SMT/NMT 0.98/0.51 0.88/0.50 0.74/0.19 0.93/0.34 40 4 46 12 102
CLAM 0.93/0.52 -/- 0.48/0.28 0.71/0.44 36 4 31 7 78
MMDT 0.84/0.55 0.72/0.32 0.62/0.25 0.71/0.28 37 3 28 7 75
EFP 0.62/0.77 0.54/0.55 0.29/0.60 0.49/0.58 31 1 24 11 67
WFST-PostOCR 0.67/0.82 0.68/0.68 0.51/0.59 0.72/0.66 36 0 20 3 59
2-pass RNN 0.58/0.77 0.64/0.68 0.33/0.60 0.09/0.04 x 0 x x 0

Total # of Documents in Test Set ⇒ 41 4 54 12 110

Table 11: Official ICDAR results break down (only 6 best performing teams out of 11 shown) on
accuracy, recall, and number of documents where a net improvement resulted from the
corrections of task 2.

6 Future Work

The comparison of the best ICDAR systems in error detection with our results indicates
that our methods do not yet spot the optimal amount of OCR issues that need correction.
The resources that our models use are strictly limited to the official training material.
The best ICDAR error detection system uses additional material from Google Books
n-grams. For a practically oriented OCR error detection, we should think about ways
to integrate external data for error detection. However, for solving the full OCR
post-correction task one still has to be able to actually generate the correct spelling.

An important question for practical applicability is the amount of training data needed
for our approach. Ablation experiments where the training material is systematically
reduced would offer some insights about the correlation of training data size and the
post-correction improvement, which is probably also dependent on the original error
rate.

A better tuning of the subsampling for error-focused models is worth trying. For an
optimal F1 score in error detection, recall and precision should be perfectly balanced.
However, this goal is difficult to optimize directly and needs further experimentation.

In our work, we experimented with only one way (two preceding and one succeeding
token) for introducing textual context into the translation model. Context is needed
for high-quality OCR post-correction with character-based MT, but other ways of
integrating it might work as well.

A more sophisticated model representation of glyph shapes that are more similar to the
historical fonts used for typesetting is worth exploring. Furthermore, our experiments
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suggest that it would be interesting to train models on data from smaller time periods,
e.g. only documents from 1800 to 1850.
Finally, one should better analyze how the training material size, relative error

frequency, language, text type, time span and typeface influence the OCR post-correction
quality. Our experiments with different data sets with different properties often showed
strongly varying or inconsistent effects. Conclusive and generally applicable insights are
hard to achieve, but they are strongly needed for a practical application of supervised
OCR post-correction.

7 Conclusion

This article presented a broad overview as well as extensive experiments and evaluations
on how character-based neural and statistical machine translation techniques can be
used for OCR post-correction. We showed that SMT systems perform better in error
correction, while NMT systems achieve higher results in error detection. This is
important to know for anyone who plans to employ character-based MT for any of
these subtasks.

We tested both state-of-the-art and novel strategies to include more information in the
training and translation process of NMT systems. Giving enough context to the systems
for a correction candidate allows better detection of real word errors and increases
the training material. We found that no improvement in OCR post-correction can be
achieved when data sets with different error characteristics are combined. However,
when the individual training examples are labelled with their data set characteristics
as factors, neural systems are able to generalize from the increased training sets and
produce better results, especially for error correction. Specifically, data sets with
considerably varying error rates profit from time factors. Another insight is that
error-focused models can boost error detection, but have a rather negative influence on
error correction. Correctly calibrating the error threshold for subsampling the training
material is essential for these models. We showed that the decrease in error correction
with error-focused models can be mitigated by using ensemble decoding. In fact, normal
ensembling of single systems’ output is useful for OCR correction, even more so, if
different systems are combined for ensemble decoding. Finally, we experimented with a
novel, straightforward approach how visual information on glyphs can be included in
the training process of character-based NMT systems.

However, we also saw that for the given training sizes and the highly varied training
material it is hard to achieve conclusive and generally applicable insights about the
best settings and hyperparameters. We often observed some improvements on some
data sets and at the same time performance deterioration or no effect on others. Thus,
it is hard to reuse models for out-of-domain data sets.

A carefully compiled ensemble of our models reached best performance in ICDAR’s
2017 error correction subtask and performed competitively in error detection. Due
to the individual systems’ strengths and weaknesses, we proposed an algorithm that
combines different system outputs. The results of the shared task show that our
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approach is competitive in error detection and strongly outperforms other approaches in
error correction, even though we do not use any external resources. We also presented
post-submission results on the ICDAR data set for the best single-model configuration,
which is more practical to adapt and apply on new data sets than complex ensemble
solutions. Our evaluation suggests that future work on NMT for OCR post-correction
should focus on improving error detection.
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Christoph Wick, Christian Reul, Frank Puppe

Comparison of OCR Accuracy on Early Printed Books using the
Open Source Engines Calamari and OCRopus

Abstract

This paper proposes a combination of a convolutional and an LSTM network to improve
the accuracy of OCR on early printed books. While the default approach of line based
OCR is to use a single LSTM layer as provided by the well-established OCR software
OCRopus (OCRopy), we utilize a CNN- and Pooling-Layer combination in advance of
an LSTM layer as implemented by the novel OCR software Calamari. Since historical
prints often require book specific models trained on manually labeled ground truth
(GT) the goal is to maximize the recognition accuracy of a trained model while keeping
the needed manual effort to a minimum.

We show, that the deep model significantly outperforms the shallow LSTM network
when using both many and only a few training examples, although the deep network has
a higher amount of trainable parameters. Hereby, the error rate is reduced by a factor
of up to 55%, yielding character error rates (CER) of 1% and below for 1,000 lines
of training. To further improve the results, we apply a confidence voting mechanism
to achieve CERs below 0.5%. A simple data augmentation scheme and the usage of
pretrained models reduces the CER further by up to 62% if only few training data is
available. Thus, we require only 100 lines of GT to reach an average CER of 1.2%. The
runtime of the deep model for training and prediction of a book behaves very similar to
a shallow network when trained on a CPU. However, the usage of a GPU, as supported
by Calamari, reduces the prediction time by a factor of at least four and the training
time by more than six.

1 Introduction

The best OCR engines on early printed books like Tesseract (4.0 beta)1 or OCRopus2

currently use Long Short Term Memory (LSTM) based models, which are a special kind
of recurrent neural networks. In order to achieve low CERs below e.g. 1% or 2% on early
printed books these models must be trained individually for a specific book due to a high
variability among different typefaces used (see Springmann et al. 2016 or Springmann
and Lüdeling 2017). Thereto, a certain amount of GT, in the case of OCRopus that is
a pair of text line image and transcribed text, must be manually labeled. The primary
goal is to reduce the number of labeled text lines to achieve a certain error rate. A

1https://github.com/tesseract-ocr
2https://github.com/tmbdev/ocropy
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secondary goal is to continuously retrain the model, if more GT becomes available
because e.g. all lines of a book are reviewed and corrected to achieve a final error rate of
near 0%. The default OCRopus implementation uses a shallow one layer bidirectional
LSTM network combined with the CTC-Loss to predict a text sequence from the line
image. Since convolutional neural networks (CNN) showed an outstanding performance
on many image processing tasks, see e.g. Mane and Kulkarni (2017), our aim is to train
a mixed CNN-LSTM network to increase the overall performance of OCR. Therefore,
we compare the default OCRopus implementation with the deep network architectures
provided by the novel OCR engine Calamari3 which is based on TensorFlow4. It is
well known that voting the outputs of several different models improves the accuracy
by a significant margin, which is why we use Calamari’s cross fold training approach
proposed by Reul et al. (2018). This approach trains five different models whose outputs
are combined by a voting mechanism that considers the confidence values of each output.
Moreover, Calamari offers data augmentation and pretrained models to increase the
accuracy especially on small datasets.
The rest of the paper is structured as follows: Section 2 introduces and discusses

related work regarding OCR on early printed books including deep models and voting.
The used data and the applied methods are described in detail in Section 3. In Section
4, we evaluate and discuss the results achieved on three early printed books. After
summing up the results and insights in Section 5 we conclude the paper with some
ideas regarding future work.

2 Related Work

This section lists related work concerning the application of CNN-LSTM hybrids in
the areas of speech, vision, and text processing. Furthermore, related work covering
improvements on OCR using different voting algorithms are itemized.

2.1 Combinations of CNN-LSTM

Currently CNN-LSTM hybrids are used in a high diversity of fields to achieve state-
of-the-art results. The combination of those diverse network structures is promising
because CNNs are suited for hierarchical but location invariant tasks, whereas LSTMs
are perfect at modelling temporal sequences.

For example, in the domain of speech processing Sainath et al. (2015) use a combina-
tion of LSTMs, CNNs and Fully Connected Layer for an automatic speech recognition
task, or else Trigeorgis et al. (2016) train a CNN-LSTM for speech emotion recognition.
Another excellently suited area for CNN-LSTM networks is video processing, since
CNNs are perfect for handling images and the video itself is a sequence of images. For
instance, in this area Donahue et al. (2015) propose a CNN-LSTM as basic structure

3https://github.com/Calamari-OCR/calamari
4https://www.tensorflow.org/

80 JLCL



Comparison of OCR Accuracy on Early Printed Books

to automatically generate video descriptions or Fan et al. (2016) use this structure for
recognizing emotions in videos.

In the field of text recognition, a combination of CNNs and LSTM was most recently
proposed by Breuel (2017). The deep models yield superior results on the University of
Washington Database III5, which consists of modern English prints with more than
95,000 text lines for training. However, the effect of deep networks on historical books
and using only a few dozens of training lines for training book individual models has
not been considered, yet.
A very similar task to OCR is handwriting recognition, e.g. by Graves and Schmid-

huber (2009) or Bluche (2015) or scene text recognition, e.g. by Shi et al. (2017). These
applications usually act on contemporary data, which is why it is meaningful to include
a language model or a dictionary to achieve a higher accuracy. However, for early
printed books, e.g. medieval books, general language models are less effective mostly
due to variability in spelling.

2.2 Voting

Using voting methods to improve the OCR results of different models was investigated
by many different researchers, an overview is given by Handley (1998). Here, we list
only a subset of the most important and the most recent work in the field of OCR and
focus mostly on historical documents.
Rice et al. (1996) showed that voting the outputs of a variety of commercial OCR

engines reduces the CER from values between 9.90% and 1.17% to 0.85%. The voting
algorithm first aligns the outputs by using a Longest Common Substring algorithm
(Rice et al., 1994) and afterwards applies a majority voting to determine the best
character including a heuristic to break ties.
Al Azawi et al. (2015) trained an LSTM network as voter of the aligned output of

two different OCR engines. A comparison using printings with German Fraktur and the
University of Washington Database III the LSTM approach led to CERs around 0.40%,
while the ISRI voting tool achieved CERs around 2%. A major reason for this high
improvement is that the LSTM-based voting algorithm learns some sort of dictionary.
Thus, the voter was able to predict a correct result even in cases where each individual
voter failed. However, this behaviour might not be desired since the method not only
corrects OCR errors but also normalizes historical spellings.
Most recently, in Reul et al. (2018) we showed that a cross-fold training procedure

with subsequent confidence voting reduces the CER on several early printed books
by a high amount of up to and over 50%. This voting procedure not only takes the
actual predictions of a single voter into account, but also their confidence about each
individual character. Therefore, instead of a majority voting for the top-1 output class
the best character is chosen for the top-N outputs. This led to improvements by another
5% to 10% compared to the standard ISRI sequence voting approach.

5http://isis-data.science.uva.nl/events/dlia/datasets/uwash3.html

JLCL 2018 – Band 33 (1) 81



Wick, Reul, Puppe

2.3 Data Augmentation and Pretraining

A crucial point for the performance of DNNs is the availability of huge labeled datasets.
However, if only a few data points are available or if the GT has to be labeled manually
the GT can be augmented to generate new examples. The applied operations must be
label preserving, e.g. a line image must still show the same content after augmentation.
The augmentations used in Calamari are provided by OCRodeg6 and consist of padding,
distortions, blobs, and multiscale noise.

Furthermore, in Reul et al. (2017b), we successfully applied transfer learning on early
printed books using OCRopy: Instead of training a network from scratch with random
weights, the weights can be copied from a network that was trained on different GT.
Thus, the new network starts its training already with knowledge about the task, i.e.
the transferred features are meaningful on the new data as-well. The network only has
to adapt for the new typeface and possibly some new characters in the codec. Therefore,
in general, the network requires less lines of GT to reach the CER of a network trained
from scratch.

3 Material and Methods

The OCR pipeline of Calamari is based on the OCRopus workflow, whose fundamental
idea is to use a full text line as input and train an LSTM network to predict the GT
character sequence of that line. This is achieved by the usage of the CTC-Loss during
training and a CTC-Decoder for prediction. For a deeper insight in this pipeline, in
this section, we first introduce the used datasets. Afterwards, we explain our training
and evaluation procedure. Finally, the differences of OCRopy and Calamari concerning
implementation, hyperparameters, and network architectures are listed.

3.1 Datasets

For our experiments we employ three different early printed books (see Table 1). Only
lines from running text are used, whereas headings, marginalia, page numbers etc. are
excluded, because these elements vary in line length, font size or their characters e.g.
numbers are underrepresented. Thus, the actual data is not affected by unwanted side
effects resulting from these elements. 1505 represents an exception to that rule as we
chose the extensive commentary lines instead, as they presented a bigger challenge due
to very small inter character distances and a higher degree of degradation. Figure 1
shows one line per book as an example.
1505 is an edition of the Ship of Fools (Narrenschiff by Sebastian Brant) and was

digitized as part of an effort to support the Narragonien digital project at the University
of Würzburg7. 1488 was gathered during a case study of highly automated layout

6https://github.com/NVlabs/ocrodeg
7http://kallimachos.de/kallimachos/index.php/Narragonien
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Figure 1: An example line from each of the used books. From top to bottom: 1476, 1488, 1505.

Table 1: Books used for evaluation and their respective number of ground truth lines available for
training and validation.

Year Language GT Train GT Validation
1476 German 2,000 1,000
1488 German 3,178 1,000
1505 Latin 2,289 1,000

analysis Reul et al. (2017a) and 1476 is part of the Early New High German Reference
Corpus8. The GT data of all three books was published9 by Springmann et al. (2018).

3.2 Training and Evaluation

To train the essential book specific models the human effort to annotate GT should
be minimized. Therefore, we examine the effect of adding only a few dozen lines of
GT on the CER of an individual book. The aim of a real world application is to train
incrementally improved models when more GT becomes available to support the human
annotator with increasingly better models.

As setup, each book in the dataset is first split into an evaluation and a training set.
While the evaluation set is fixed, the training set size is chosen as 60, 100, 150, 250, 500,
and 1,000 lines, with each set subsuming the smaller sets entirely. Then, each training
set is divided into a 5-fold, where four parts are used for the actual training and one
part for validation. For example, if 100 lines are chosen randomly from the full set,
each fold uses 80 lines for training and the remaining 20 lines for validation. These 20
validation lines are distinct from each of the five folds resulting in five diverse models.
Based on the validation set the best performing model for each fold is determined.

In summary, for three books and six different numbers of lines in the training set, we
train five models, respectively. For each run, we compute the CER on the validation
set every 1,000 iterations to determine the best model of this fold. This model is then
evaluated on the initial evaluation dataset to obtain the final CER. Since the results
of each of the five folds vary, we compute the average to compare the outcomes of
the different network architectures, books, and number of lines. Furthermore the five

8http://www.ruhr-uni-bochum.de/wegera/ref/index.htm
9https://zenodo.org/record/1344132/
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A

{ n(0.6) u(0.1)
n(0.2) u(0.3)
n(0.4) u(0.5)

}
example sentence

Figure 2: An example for the improvement by using the confidence voting mechanism. Here only
three voters are considered. Although the character "u" is the best character twice the
"n" is chosen for the final output because of its higher average confidence.

predictions are used to compute a voted result using the voting mechanism described
in Section 3.3.

At each iteration during training one line is randomly chosen out of the data fold to
compute the gradient update. The number of iterations during training is chosen as
10,000, 12,000, 15,000, 20,000, 25,000, and 30,000 for the training set size of 60, 100,
150, 250, 500, and 1,000, respectively. These values are fixed for both OCRopus and
Calamari.

3.3 Voting

In order to further improve the predictions, we implement the confidence voting scheme
as proposed by Reul et al. (2018) to vote on the label sequences that are produced by
the CTC-Greedy-Decoder for each fold considering the confidence of each predicted
character. An example for only three voters is shown in Figure 2.

In a first step, all sentences are aligned as far as possible. Afterwards, all differences
are resolved by averaging the confidence of all equal options and keeping the character
with the highest value. Naturally, this procedure cannot guarantee a flawless output,
but it significantly improves the overall result.
An important prerequisite for the models that are used to vote is that they are

similarly performant, but diverse in their predictions. Errors that occur randomly in
one or another sentence can easily be corrected, whereas errors that appear in every
output cannot be identified. The above Cross-Fold-Training as proposed by Reul et al.
(2018) yields different models that can be used for voting although a high amount of
training data is shared among each pair of models.

The number of models that are used for voting in our experiments is set to five. Those
are the individual models produced by the 5-fold Cross-Validation on each training
set. A higher number of voters is expected to yield better results with the drawback to
require a higher effort in training and prediction. Experiments showed that a fold size
of five is reasonable trade-off.

3.4 Comparison of Calamari and OCRopy

While both Calamari and OCRopy are written in Python and their interfaces are
identical (both require images of lines and their respective GT) there are many distinct
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differences regarding the implementation, supported features and default settings.
To fasten up the computations of the neural network, OCRopy supports usage of

CLSTM10 which is a C++ implementation of the fixed LSTM network architectures
and only runs on the CPU. Calamari however uses Googles TensorFlow library that
both allows to design custom network architectures and to utilize a GPU.
Calamari supports the described Cross-Fold-Training mechanism and confidence

voting as well as integrated data augmentation. To choose the best model based on the
validation data set as provided by the Cross-Folds, Calamari implements early stopping
so that an upper limit for the number of training iterations is optional. Thereto, after
a certain number of iterations the early stopping algorithms tests whether the current
model improves the accuracy on the validation data. If the accuracy has not improved
for a given number of models (default 10), the training is stopped. Data augmentation
of the training data is provided by a variable factor naug, i.e. each line is replicated naug
times. Other features are the support of bidirectional text, and an automatic codec
adaption if a pretrained model is loaded that shares only a subset of characters.
Calamari employs by default an Adam solver with an initial learning rate of 0.001,

whereas OCRopy utilizes a learning rate of 0.0001 and a Momentum solver with a
momentum of 0.9. The batch size of Calamari can be chosen arbitrarily, and is 1 by
default. OCRopus does not allow to train or predict batchwise. Moreover, Calamari
implements an automatic gradient clipping to tackle the exploding gradient problem of
LSTMs as proposed by Pascanu et al. (2013).
The standard OCRopus network uses a single hidden LSTM layer with 100 nodes.

Calamari extends this shallow structure by introducing two pairs of convolutional (40
and 60 kernels) and pooling layers before the default LSTM-Layer with 200 nodes.
Calamari uses a convolutional kernel of size 3× 3 with a stride of 1 and equal padding.
The network uses max pooling layers with a kernel size and stride of 2× 2. A stride or
a kernel size of 2 in the first dimension, that is the time dimension, halves the width
of the intermediate picture and therefore the number of LSTM operations. On the
one hand, this makes the network faster but on the other hand repeated characters
might not get resolved, because the CTC-Decoder requires an intermediate blank label.
Finally, Calamari adds dropout with a factor of 0.5 to the last layer.
Even though the network architecture of Calamari can be adapted, preliminary

experiments showed that Calamari’s default network yields competitive results in both
accuracy and speed, hence it will be used as the deep network in the following. The
shallow network architecture is the default OCRopus network.

An overview of the differences and default values is listed in Table 2.

4 Experiments

In the following, we present our findings regarding the improvements of the deeper
architecture, and the usage of voting. Additionally, we compare the time required for
10https://github.com/tmbdev/clstm
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Table 2: Comparison and default values of OCRopy and Calamari regarding various aspects.
OCRopy Calamari

Language Python 2 Python 3
Network Backend Native/CLSTM Tensorflow
GPU Support No Yes

Default Network
Architecture

LSTM 100 CNN 40, Pool, CNN 60, Pool,
LSTM 200

CNN Kernel Size − 3× 3
Pool Size − 2× 2
Dropout No Yes
Solver Momentum (0.9) Adam

Default Learning Rate 0.0001 0.001
Voting No Yes

Pretrained Models Yes (identic codec) Yes
Data Augmentation No Yes

training and prediction of the different architectures, and extend the training corpus
to a size of up to 3,000 lines to investigate the behaviour of the deep models on many
lines. Finally, we use data augmentation or pretraining to minimize the CER with the
focus on only a few lines of GT. All experiments are conducted by using the default
hyperparameters and network architectures of Calamari and OCRopy as described in
Sec. 3.4.

4.1 Results of the Deep Network

Table 3 shows exemplarily the CER for each of the five folds on the three books for 60,
100 and 1,000 lines. The average of these five models is used to compute the average
improvement of the deep network. Note, that in practice the individual results of the
model for each fold must be combined e.g. by voting (see Section 3.3) in order to obtain
a usable result. Without voting, only one fold could be used to predict a sequence.
The results of the individual folds show no obvious correlation between CERs on

the same fold, that is the same training data, and its CERs on different network
architectures. For example, the worst fold of the shallow network on book 1488 using
100 lines is the forth fold with a CER of 4.79%. However, the same fold results in the
second best model for the deep network. The same can be observed for book 1505 for
the second fold: The best outcome of the deep network with CER of 3.02% is the worst
fold for the shallow network.
The relative improvements that are shown in Table 3 are listed for all the different

number of lines in Table 4. In the left section the relative improvements of the average
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Table 3: This table shows exemplarily the improvements of a deep CNN-LSTM compared to the
default shallow architecture for 60, 100, and 1,000 lines in the training dataset. Both
the individual results of each Cross-Fold plus their average, and the voting improvements
are entirely listed. The last columns of the fold average and the voting average state the
relative improvements of the deep network architecture. All numbers are given in percent.

60 Lines
CERs per Fold Avg. Conf. Voted

Book Network 1 2 3 4 5 CER Imp. CER Imp.
1476 Shallow 8.19 8.62 9.23 6.64 7.91 8.12 4.72

Deep 6.71 5.48 7.63 5.74 6.28 6.37 21.5 4.63 1.92
1488 Shallow 8.86 6.25 5.87 8.61 6.79 7.28 4.38

Deep 5.34 4.63 4.75 4.48 5.31 4.90 32.6 3.84 12.4
1505 Shallow 8.86 6.25 5.87 8.61 6.79 7.28 4.58

Deep 4.96 5.21 4.60 4.77 4.56 4.81 33.8 4.02 12.3
Avg. 29.3 8.9

100 Lines
CERs per Fold Avg. Conf. Voted

Book Network 1 2 3 4 5 CER Imp. CER Imp.
1476 Shallow 8.19 4.96 5.30 8.02 7.64 6.82 3.49

Deep 3.94 3.33 3.33 3.03 4.23 3.57 47.6 2.68 23.2
1488 Shallow 4.30 3.72 3.79 4.79 4.38 4.20 2.73

Deep 2.79 3.15 3.20 2.97 3.21 3.06 27.0 2.38 12.7
1505 Shallow 4.74 4.67 4.32 4.59 4.40 4.54 3.16

Deep 3.13 3.02 3.23 3.22 3.29 3.18 30.0 2.49 21.3
Avg. 34.9 19.1

1,000 Lines
CERs per Fold Avg. Conf. Voted

Book Network 1 2 3 4 5 CER Imp. CER Imp.
1476 Shallow 1.46 1.52 1.52 1.56 1.68 1.55 0.97

Deep 0.74 0.91 0.68 0.71 0.85 0.78 49.7 0.56 42.1
1488 Shallow 1.15 1.20 1.08 1.03 1.38 1.17 0.71

Deep 0.54 0.59 0.63 0.60 0.57 0.59 49.7 0.42 40.7
1505 Shallow 1.96 1.87 1.77 1.85 1.77 1.84 1.35

Deep 1.34 1.31 1.32 1.31 1.32 1.32 28.4 1.12 17.2
Avg. 43.6 33.3
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of the folds is shown, on the right hand side, the improvement when using voting (see
Section 4.2). A single deep network architecture yield an increasingly better average
CER. For only 60 lines the average improvement is 29%, while for 1,000 lines the best
improvement on a single book is 50% and the average over all books is increased by
43%.

A plot of the relative increase dependent on the number of lines is shown in Figure 3
(solid points). The increasing slope is flattening which indicates that more lines used
for training a deep model will still yield a better model compared to the default model,
but its relative improvement is eventually constant. An even deeper network might
increase the relative improvement if more lines are available.

In general, as to expected, the shallow and the deep network yield better results with
an increasing number of training data. Surprisingly, although the deep network has a
higher amount of trainable parameters which increases the vulnerability for overfitting,
it outperforms the shallow net even for a very small amount of training data.

4.2 Evaluation of Voting

The average error rates based on applying the confidence voting algorithm are shown in
Table 3. As expected, voting improves the accuracy on all experiments by a significant
amount and even reaches a optimum value of 0.42% CER on book 1488. The shallow
network benefits by a higher margin compared to the deep network, especially when using
only a few training examples. Yet, the deep network of Calamari always outperforms
the shallow network of OCRopy before and after voting. The relative improvements
shown in Table 4 and Figure 3 clarify this behaviour.

When training on just 60 lines the deep network architecture performs only slightly
better than the default network, yielding an average improvement factor of 9%. However,
if 1,000 lines are used an average improvement of 33% is obtained. Considering the
slopes of Figure 3 it is observed that the improvement gap between voting and non-
voting is narrowed from 29%− 9% = 20% to 42%− 33% = 9% for 60 and 1,000 lines,
respectively. Furthermore, it is to be expected that the relative improvement approaches
a limit value. Hence, the used deep model is expected to still perform better than the
default model by absolute values, but the relative gap appears to be constant. The limit
value, i.e. the performance for infinite data, is influenced by the network architecture.
Thus, if more lines are available for training more complex models must be considered.

As shown, voting has a higher impact on the default OCRopus network than on
the used deep network, especially if only a few lines are used for training. Thus, the
individual models must be more diverse to allow for a more effective voting. The
evaluation of errors (see Table 5 in Section 4.3) shows that, apart from insertion and
deletions of spaces, the errors of deep networks are mostly missing characters, while the
errors of the default network are mostly confusions, e.g. e↔c or n↔r in both directions
Therefore, voting of deep models that all omit single character predictions (compare
Table 5) and thus suffer from similar errors can not benefit by such a high amount
compared to the default models whose errors are more random.

88 JLCL



Comparison of OCR Accuracy on Early Printed Books

Table 4: Relative improvement of the deep CNN compared to default OCRopus listed for all three
books and the six variations of the amount of training data. The left and right halves
show the relative improvements without and with voting, respectively. All numbers are
given in percent.

Improvement over Folds Improvement over Voting
Book Book

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg.
60 21.5 32.7 33.8 29.3 1.9 12.4 12.3 8.9

100 47.6 27.0 30.0 34.9 23.2 12.7 21.3 19.8
150 38.4 40.1 32.9 37.1 19.7 30.7 19.7 23.4
250 49.7 54.6 30.9 45.0 27.0 34.2 23.5 28.2
500 50.4 49.6 32.1 44.1 35.2 43.7 21.3 33.3

1,000 49.7 49.7 28.4 42.6 42.1 40.7 17.2 33.3

Figure 3: Relative averaged improvements of the deep network versus the default OCRopus network.
The solid points indicate the relative improvements based on the averages of the individual
Cross-Fold results. The crosses mark the relative improvements when using confidence
voting.
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Table 5: The 10 most common errors made by the deep network after voting on the evaluation
dataset of book 1476. The left and right halves lists the results for 150 and 1,000
training lines, respectively. Both the count (Cnt.) of occurrences and their relative (Rel.)
contribution to the total CER are shown. An underscore represents deletions or insertions
of characters.

150 Lines 1000 Lines
Cnt. Rel. True Predicted Cnt. Rel. True Predicted

56 8.9% SPACE _ 32 18.0% SPACE _
54 8.6% _ SPACE 26 14.6% _ SPACE
47 7.5% i _ 11 6.2% i _
18 2.9% l _ 6 3.8% n _
12 1.9% G E 3 1.7% r t
12 1.9% n _ 2 1.1% r v
10 1.6% r _ 2 1.1% S _
9 1.4% r t 2 1.1% r _
8 1.3% d _ 2 1.1% ſ f
7 1.1% o _ 2 1.1% _ i

4.3 Error Analysis

Table 5 lists the ten most common errors of the deep network after voting when
predicting the evaluation dataset of 1476. The results are shown for 150 lines and 1,000
lines on the left and right columns, respectively. For both networks the most common
errors consist of insertions or deletions of spaces. Their relative contribution account
for one fifth for 150 lines, but almost one third for 1,000 lines, which underlines the
difficulty of the task of inserting correct spaces between narrowly printed text if no
language model or dictionary is used.
The model trained with 150 lines then mostly misses the prediction of characters

which shows the expected behaviour for CTC-trained networks that are only trained
with few data: To minimize the CTC-Loss it is more profitable to predict a blank rather
than an actual uncertain character. The confusion of G and E vanished because the G
occurred rarely in the dataset with only a few lines, but it was successfully learned if
more examples were available. The deep network trained with 1,000 lines shows errors
among the top ten that are expected, e.g. confusions of f and ſ (long s).

4.4 Training and Prediction Times

In this section we compare the time required for training and for the prediction of an
entire book of the default OCRopus network and our deep network. All times were
measured on an Intel Core i7-5820K processor using 1, 2, 4, or 8 threads for each
experiment. A NVIDIA Titan X is utilized to gauge the GPU times. During training
the parallelism is internally used in Numpy for the default OCRopus implementation
and in the TensorFlow-Backend for our deep networks. TensorFlow supports cuDNN
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Table 6: Average times for training and prediction of a single line for all three books. Note that
during prediction each line has to be processed five times due to the voting of the five
folds. The timing procedure was conducted for a various number of threads.

Training in seconds Prediction in seconds
Threads 1 2 4 8 GPU 1 2 4 8 GPU
Shallow 0.28 0.27 0.30 0.40 − 0.89 0.48 0.25 0.16 −

Deep 0.57 0.40 0.32 0.33 0.05 0.29 0.21 0.16 0.12 0.03

when using the GPU. For predicting, the default OCRopus implementation copies the
individual model for each thread and uses only one thread in the internal operations of
Numpy. Calamari instead creates only one model and predicts one batch consisting of
20 lines in our setup using all desired threads.

Note that each line has to be processed five times during the prediction due to the
voting algorithm. Table 6 reports our findings for the averages across the three used
books.

First of all, the results for the training time show that, despite the deeper network
consists of way more parameters and more operations, the optimized TensorFlow
implementation is only slightly slower than the default implementation based on Numpy,
when only one thread is used. However, the shallow default LSTM net cannot benefit
from a higher number of threads, instead it even suffers from a too high count. The
reason is, that the underlying matrix multiplications are too low dimensional in order
to be relevant for multiprocessing. As expected, the deep network benefits from up to 4
threads, as the training time is decreased by an average factor of approximately 40%.
The reason is, that the convolution operations that are carried out on each pixel on the
full image profit from a parallel computation. As a result, the deep network is faster
than the default implementation when allowing several cores during the training. Our
results show, that a number of 4 is sufficient.

The average time required to predict one line for the three books shows that the
deep network requires less than half the time compared to the default OCRopus
implementation, whereby the time for voting can be neglected. Using a higher number
of threads, the required time for prediction almost shrinks linearly for the default
implementation, since each thread computes a single independent model by construction.
The TensorFlow implementation of Calamari still benefits from a higher thread count,
but by a reduced factor due to the core sharing of batch versus convolutional operation.
Yet, for all the tested thread counts the TensorFlow implementation is a bit faster than
default OCRopus.

Usage of a GPU reduces the training and prediction times further by a factor of at
least six and four, respectively. These times can easily be reduced when processing a
whole batch of lines instead of a single line.
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Table 7: Decrease of the CER for using more than 1,000 lines for training the deep network. All
values are given in percent.

Averaged CER of folds CER using voting
Book Book

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg.
1,000 0.78 0.59 1.3 0.90 0.56 0.42 1.1 0.70
1,500 0.69 0.50 1.3 0.82 0.48 0.35 1.0 0.62
2,000 0.62 0.49 1.2 0.76 0.45 0.35 1.0 0.60
3,000 − 0.43 − 0.43 − 0.34 − 0.34

4.5 Increasing the Training Data above 1,000 Lines

The available amount of data for the three books allows us to increase the training set
size up to 2,000, 3,000, and 2,000 lines for the books 1476, 1488, and 1505, respectively
(compare Table 1). The averaged CER of the folds and after voting is shown in Table 7
by usage of the deep network. As expected, even more lines for training reduces the
CER even durther in all experiments with and without voting by a significant amount.
Thus, we reached an average CER of 0.6% after voting.

4.6 Data Augmentation

In this section we examine the effect of data augmentation with a factor of naug = 10
on the performances of deep network. In a first step, the training data consists of both
the augmentations and the original data. A second step uses the resulting model of the
first step as starting point and continues the training on solely the original data.

The results using confidence voting of five different voters each with its own augmen-
tations are shown in Table 8. As expected, especially for only a few lines in the training
data set data augmentation has a huge impact of up to 55%. Increasing the number
of lines decreases the benefit of augmentations to a point where it even worsens the
result (up to -19% on book 1488). This can be explained by the fact that the mixture
of real lines and augmented lines forces the network to focus on both types of data
which is why it loses its specific training on just the real lines. Thus, when continuing
the training on only the real lines (step 2) the results clearly improve for many lines,
but even for a few lines. On average, data augmentations in combination with the
deep network leads to a CER of below 2% and approximately 1% when using only 60
and 150 lines for training, respectively. The shallow network as provided by OCRopus
requires more than 1,000 lines to reach this level of accuracy (compare Table 3).

In summary, the experiments show the expected behaviour that the data augmentation
as implemented in Calamari yields slightly improved results for a large data set and
very high improvements of up to 55% for only a few lines.
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Table 8: Relative improvements of data augmentation with naug = 10. The first step trains on
both the real and augmented data, the second step continues the training only on the real
data. The last column shows the absolute CER of the final model (step 2) averaged over
all three books.

Improvement after Step 1 Improvement after Step 2
Book Book Avg.

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg. CER.
60 56.2 60.4 40.2 52.3 61.4 62.1 41.2 54.9 1.87
100 43.8 46.8 28.0 39.5 46.6 52.0 29.6 42.7 1.43
150 43.4 44.6 21.5 36.5 44.8 48.1 26.4 39.7 1.04
250 32.0 22.3 19.7 24.6 37.9 31.4 25.4 31.5 0.83
500 25.9 6.7 14.2 15.6 34.7 23.6 17.1 25.1 0.64

1,000 21.5 9.7 8.7 13.3 22.0 14.6 16.2 17.6 0.58
1,500 12.6 -6.5 9.5 5.2 15.2 3.9 13.9 11.0 0.54
2,000 4.3 -5.8 5.2 1.2 17.0 11.6 11.6 13.4 0.52
3,000 − -18.5 − -18.5 − 7.3 − 7.3 0.32

Table 9: Improvement of using both pretraining (PT) and data augmentation (AUG). All values are
voted and shown as percentage.

Improvement after PT Improvement after PT and AUG
Book Book Avg.

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg. CER.
60 51.1 46.8 30.0 42.7 70.5 68.8 48.0 62.4 1.6
100 37.9 41.9 22.7 34.2 63.6 55.8 39.8 53.1 1.2

4.7 Incorporating Pretrained Models

To evaluate the effect of pretraining, we use three different pretrained Calamari models11

designed for Fraktur (FRK), historical Latin (LH), and Modern English (EN). Two
models of the five voters are trained with FRK, two more with LH and only one with
EN since the trained typefaces of FRK and LH are closer to the target font. These
outcomes are voted by the confidence voter to obtain the final CER. Furthermore, we
combine pretraining with a data augmentation of 10. Both setups are only trained for
60 and 100 lines of GT, because here on the one hand the effect of pretraining and data
augmentation is expected to be the largest and on the other hand we want to simulate
the lack of manual annotated GT to train a book specific model.
As shown in Table 9, the CER for both 60 and 100 lines benefits from pretraining

(left) and the combination with data augmentation (right). We reach an improvement
of over 62% for 60 lines of GT compared to the model without pretraining or data

11https://github.com/Calamari-OCR/calamari_models

JLCL 2018 – Band 33 (1) 93



Wick, Reul, Puppe

Table 10: Improvements of voting, data augmentation, and pretraining (PT) for 60 and 100 lines
comparing Calamari to OCRopy. All values are given in percent.

60 Lines
Books Averages

Model 1476 1488 1505 CER Imp.
Shallow (OCRopy) 8.1 7.3 7.3 7.6 −
Deep (Calamari) 6.4 4.9 4.8 5.4 28.9
Deep + Voting 4.6 3.8 4.0 4.2 44.7
Deep + Voting + Data aug. 2.0 1.5 2.4 2.0 73.7
Deep + Voting + Data aug. + PT 1.4 1.2 2.1 1.6 78.9

100 Lines
Books Averages

Model 1476 1488 1505 CER Imp.
Shallow (OCRopy) 6.8 4.2 4.5 5.2 −
Deep (Calamari) 4.7 4.4 4.6 4.6 11.5
Deep + Voting 2.7 2.4 2.5 2.5 51.9
Deep + Voting + Data aug. 1.5 1.3 1.8 1.5 71.2
Deep + Voting + Data aug. + PT 1.0 1.1 1.5 1.2 76.9

augmentation, with a final CER of 1.6%. An increase to only 100 lines drops the CER
to 1.2%.

Comparing pretraining (Table 9) to the results of only data augmentation (Table 8)
shows that data augmentation has a higher impact on the performance (e.g. 55% vs
43% using 60 lines). However, data augmentation requires more training time than
using pretrained models, because the initial random weights must be trained from
scratch.

5 Conclusion and future work

In this paper, we compared the combinations of CNN- and LSTM-Networks as im-
plemented by Calamari to the default LSTM network of OCRopy achieving optimum
values considerably below 1% CER and a relative improvement of above 50% compared
to standard models. The enhancements are increased by a larger amount of available
training data and the introduction of voting mechanisms, data augmentation, and
pretrained models. Thus, to train a book specific model, only 60 or 100 lines of GT are
sufficient to achieve an average CER of below 2% or about 1%, respectively, as shown
in Table 10.
Although the proposed deeper network has a higher number of parameters the

absolute training and prediction time is in the same order of magnitude compared to
the standard model. However, the usage of a GPU quickens these times by a factor of
at least four depending on the lines processed in parallel.
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To further improve the voted results, distinct voters are required. These voters could
be created by variations of the network architectures and the usage by several different
datasets for pretraining.
Moreover, training of an even deeper network using many different books sharing

similarities in typeface, is expected to result in a generic model that has very low error
rates on a high variety of fonts. To reduce its training time, a GPU combined with
batch-wise training should be considered to achieve a high throughput of lines per
second.
Recently, the popular OCR engine Tesseract12 published a new version that imple-

ments Deep Neural Networks. We expect similar improvements compared to shallow
networks, however voting, data augmentation, and pretraining in the form of Calamari
are not supported, yet. Moreover, GPUs can not be used to speed up the training time.
In summary, it can be stated that the application of Calamari implementing deep

CNN-LSTM-networks, Cross-Fold-Voting, data augmentation, and pretraining opens
the door to a very promising approach to establish a new benchmark for OCR both
on early printed books and despite the historical focus of this paper also on any other
print.

References

Al Azawi, M., Liwicki, M., and Breuel, T. M. (2015). Combination of multiple aligned recognition
outputs using WFST and LSTM. In Document Analysis and Recognition (ICDAR), 2015
13th Int. Conf. on, pages 31–35. IEEE.

Bluche, T. (2015). Deep Neural Networks for Large Vocabulary Handwritten Text Recogni-
tion. (Réseaux de Neurones Profonds pour la Reconnaissance de Texte Manucrit à Large
Vocabulaire). PhD thesis, University of Paris-Sud, Orsay, France.

Breuel, T. M. (2017). High performance text recognition using a hybrid convolutional-lstm
implementation. In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), pages 11–16. IEEE.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.,
and Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition
and description. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2625–2634.

Fan, Y., Lu, X., Li, D., and Liu, Y. (2016). Video-based emotion recognition using cnn-rnn
and c3d hybrid networks. In Proceedings of the 18th ACM International Conference on
Multimodal Interaction, ICMI 2016, pages 445–450, New York, NY, USA. ACM.

Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional
recurrent neural networks. In Advances in neural information processing systems, pages
545–552.

Handley, J. C. (1998). Improving OCR accuracy through combination: A survey. In Systems,
Man, and Cybernetics, 1998. 1998 IEEE Int. Conf. on, volume 5, pages 4330–4333. IEEE.

12https://github.com/tesseract-ocr/tesseract

JLCL 2018 – Band 33 (1) 95



Wick, Reul, Puppe

Mane, D. T. and Kulkarni, U. V. (2017). A survey on supervised convolutional neural network
and its major applications. IJRSDA, 4(3):71–82.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference
Proceedings, pages 1310–1318. JMLR.org.

Reul, C., Dittrich, M., and Gruner, M. (2017a). Case study of a highly automated layout
analysis and ocr of an incunabulum: ’der heiligen leben’ (1488). In Proceedings of the 2Nd
Int. Conf. on Digital Access to Textual Cultural Heritage, DATeCH2017, pages 155–160,
New York, NY, USA. ACM.

Reul, C., Springmann, U., Wick, C., and Puppe, F. (2018). Improving OCR accuracy on
early printed books by utilizing cross fold training and voting. In 13th IAPR International
Workshop on Document Analysis Systems, DAS 2018, Vienna, Austria, April 24-27, 2018,
pages 423–428. IEEE Computer Society.

Reul, C., Wick, C., Springmann, U., and Puppe, F. (2017b). Transfer learning for OCRopus
model training on early printed books. 027.7 Zeitschrift für Bibliothekskultur / Journal for
Library Culture, 5(1):38–51.

Rice, S. V., Jenkins, F. R., and Nartker, T. A. (1996). The fifth annual test of OCR accuracy.
Information Science Research Institute.

Rice, S. V., Kanai, J., and Nartker, T. A. (1994). An algorithm for matching OCR-generated text
strings. International Journal of Pattern Recognition and Artificial Intelligence, 8(05):1259–
1268.

Sainath, T. N., Vinyals, O., Senior, A., and Sak, H. (2015). Convolutional, long short-term
memory, fully connected deep neural networks. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4580–4584.

Shi, B., Bai, X., and Yao, C. (2017). An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(11):2298–2304.

Springmann, U., Fink, F., and Schulz, K. U. (2016). Automatic quality evaluation and (semi-)
automatic improvement of mixed models for ocr on historical documents. CoRR.

Springmann, U. and Lüdeling, A. (2017). OCR of historical printings with an application
to building diachronic corpora: A case study using the RIDGES herbal corpus. Digital
Humanities Quarterly, 11(2).

Springmann, U., Reul, C., Dipper, S., and Baiter, J. (2018). GT4HistOCR: Ground Truth for
training OCR engines on historical documents in German Fraktur and Early Modern Latin.

Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B., and
Zafeiriou, S. (2016). Adieu features? end-to-end speech emotion recognition using a deep
convolutional recurrent network. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5200–5204.

96 JLCL



Uwe Springmann, Christian Reul, Stefanie Dipper, Johannes Baiter

Ground Truth for training OCR engines on historical documents
in German Fraktur and Early Modern Latin

Abstract

In this paper we describe a dataset of German and Latin ground truth (GT) for historical OCR in the
form of printed text line images paired with their transcription. This dataset, called GT4HistOCR,
consists of 313,173 line pairs covering a wide period of printing dates om incunabula om the 15th
century to 19th century books printed in Fraktur types and is openly available under a CC-BY ⒋0
license. The special form of GT as line image/transcription pairs makes it directly usable to train state-
of-the-art recognition models for OCR so ware employing recurring neural networks in LSTM
architecture such as Tesseract 4 or OCRopus. We also provide some pretrained OCRopus models
for subcorpora of our dataset yielding between 95% (early printings) and 98% (19th century Fraktur
printings) character accuracy rates on unseen test cases, a Perl script to harmonize GT produced by
different transcription rules, and give hints on how to construct GT for OCR purposes which has
requirements that may differ om linguistically motivated transcriptions.

1 Introduction

The conversion of scanned images of printed historical documents into electronic text by means
of OCR has recently made excellent progress, regularly yielding character recognition rates by indi-
vidually trained models beyond 98% for even the earliest printed books (Springmann et al., 2015;
Springmann and Fink, 2016; Springmann and Lüdeling, 2017; Springmann et al., 2016; Reul et al.,
2017a,b, 2018, see also this volume). This is due to ⑴ the application of recurrent neural networks
with LSTM architecture to the field of OCR (Fischer et al., 2009; Breuel et al., 2013; Ul-Hasan
and Breuel, 2013), ⑵ the availability of open source OCR engines which can be trained on specific
scripts and fonts such as Tesseract¹ and OCRopus², and⑶ the possibility to train recognition models
on real printed text lines as opposed to generating artifical line images om existing computer fonts
(Breuel et al., 2013; Springmann et al., 2014).

What is missing, however, are robust pretrained recognition models applicable to a wide range of
typographies spanning different fonts (such as Antiqua and Fraktur with long s), scripts and publica-
tion periods, which would yield a tolerable OCR result of >95% character recognition rate without
the need of any specific training. Accurate ground truth and better individual OCR models could
be constructed om the output of these pretrained models much more easily than by transcriptions
om scratch. The feasibility to construct such mixed models able to generalize to previously unseen

books that have not contributed to model training has been shown in Springmann and Lüdeling

¹https://github.com/tesseract-ocr/tesseract/wiki/Training-Tesseract
²https://github.com/tmbdev/ocropy/wiki
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(2017) with diachronic German Fraktur printings (compare their Fig. 6 and Fig. 7): Character recog-
nition rates of individual models quickly fall below 80% when applied to books printed with different
fonts at different periods, whereas mixed models show an average rate of 95% (see their Table 2).
The construction of pretrained mixed models crucially depends on available ground truth data

for a wide variety of historical documents. In this paper we describe training material of historical
ground truth which has been collected and produced by us over the course of several years. The
training of OCRopus models is described in detail in the CIS workshop on historical OCR³ and the
OCRoCIS tutorial⁴.
All of our ground truth is made available in the GT4HistOCR (Ground Truth for Historical OCR)

dataset under a CC-BY ⒋0 license in Zenodo (Springmann et al., 2018). The repository contains the
compressed subcorpora, some pretrained mixed OCRopus models for subcorpora, and a Perl script
which can be adapted to harmonize GT produced by different transcriptions guidelines in order to
have a common pool of training data for mixed models.
In the following we describe our GT4HistOCR dataset and its constituent subcorpora (Sect. 2),

mention other existing sources of historical GT which have not yet been mined for model construc-
tion (Sect. 3) together with a description of a crowdsourcing tool for GT production using public
APIs of the Internet Archive (Sect. ⒊1), make some remarks about transcription guidelines and their
relevance to the production of GT for OCR purposes (Sect. 4), and end with a conclusion (Sect. 5).

2 The GT4HistOCR dataset

In the following we introduce the five subcorpora of our GT4HistOCR dataset (see Table 1). The
transcription of these corpora was done manually (partly by students) and later checked and corrected
by trained philologists within projects in which we participated:
The Reference Corpus Early New High German⁵ is a DFG funded project, the Kallimachos corpus

derives om work done in the BMBF funded Kallimachos project⁶, the Early Modern Latin corpus
was produced during projects on OCR postcorrection funded by CLARIN and DFG⁷, RIDGES⁸
has been built by students at HU Berlin as part of their studies in historical corpus linguistics and
DTA19 has been extracted om the DFG-funded Deutsches Textarchiv (DTA)⁹. An overview of the
contribution of these subcorpora to our dataset is shown in Table 1.
The text line images corresponding to the transcripted lines have been prepared and matched by

us using OCRopus segmentations routines or, in the case of DTA19, the segmentation of ABBYY
Finereader. The ground truth in the form of paired line images and their transcriptions are an excerpt
om the books in a corpus.
Because the transcription guidelines for each subcorpus differ in the amount of typographical detail

that has been recorded we chose not to construct corpora according to language or period by merging

³http://www.cis.uni-muenchen.de/ocrworkshop/program.html
⁴http://cistern.cis.lmu.de/ocrocis/tutorial.pdf
⁵https://www.linguistics.ruhr-uni-bochum.de/ref/
⁶http://kallimachos.de
⁷http://www.cis.lmu.de/ocrworkshop/
⁸http://korpling.org/ridges/
⁹http://www.deutschestextarchiv.de/
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Table 1: Overview of the subcorpora of GT4HistOCR. For each subcorpus we indicate the number
of books, the printing period, the number of lines, and the language.

Sect. Subcorpus # Books Period # Lines Language

⒊1 Reference Corpus ENHG 9 1476-1499 24,766 ger
⒊2 Kallimachos Corpus 9 1487-1509 20,929 ger, lat
⒊3 Early Modern Latin 12 1471-1686 10,288 lat
⒊4 RIDGES Fraktur 20 1487-1870 13,248 ger
⒊5 DTA19 39 1797-1898 243,942 ger

Sum: 313,173

Figure 1: Example GT line pair of line image (upper line) and its transcription. A blank after each
punctuation symbol has been added and the OCR model will consequently learn to map
a punctuation symbol to the sequence punctuation, blank.

and harmonizing material om these subcorpora. However, because the directory containing the GT
of each book is named with publishing year and book title, a user can remix our data and construct
new corpora according to his needs a er the transcriptions have been harmonized. An example of a
GT line pair is given in Fig. 1.

2.1 Incunabula from the Reference Corpus Early New High German

The Reference Corpus Early New High German (ENHG) is being created in an ongoing project
which is part of a larger initiative with the goal of creating a diachronic reference corpus of German,
starting with the earliest existing documents om Old High German and Old Saxon (750–1050),
and including documents om Middle High German (1050–1350) and Middle Low German and
Low Rhenish (1200-1650), up to Early New High German (1350–1650). The Reference Corpus
Early New High German contains texts published between 1350 and 1650. From 1450 on, prints are
included in the corpus besides manuscripts. The last part, 1550–1650, consists of prints only. The
texts have been selected in a way as to represent a broad and balanced selection of available language
data. The corpus contains texts om different time periods, language areas, and document genres
(e.g. administrative texts, religious texts, chronicles). From the Reference Corpus Early New High
German we got ground truth for the incunabula printings in Table 2. Specimen of line images which
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Table 2: The Early New High German incunabulum corpus. Given are the printing year, the GW
number, the short title, the number of ground truth lines for training and evaluation, and
the character recognition rate (CRR) in % of a mixed model trained on all other books.

Year GW (Short) Title # Lines CRR

1476 M51549 Historĳ 3160 9⒍11
1478 04307 Biblia 2745 9⒈90
1485 M09766 Gart der Gesuntheit 2520 9⒍37
1486 M45593 Eunuchus 3403 9⒉61
1486 5077 Jherusalem 2232 9⒎83
1490 10289 Pfarrer vom Kalenberg 2503 9⒏07
1490 5793 Leben und Sitten 3099 9⒊59
1497 5593 Cirurgia 3476 9⒍16
1499 6688 Cronica Coellen 1628 9⒌98

Sum: 24,766

give an impression of the fonts are shown in Fig. 2. Full bibliographic details for these documents
can be retrieved om the Gesamtkatalog der Wiegendrucke¹⁰ via the GW number.
While in principle we would like to have as large a corpus as possible and reuse all transcriptions
om 1450 up to 1650, the process of generating accurately segmented printed lines om scanned

book pages and matching them to their corresponding transcriptions is still laborious. Because OCR
ground truth for periods later than 1500 is provided in other subcorpora we just used the incunabula
printings of the reference corpus.
We also wanted to explore the feasibility to construct a mixed model and test its predictive power

for unseen works om this period. For the about 30,000 incunabula printings, about 2000 print shops
(officinae) using about 6000 typesets have been identified in the Typenrepertorium der Wiegendrucke¹¹,
so a mixed model trained on only a few books might not generalize well to other incunabula printed in
one of the many other and possibly much different fonts. On the other hand, even in this early period
a divison of labour between punchcutters and printers took place and commercially successful printing
types were available for sale (Carter, 1969), so it might be expected that not all 6,000 identified fonts
employed in the print shops were totally different om each others.
To get an idea of how well mixed models work for incunabula we trained nine models on eight

books each and applied this model to the one book le out of the training set. The resulting CERs
are given in the last column of Table 2. The previous finding of Springmann and Lüdeling (2017)
that mixed models generalize better than individual models is corroborated: The worst recognition
rate is 9⒈90% with an average rate of 9⒌40% on unseen books.
We provide a mixed model that was trained on the combined training set of all books and evaluated

against a previously unseen test set taken om the same books. The resulting character recognition

¹⁰http://www.gesamtkatalogderwiegendrucke.de/GWEN.xhtml
¹¹http://tw.staatsbibliothek-berlin.de/
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Figure 2: Example lines of the Early New High German incunabulum corpus in chronological order
(see Table 2).

rate is above 97% for each book in this corpus (a higher value than the previous average because for
this model each book contributed to the training set).

2.2 The Kallimachos corpus

The Kallimachos corpus consists of the 1488 printing of Der Heiligen Leben and eight books om
the Narragonien digital subproject¹² dealing with the second most popular book in its time a er the
bible, the Narrenschiff (ship of fools) by Sebastian Brant. There are four Latin printings (Stultifera
nauis) translated by Locher and Badius, respectively, two Early New High German printings, one
Early Low German work (Der narrenscip), and one Latin/English document (Barclay) of which we
just provide the Latin part. Whereas the German documents use a broken script, some Latin works
are printed with Antiqua types similar to our modern types (Fig. 3). We do not provide a mixed
model of these rather diverse types but leave it to the reader to construct his own models for his
specific interests. The transcription of Badius is less accurate than that of the other books because it
has not yet been checked to the same level of detail.

2.3 An Early Modern Latin corpus

In Springmann et al. (2016) we introduced a Latin data set of manual transcriptions om books
that were either of interest to us or to scholars who requested an OCR text for a complete book for
which we had to train an individual recognition model. The Early Modern Latin corpus is essentially
the same, but leaves out the 1497 Stultifera Nauis (belonging to the Kallimachos corpus) and adds
the 1543 Psalterium of Folengo (see Table 4). The printings are mostly in Antiqua types (except the

¹²http://kallimachos.de/kallimachos/index.php/Narragonien. Because annotated transcriptions of the Narren-
schiff works have not yet been published the single lines of these works have been randomly permutated and do not provide
a coherent text in their enumerated order [0⒋0⒊2018].
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Table 3: The Kallimachos corpus

Year GW (Short) Title # Lines

1488 M11407 Der Heiligen Leben (Winterteil) 4178
1495 5049 Das neu narrenschiff 2114
1497 5051 Das nuw schiff von narragonia 1197
1497 5056 Stultifera nauis 1424
1497 5061 Stultifera Nauis 1092
1499 5064 Stultifera nauis 721
1500 5066 Der narrenscip 2500
1505 Nauis stultifera (Badius) 4713
1509 The Shyp of Folys (Barclay) 2990

Sum: 20,929

Figure 3: Example lines of the Kallimachos corpus in chronological order (see Table 3). Both
Antiqua fonts (Latin) and broken fonts (German) are present.
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Table 4: The Early Modern Latin corpus

Year (Short) Title Author # Lines

1471 Orthographia Tortellius 417
1476 Speculum Naturale Beauvais 2012
1483 Decades Biondo 915
1522 De Septem Secundadeis Trithemius 201
1543 De Bello Alexandrino Caesar 830
1543 Psalterium Folengo 314
1553 Carmina Pigna 297
1557 Methodus Clenardus 350
1564 Thucydides Valla 1948
1591 Progymnasmata vol. I Pontanus 710
1668 Leviathan Hobbes 1078
1686 Lexicon Atriale Comenius 1216

Sum: 10,288

Speculum Naturale of Beauvais, Fig. 4). The two provided models are those of the above mentioned
publication.

2.4 The RIDGES Fraktur corpus

The use of broken scripts dates back to the 12th century and was once customary all over Europe. It is
therefore of considerable interest to be able to recognize this script in order to OCR the large amount
of works printed in a variety of Fraktur. This dataset collects Fraktur material om 20 documents
of the RIDGES corpus of herbals (Odebrecht et al., 2017) which has been proo ead for diplomatic
accuracy and matched by us against lines images of the best available scans. OCR experiments
on this corpus were reported in Springmann and Lüdeling (2017). The two mixed models used
in that publication are provided and give a good base model covering about 400 years of Fraktur
printings. Note that the author of the 1543 printing was erroneously attributed to Hieronymous
Bock in Springmann and Lüdeling (2017) and has been corrected to Leonhart Fuchs in Table 5.

2.5 The DTA19 corpus of 19th century German Fraktur

The use of broken scripts in the 19th century and later was mostly restricted to Germany and some
neighboring countries. There is a large amount of scans available om 19th century documents
(newspapers, long-running journals such asDie Grenzboten¹³ orDaheim, encyclopedias¹⁴, dictionaries,
novels, and reprints of classical works om previous centuries) which are of considerable interest to
philologists and historians.

¹³http://brema.suub.uni-bremen.de/grenzboten
¹⁴https://www.zedler-lexikon.de/
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Figure 4: Example lines of the Early Modern Latin corpus in chronological order (see Table 4).

Table 5: The RIDGES Fraktur corpus.

Year (Short) Title Author # Lines

1487 Garten der Gesunthait Cuba 747
1532 Artzney Buchlein der Kreutter Tallat 504
1532 Contrafayt Kreüterbuch Brunfels 366
1543 New Kreüterbuch Fuchs 483
1557 Wie sich meniglich Bodenstein 995
1588 Paradeißgärtlein Rosbach 795
1603 Alchymistische Practic Libavius 473
1609 Hortulus Sanitatis Durante 696
1609 Kräutterbuch Carrichter 677
1639 Pflantz-Gart Rhagor 1091
1652 Wund-Artzney Fabricius 601
1673 Thesaurus Sanitatis Nasser 733
1675 Curioser Botanicus Anonymous 567
1687 Der Schweitzerische Botanicus Roll 520
1722 Flora Saturnizans Henckel 562
1735 Mysterium Sigillorvm Hiebner 470
1764 Einleitung zu der Kräuterkenntniß Oeder 916
1774 Unterricht Eisen 562
1828 Die Eigenscha en aller Heilpflanzen Anonymous 658
1870 Deutsche Pflanzennamen Grassmann 868

Sum: 13,248
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Figure 5: Example lines of the RIDGES Fraktur corpus in chronological order (see Table 5).
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Because of this high interest, some prominent works have been converted into electronic form
by manual transcription (keyboarding, double-entry transcription) in low-wage countries¹⁵. Given
the sheer amount of available material, faster and less costly alternatives are sought a er and both
commercial (ABBYY Finereader with a special Fraktur licence¹⁶) and open source OCR engines
(Tesseract and OCRopus) are capable of recognizing Fraktur printings. What motivated us to look
at 19th century Fraktur separately was the question whether we could beat the available general
recognition models of the mentioned OCR engines. This is currently an open research topic.
It is tempting to use synthetic training materials, as a variety of Fraktur computer fonts is readily

available on the internet. In fact, the Fraktur recognition model of Tesseract is completely based
upon synthetic material, the model of OCRopus mostly. However, closer inspection shows that
many fonts are either lacking some essential characterics of real Fraktur types (such as long ſ, or ch
and tz ligatures) or have obviously been constructed for calligraphic use and do not reflect the most
equently used historical types. For best OCR results we have to rely on transcriptions of real data,

at least as an addition to any synthetic data set one might construct.
In the following we describe a collection of transcriptions om Deutsches Textarchiv for which line

segmentations omABBYY Finereader are available. The corresponding scans of these transcriptions
are held by Staatsbibliothek zu Berlin¹⁷. We produced line images by cutting page scans into lines using
the line coordinates contained in the ABBYY XML output. In this way a corpus of 63 books, some
belonging to multi-volume works, could be assembled fully automatically. From these we selected
just one volume of each multi-volume edition to provide a balanced multi-font corpus and did some
quality checks on correct segmentations by hand.
The resulting DTA19 corpus of 39 works is detailed in Table 6. To our knowledge there does

not exist a similar extensive collection of ground truth for German 19th century Fraktur. We also
provide a model trained on this corpus.
Because most Fraktur fonts do not differentiate between the alphabetic characters I and J and use

the same glyph for both, we harmonized the transcription of DTA that employs different symbols to
just use J. Otherwise, a model trained on the original transcription would randomly output either I
or J for the same glyph. As a side effect, however, Roman numerals with the I glyph in the image
will now be recognized with the J letter in the OCR output. This is a systematic error resulting
om ground truth that is incorrect for these cases. A better model would result om training on

handcorrected ground truth where only Roman numerals have the I letter.

3 Other historical ground truth corpora

In the following we mention other historical ground truth corpora which are not part of
GT4HistOCR. Only the Archiscribe corpus of 19th century German Fraktur is directly usable
for OCR model training whereas the others would need various amounts of effort to be aligned as
line image/transcription pairs. We also give estimates on the amount of material (number of line
pairs) potentially available.

¹⁵E.g. Krünitz’ Ökonomische Enzyklopädie: http://www.kruenitz1.uni-trier.de/,
¹⁶https://abbyy.technology/en:features:ocr:old_font_recognition
¹⁷http://staatsbibliothek-berlin.de/
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Table 6: The DTA19 Fraktur corpus.

Year (Short) Title Author # Lines

1797 Herzensergießungen Wackenroder 5150
1802 O erdingen Novalis 6198
1804 Flegeǉahre vol. 1 Paul 5332
1815 Elixiere vol. 1 Hoffmann 8008
1816 Buchhandel Perthes 861
1817 Nachtstücke vol. 1 Hoffmann 6578
1819 Revolution Görres 6178
1821 Waldhornist Müller 2343
1826 Taugenichts Eichendorff 7662
1827 Liebe Clauren 6724
1827 Reisebilder vol. 2 Heine 5980
1827 Lieder Heine 5873
1828 Gedichte Platen 5103
1828 Literatur vol. 1 Menzel 8124
1832 Gedichte Lenau 4446
1832 Paris vol. 1 Börne 5329
1834 Felǳüge Wienbarg 7805
1835 Wally Gutzkow 5728
1852 Ruhe vol. 1 Alexis 9314
1852 Gedichte Storm 2038
1853 Ästhetik Rosenkranz 14062
1854 Heinrich vol. 1 Keller 9343
1854 Christus Candidus 2095
1861 Problematische Naturen vol. 2 Spielhagen 6445
1863 Menschengeschlecht Schleiden 1788
1871 Bühnenleben Bauer 12008
1877 Novellen Saar 6354
1879 Auch Einer vol. 2 Vischer 10492
1880 Hochbau Raschdorff 661
1880 Heidi Spyri 6210
1882 Sinngedicht Keller 11209
1882 Gedichte Meyer 6262
1886 Katz Eschstruth 6601
1887 Künstlerische Tätigkeit Fiedler 4983
1888 Irrungen Fontane 7079
1891 Bittersüß Frapan 7008
1897 Gewerkscha sbewegung Poersch 1476
1898 Fenitschka Andreas-Salomé 4753
1898 Erinnerungen vol. 2 Bismarck 10339

Sum: 243,942

JLCL 2018 – Band 33 (1) 107



Springmann, Reul, Dipper, Baiter

Figure 6: A selection of lines of the DTA19 corpus. From top to bottom: 1815, 1817, 1819, 1826,
1835, 1853, 1861, 1879, 1891, 1897.

3.1 The Archiscribe corpus

A prime obstacle for generating ground truth for OCR training purposes consists in the segmentation
of textual elements on a printed page into text lines. To circumvent this problem, we made use of
several open APIs of the Internet Archive¹⁸ to directly retrieve line images om historical books that
can be used as image sources for creating ground truth.
The Internet Archive hosts a collection of over 15 million texts, whose scans are sourced om

Google Books as well as a number of volunteers and cooperating institutions.¹⁹ For every scanned
book, an automated process creates OCR with ABBYY FineReader. While the actual OCR output
of this engine for text with Fraktur typefaces is of very low quality, the resulting line segmentation
is usually fairly accurate.
To create ground truth om the Internet Archive corpus, a simple crowd sourcing web application,

Archiscribe²⁰, is provided. First-time users of the application have to read through a simplified
version of the transcription guidelines of the Deutsches Textarchiv²¹. They are then offered the
option to pick a certain year between 1800 and 1900 and set a number of lines they want to transcribe.
In order to retrieve these lines om a suitable book, Archiscribe uses the publicly available search

API of the Internet Archive²² to retrieve a list of 19th century German language texts and randomly
picks a volume that has not yet been transcribed. To determine whether a given text is actually
set in Fraktur, a heuristic is used: The OCR text is downloaded and searched for the token i , a
common misinterpretation by OCR engines trained on Antiqua fonts of the actual word ist (German
ist = English is), which has a high equency in any German text (of course, real books also contain
quotations and other material in Antiqua, as is seen in the second line of Figure 8). If this heuristic
results in a false positive (there are some books printed in Antiqua employing a long s), one can just
start over. Once a suitable book is found, the desired number of lines²³ are picked at random om
the book.
¹⁸http://archive.org
¹⁹https://archive.org/scanning
²⁰https://archiscribe.jbaiter.de, source code: https://github.com/jbaiter/archiscribe (MIT license)
²¹http://www.deutschestextarchiv.de/doku/basisformat/transkription.html
²²https://archive.org/advancedsearch.php
²³user-defined, by default 50
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Figure 7: Transcribing a line with Archiscribe

To serve the images to the user, Archiscribe uses the publicly available IIIF Image API endpoint²⁴
of the Internet Archive. As the API allows the cropping of regions out of a given page image hosted
by the archive.org server, the application can directly use it for rendering the line images in the user’s
browser, and no image processing on the Archiscribe server is neccessary.

Once a suitable volume has been picked and the lines to be transcribed have been determined, the
user is presented with a minimal transcription interface consisting of the line to be transcribed, a
text box to enter the transcription and an on-screen keyboard with a number of commonly occurring
special characters not available on modern keyboards. To offer more context in difficult cases, the
user may opt to display the lines above and below the line to be transcribed (Fig.7).

When all lines have been transcribed, they are submitted to the Archiscribe server, where they
are stored alongside with their corresponding line images in a Git repository that is published to the
corpus repository on GitHub on every change²⁵.

To ease maintenance of the ground truth corpus a simple review interface is available (Fig.8) where
existing transcriptions can be filtered and edited. Due to the use of a Git repository as the storage
backend, it is also very easy to keep track of changes in the dataset or to revert some changes in case
of vandalism.²⁶

Currently the application is restricted to 19th century German language books om the Internet
Archive, but it is planned to add support for the transcription of books sourced om any repository
that offers a IIIF API, the number of which is steadily increasing.

The Archiscribe corpus of ground truth generated by crowdsourcing with the Archiscribe tool
currently consists of 4145 lines om 109 works published across 72 years²⁷ evenly distributed across
the whole 19th century. All of the data is available under a CC-BY ⒋0 license.

²⁴https://iiif.archivelab.org/iiif/documentation
²⁵https://github.com/jbaiter/archiscribe-corpus
²⁶Although the application does not require authentication or registration of any kind, this has not been an issue so far.
²⁷[last accessed 31th August 2018]
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Figure 8: Reviewing an existing transcription with Archiscribe. Often books printed in Fraktur also
contain lines in Antiqua, mostly quotations in Latin (second line from top). If they are
transcribed as well, the model will be able to recognize mixed Fraktur-Antiqua texts.

3.2 The OCR-D ground truth corpus

The OCR-D project funded by Deutsche Forschungsgemeinscha (DFG) created ground truth of
Latin and German printings published between 1500 and 1835 in Germany. This corpus currently
consists of one to four pages each of 94 works.²⁸ Data are provided in both TIFF format (page
images) and an XML representation in both ALTO and PAGE XML containing the segmentation
of the pages in text zones as well as their transcription. In order to produce OCR training data om
these files, the text zones of the TIFF images need to be identified by their coordinates contained
in the XML files, then these subimages have to be segmented into text lines and matched with the
corresponding transcription, also contained in the XML files. We estimate that this dataset currently
contains 300 pages and a total of approximately 10,000 lines.

3.3 The full DTA corpus

There is also the complete DTA corpus of currently 4,422 volumes in German with transcriptions
on page level covering the period 1500 to 1900. To produce OCR ground truth fully automatically
one needs to segment page images and heuristically match the existing line transcriptions against
segmented text line images. Work along this direction is already under way. The amount of available
lines is approximately 30 million²⁹.

²⁸http://www.ocr-d.de/sites/all/GTDaten/IndexGT.html [last accessed 26 August 2018]
²⁹http://www.deutschestextarchiv.de/doku/ueberblick
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3.4 Ground truth from the IMPACT project

The EU-funded IMPACT project (2008-2012) collected historical ground truth in the form of
semantic regions of page images (such as text, image, footnote, marginal notes, page number etc.)
for the task of automatic page segmentation (document analysis) as well as transcriptions for the text
regions of ca. 45,000 pages³⁰. Transcribed ground truth is available for several European languages³¹.
There may be as many as 1 million lines available, but unfortunately the ground truth comes under a
variety of licenses depending on the contributing institution and can currently only be downloaded
page by page.

4 Notes on transcription guidelines for OCR

To produce training data for OCR where a machine will decide what label to attach to a printed
glyph, the golden rule is: The same glyph must have the same transcription, even if the glyph has different
context dependent meanings. Otherwise, the machine will get confused and randomly output one of the
different characters or character sequences it has learnt to associate with the glyph. Consequently the
single Fraktur glyph for the letters I and J can only have one character representation, not two, and
ambiguous and context dependent abbreviations must not be resolved. E.g., a vowel with tilde above
in Early Modern Latin could either mean (vowel+m) or (vowel+n). A further example is provided
by the r-hook above letter d in Table 7. Also, ignoring line endings of printed lines and merging
hyphenated words will destroy the correspondence between printed line image and transcription
needed for model training.

This makes most of the existing transcriptions of historical documents which resolve abbreviations,
merge hyphenated words at line endings, correct printing errors, and modernize historical spellings
unusable for OCR purposes. What is needed instead is a diplomatic transcription, i.e. a transcription
of printed glyphs to characters with no or minimal editorial intervention³².

But even if we transcribe diplomatically, there is still room for a decision on the level of detail
we want to transcribe, e.g. if we want to record the usage of long s (ſ) or rounded r (r rotunda).
The collection of explicit recordings of such decisions are called transcription guidelines. They are
indispensable to ensure a consistent text, both over time and between different people transcribing
parts of same document. They are also necessary if you want to pool data om different corpora
which have been transcribed by different guidelines. You have to inspect the guidelines in order to
regularize different data sets to a common norm.

Explicit transcription guidelines exist for the Reference Corpus ENHG³³, texts om DTA³⁴, and
RIDGES³⁵. All other corpora had to be made internally consistent with our Perl script. The correct-
ness of the data will determine the predictive power of any machine model trained on it. We define
the correctness of a transcription as its adherence to predefined, internally consistent transcription

³⁰https://www.primaresearch.org/www/media/datasets/ImpactRepositoryPoster.pdf
³¹See https://www.digitisation.eu/
³²http://www.stoa.org/epidoc/gl/latest/trans-diplomatic.html
³³Not yet publically available.
³⁴See Footnote 22
³⁵https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/forschung/

ridges-projekt/documentation/download-files/pubs/ridgesv8_2018-04_06.pdf, pp. 248 ff.
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Table 7: Extract from the transcription guidelines of the Reference Corpus ENHG. The transcript
column shows examples of the linguistically motivated transcription, the UTF-8 column
represents our interpretation for OCR purposes.

Example Transcript UTF-8 Description

o\e oͤ vowel modifier

o_r or ligature

d’ ð d with abbreviation of <er>, <r>, <ir>, <re>, <ri>

me<t> met letters that are difficult to read

A= A⸗ word-internal line break

guidelines and not as the level of detail which it records. We emphasize this point because we have
been set back by inconsistent data produced by researchers, students and the public alike.
Note that a linguistically motivated transcription (such as in the Reference Corpus Early New High

German or the Deutsches Textarchiv) might very well choose to transcribe similar looking glyphs by
differently looking characters for a specific use case such as search. In order to use these transcriptions
for OCR model training one needs to normalize to just one alternative (J, in our case). Examples
of differences between a linguistic transcription and a transcription for OCR training are shown in
Table 7 for the Reference Corpus ENHG.

5 Conclusion

Historical OCR has been advanced to a state where even very early printings om the 15th century
can be recognized by individually trained models with a character recognition rate of 98% and above.
To be practical on a large scale, however, pretrained models are needed that result in recognition rates
>95% without any prior training requirement. As long as we lack an automatic method to revive
historical fonts to build large synthetic corpora the construction of pretrained models rests on the
availability of historical ground truth. The GT4HistOCR dataset is put forward to allow experimen-
tation and research under a permissive CC-BY ⒋0 license and is a first step for the construction of
widely applicable pretrained models for Latin and German Fraktur. We hope that other researchers
will follow our example and make their ground truth available under an open source license in directly
usable form for OCR training.
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